Modular Static Scheduling of Synchronous

Data-flow Networks

Marc Pouzet Pascal Raymond
LRI, Univ. Paris-Sud and IUF Verimag-CNRS
INRIA/Orsay Grenoble

Journée du GDR Programmation, 21 octobre 2009

Code Generation for Synchronous Block-diagram

The problem

e Input: a parallel data-flow network made of synchronous operators. E.g.,

LUSTRE, SCADE, SIMULINK

e Output: a sequential procedure (e.g., C, Java) to compute one step of the

network: static scheduling

Examples: (SCADE and SIMULINK)
! L

RER_Input [Add

% | : —{+ | I“: 1
s 1
4 RER_Output In1 + £ .{I:'
Cartl

|
.count_dowr < Acld Giain 1

o -
alse
Gigin
| NumberOfCyele L =
]

—>—

Code Generation for Synchronous Block-diagram 1/20

Abstract Data-flow Network and Scheduling

Whatever be the language, a data-flow network is made of:
e instantaneous nodes which need their current input to produce their current
output. E.g., combinatorial operators.
— atomic actions, (partially) ordered by data-dependency
e delay nodes whose output depend on the previous value of their input. E.g.,
pre of SCADE, 1/z and integrators in SIMULINK, etc.
— state variables + 2 side-effect actions read (set) and update (get)

— reverse dependency (and allow feed back)

)
‘ implemented by 3
¢
o)

Code Generation for Synchronous Block-diagram 2/20

Sequential Code Generation

Build a static schedule from a partial ordered set of actions

a b
=
i
]

Yy Y
j n
! !
T Y

Code Generation for Synchronous Block-diagram 3/20

Sequential Code Generation

Build a static schedule from a partial ordered set of actions

a b s D
D
o) =Y
] '
| | b
i ; -

(partially) ordered set of actions

Code Generation for Synchronous Block-diagram 3/20

Sequential Code Generation

Build a static schedule from a partial ordered set of actions

proc Step () {
a b a
Ca D o> GO '
D get ;
Cset) I3
T C SO set ;
E— J;
' :
Yy y X ;
] N % h;
! ! D Y
(partially) ordered set of actions (one of the) correct sequential code

Code Generation for Synchronous Block-diagram 3/20

Modularity and Feedback

Modularity: a user defined node can be reused in another network
The problem with feedback loops
e this feedback is correct in a parallel implementation

® Nno sequential single step procedure can be used

y a b
R
UQ’
v k
f I
]
Y v Y
j h
|
T Yy

Code Generation for Synchronous Block-diagram 4/20

Modularity and Feedback: classical approaches
e Black-boxing: user-defined nodes are considered as instantaneous, whatever be
their actual input/output dependencies
— compilation is modular
— rejects causally correct feed-back;
— E.g., Lucid Synchrone, SCADE, Simulink
e \White-boxing: nodes are recursively inlined in order to schedule only atomic
nodes
— Any correct feed-back is allowed but modular compilation is lost

— E.g., Academic Lustre compiler; on user demand in SCADE via inline

directives.

e Grey-boxing?

Code Generation for Synchronous Block-diagram 5/20

Grey-boxing
Some actions can be gathered without forbidding correct feedback loops:

e find such a (minimal) set of blocks together with their inter-dependencies:

this is called the (Optimal) Static Scheduling Problem

e only need to inline the blocks dependency graph within the caller

Code Generation for Synchronous Block-diagram 6/20

Grey-boxing
Some actions can be gathered without forbidding correct feedback loops:

e find such a (minimal) set of blocks together with their inter-dependencies:

this is called the (Optimal) Static Scheduling Problem

e only need to inline the blocks dependency graph within the caller

=
Cz > Cy>

Code Generation for Synchronous Block-diagram 6/20

Grey-boxing
Some actions can be gathered without forbidding correct feedback loops:

e find such a (minimal) set of blocks together with their inter-dependencies:

this is called the (Optimal) Static Scheduling Problem

e only need to inline the blocks dependency graph within the caller

-

Block P2 Block P1
dependency analysis

Code Generation for Synchronous Block-diagram 6/20

Grey-boxing
Some actions can be gathered without forbidding correct feedback loops:

e find such a (minimal) set of blocks together with their inter-dependencies:

this is called the (Optimal) Static Scheduling Problem

e only need to inline the blocks dependency graph within the caller

b
P1
Q Yy
\ Y

<
- _ — ~ _ _ - T
Block P2 Block P1

dependency analysis blocks dependency graph
\//'

Code Generation for Synchronous Block-diagram 6/20

Grey-boxing

Some actions can be gathered without forbidding correct feedback loops:

e find such a (minimal) set of blocks together with their inter-dependencies:

this is called the (Optimal) Static Scheduling Problem

e only need to inline the blocks dependency graph within the caller

proc P1 () {
1 y;
\1 proc P2 () {
a:
set
J;
\ , T
B\IOEK/PZ Block P1 P1 before P2
dependency analysis blocks dependency graph + sequential code
-

Code Generation for Synchronous Block-diagram 6/20

State of the Art
e Separate compilation of LUSTRE [Raymond, 1988]: non optimal

e Compilation/code distribution of SIGNAL [Benveniste et al, 90’s]: more general:

conditional scheduling, not optimal

e More recently, [Lublinerman, Szegedy and Tripakis, POPL09]:
optimal, proof of NP-hardness, iterative search of the optimal solution through
3-SAT encoding.

Code Generation for Synchronous Block-diagram 7/20

State of the Art
e Separate compilation of LUSTRE [Raymond, 1988]: non optimal

e Compilation/code distribution of SIGNAL [Benveniste et al, 90’s]: more general:

conditional scheduling, not optimal

e More recently, [Lublinerman, Szegedy and Tripakis, POPL09]:
optimal, proof of NP-hardness, iterative search of the optimal solution through
3-SAT encoding.

This work addresses the Optimal Static Scheduling Problem (OSS):

e proposes an encoding of the problem based on input/output analysis which
gives:
— in (most) cases, an optimal solution in polynomial time

< or a 3-sat simplified encoding.

e practical experiments show that the 3-sat solving is almost never necessary

Code Generation for Synchronous Block-diagram 7/20

Formalization of the Problem

Definition: Abstract Data-flow Networks
A system (A, 1,0, <X):

1. a finite set of actions A,
2. a subset of inputs I C A,
3. a subset of output O C A (not necessarily disjoint from I)

4. and a partial order < to represent precedence relation between actions.

Definition: Compatibility
Two actions x,y € A are said to be (static scheduling) compatible and this is

written xx y when the following holds:

TX Y Y vie I,Yo € O, ((i3zAy=0)=(i=0)) N ((iZyAx=0)=(i=0))

If two nodes are incompatible, gathering them into the same block creates an extra

input/output dependency, and then forbids a possible feedback loop

Formalization of the Problem 8/20

Formalization of the goal

The goal is to find an equivalence relation (the set of blocks) implying compatibility

plus a dependence order between blocks, that is, a preorder relation

Formalization of the Problem 9/20

Formalization of the goal

The goal is to find an equivalence relation (the set of blocks) implying compatibility

plus a dependence order between blocks, that is, a preorder relation

Definition: (Optimal) Static Scheduling
A static scheduling over (A, <, I, O) is a relation = satisfying:

(SS-0) = is a pre-order (reflexive, transitive)
(85-1) x=y = 3y

(SS-2)Vi € I,Yo € O, 130 < i=0

Formalization of the Problem 9/20

Formalization of the goal

The goal is to find an equivalence relation (the set of blocks) implying compatibility

plus a dependence order between blocks, that is, a preorder relation

Definition: (Optimal) Static Scheduling
A static scheduling over (A, <, I, O) is a relation = satisfying:

(SS-0) = is a pre-order (reflexive, transitive)
(85-1) x=y = 3y

(SS-2)Vi € I,Yo € O, 130 < i=0

Corrolary: let S beaS.S.and (z >~ y)<(x 3y A y=x) the associated

equivalence, then >~ implies x .

Formalization of the Problem 9/20

Formalization of the goal

The goal is to find an equivalence relation (the set of blocks) implying compatibility

plus a dependence order between blocks, that is, a preorder relation

Definition: (Optimal) Static Scheduling
A static scheduling over (A, <, I, O) is a relation = satisfying:

(SS-0) = is a pre-order (reflexive, transitive)
(85-1) x=y = 3y

(SS-2)Vi € I,Yo € O, 130 < i=0

Corrolary: let S beaS.S.and (z >~ y)<(x 3y A y=x) the associated

equivalence, then >~ implies x .

Moreover, a Static Scheduling is optimal iff:

(SS-3) >~ has a minimal number of classes.

Formalization of the Problem 9/20

Theoretical Complexity

e Lublinerman, Szegedy and Tripakis proved OSS to be NP-hard through a
reduction to the Minimal Clique Cover (MCC) problem

e Since the OSS problem is an optimization problem whose associated decision
problem is — does it exist a solution with k classes? —, they solve it iteratively

by searching for a solution with & = 1, 2, ... such as:
— for each k, encode the decision problem as a Boolean formula;

— solve it using a SAT solver
However, real programs do not reveal such complexity

e this complexity seems to happen for programs with a large number of inputs and

outputs with complex and unusual dependences between them

e can we identify simple cases by analyzing input/output dependences?

Formalization of the Problem 10/20

Input/output Analysis

Input (resp. output) pre-orders

Let Z (resp. O) be the input (resp. output) function:

O(y)-...*"

It is never the case that x should be computed after v if either:
e I(x) C Z(y), noted =y, which is a valid of SS, (inclusion of inputs),

e O(y) C O(x), noted 2=y, which is a valid SS. (reverse inclusion of outputs),

Input/output Analysis 11/20

Input/output preorder

An even more precise preorder can be build by considering input preorder over

output preorder:

¢ To(x) = {i € I'| i3 %}

o 230y & To(z) € Zo(y).

o 1~/0y & To(x) =To(y)

N.B. a similar reasoning leads to the output/input preorder.
Properties

o =loisavalid SS,

® moreover, it is optimal for the inputs/outputs:
Ve,y e ITUO zloy < xyy

e it follows that, in any optimal solution, input/output that are compatible are

necessarily in the same class (see proof in the paper)

Input/output Analysis 12/20

Input-Set Encoding

e |n any solution, the class of a node can be characterized by a subset of inputs or
key: intuitivelly this key is the set of inputs that are computed before or with the

node.
e As shown before, the only possible key for an input or output node x is I@(az)

How to formalize what can be the key of an internal node?

Input-Set Encoding 13/20

Input-Set Encoding

e |n any solution, the class of a node can be characterized by a subset of inputs or
key: intuitivelly this key is the set of inputs that are computed before or with the

node.
e As shown before, the only possible key for an input or output node x is I@(az)

How to formalize what can be the key of an internal node?

Definition: Kl-encoding

A Kl-enc. is function IC : A — 2! which associate a key to every node such that:
(KI-1))Vx € TUO; K(x) = Zp(x)
(KI-2)Vr,y 23y = K(z) C K(y)

Moreover:

(Kl-opt) it is optimal if the image set is minimal.

Input-Set Encoding 13/20

Solving the Kl-encoding

A system of (in)equations with a variable K, for each x € A:
o K, =Tp(x)forx € TUO
e |J K, € K, C () K, otherwise

Yy—x r—z
where — is the dependency graph relation (a concise representation of <)

Input-Set Encoding 14/20

Kl-encoding vs Static Scheduling
e a solution of Kl ”is” a solution of SS (modulo key inclusion)
e any solution of SS is not a solution of Kl (e.g, =< itself, in general)

e but, any optimal solution of SS is also an optimal solution of Kl (to the absurd, via

Input/output preorder).

In other terms: the Kl formulation is better than the SS one: it has less solutions,

but does not miss any optimal one.

Input-Set Encoding 15/20

Kl-encoding vs Static Scheduling
e a solution of Kl ”is” a solution of SS (modulo key inclusion)
e any solution of SS is not a solution of Kl (e.g, =< itself, in general)

e but, any optimal solution of SS is also an optimal solution of Kl (to the absurd, via

Input/output preorder).

In other terms: the Kl formulation is better than the SS one: it has less solutions,

but does not miss any optimal one.
Complexity of the encoding

e O(n-m? - (logm?)) where n is the number of actions, m the maximum

number of input/outputs.

e Thatis, O(n-m - B(m) - A(m)), where B is the cost of union/intersection

between sets and A, the cost of insertion in a set.

Input-Set Encoding 15/20

Solving the Kl-encoding: Example

K, ={a,b} K,=1{b} K,=1{ab K,={b}
@g ngt ngethf

Ka U ngt - Kset

KbUngtg Kf
KaUng K;
Ky © Kj

e The system to solve:
— a variable K, for each key
— input/output keys are mandatory

<~ set intervals for others

Input-Set Encoding

C {a,b}

C K;
C K,
C K,

16/20

Solving the Kl-encoding: Example
Ko ={a,b} Ky =1{b} Ki={a,b} K,={b}
0 C ngt g{aab}ﬂKsetﬂKf

Ka U ngt U {a7 b} g Kset g {CL, b}
KbUngtU{b}g Ky g{a,b}ﬂKj
K,UKrU{a, b} C K; Cla.bjnk,
K,u{b}C K, C{IINK,
e Compute lower and upper bounds:

— k= | /fL and k) — () k!

Yy—x r—z

Input-Set Encoding

16/20

Solving the Kl-encoding: Example

Ko, ={a,b} Kp={b} K;={a,b} K,=1{b}
) C ngt g{a,b}ﬂKf

{a,b} C K C{a,b}
BhC Kp C{ab)
{a.b} C K; C{ab)
{b} © Kp C{b}

e Compute lower and upper bounds:

— k= | kjandk;: N k'

Yy—x r—z

e Propagate, simplify: new equations, constant intervals, others

Input-Set Encoding

16/20

Solving the Kl-encoding: Example
K, ={a,b} Ky,={b} K,=1{a,b} K,={b}

)= K
{a,b} = Ko
{b} = Ky
{a,0} = K;
{b} = Kp

e Check for "obvious” solutions:
— Ktz — k
— strategy: compute as soon as possible

< not "proven” optimal: () not mandatory

Input-Set Encoding 16/20

Solving the Kl-encoding: Example
K, ={a,b} Ky,={b} K,=1{a,b} K,={b}

Kyt ={a,b}
Kt = {a,b}
Ky ={a,b}
K; ={a,b}
K ={b}

e Check for "obvious” solutions:
— K':z— k]
— strategy: compute as late as possible

— optimal: all keys are mandatory

Input-Set Encoding 16/20

Dealing with complex systems

Let S be the simplified system, X be the set of actions whose key is still unknown,
K1, - -+, ke be the c mandatory keys:
e try to find a solution with ¢ + O classes:
— build the formula: S A\ x \/;j(Kw = K;)
— call a SAT-solver...
e if it fails, try to find a solution with ¢ 4 1 classes:
s introduce a new variable B,
— build the formula: S A, x (V5 (Ko = ;) V (K, = B1))

<~ call a SAT-solver...

e if it fails, try to find a solution with ¢ + 2 classes, etc.

Dealing with complex systems 17/20

Experimentation
The prototype

e exiract dependency informations from a LUSTRE (or SCADE) program

e build the simplified Kl-encoded system (polynomial)

e check for obvious solutions (linear)

e if no obvious solution, iteratively call a Boolean solver.

We have considered three benchmarks made of the components comming from:

e the whole SCADE V4 standard library

— reusable programs, modular compilation is relevant

e two large industrial applications
— not reusable programs, less relevant

— but bigger programs, more likely to be complex

Experimentation 18/20

Results Overview

prgs | #nodes #i/o cpu triv. solved other
(#blocks) | (#blocks) | (# blocks)

SCADE lib. 223 av. 12 2t09 0.14s 65 158
(1) (1or2)

Airbus 1 27 av. 25 2t0 19 0.025s 8 19
(1) (1 to 4)

Airbus 2 125 av. 65 2to 26 0.2s 41 83 17
(up to 600) (1 to 3) (1 to 4)
e as expected: programs in SCADE lib. are (small) and then simple

Experimentation

but also in Airbus, even with "big” interface

1*: not really "complex” (solved by a heuristic: intersection of k;)

the whole test takes 0.35 seconds (CoreDuo 2.8Ghz, MacOS X); 350 LO(Caml).

19/20

Conclusion

e Optimal Static Scheduling is theoretically NP-hard

e thus it could be solved, through a suitable encoding, with a general purpose

Sat-solver

e A polynomial analysis of inputs/outputs can give:
— non trivial lower and upper bounds on the number of classes
— a proved optimal solution in some cases

— a optimized SAT-encoding that emphazises the sources of complexity
e Experiments show that complex instances are hard to find in real examples

Reference:

Marc Pouzet and Pascal Raymond, Modular Static Scheduling of Synchronous
Data-flow Networks: An efficient symbolic representation. In ACM Int. Conf. on
Embedded Software (EMSOFT), oct. 2009.

Conclusion 20/20

	Code Generation for Synchronous Block-diagram
	The problem
	Examples: (Scade and Simulink)
	Abstract Data-flow Network and Scheduling
	Sequential Code Generation
	Modularity and Feedback
	Modularity and Feedback: classical approaches
	Grey-boxing
	State of the Art
	This work addresses the Optimal Static Scheduling Problem (OSS):

	Formalization of the Problem
	Formalization of the goal
	Theoretical Complexity
	However, real programs do not reveal such complexity

	Input/output Analysis
	Input (resp. output) pre-orders
	Input/output preorder
	Properties

	Input-Set Encoding
	Solving the KI-encoding
	KI-encoding vs Static Scheduling
	Complexity of the encoding
	Solving the KI-encoding: Example

	Dealing with complex systems
	Experimentation
	The prototype
	Results Overview

	Conclusion
	Reference:

