
Modular Static Scheduling of Synchronous

Data-flow Networks

Marc Pouzet
LRI, Univ. Paris-Sud and IUF

INRIA/Orsay

Pascal Raymond
Verimag-CNRS

Grenoble

Journée du GDR Programmation, 21 octobre 2009

Code Generation for Synchronous Block-diagram

The problem

• Input: a parallel data-flow network made of synchronous operators. E.g.,

LUSTRE, SCADE, SIMULINK

• Output: a sequential procedure (e.g., C, Java) to compute one step of the

network: static scheduling

Examples: (SCADE and SIMULINK)

Code Generation for Synchronous Block-diagram 1/20

Abstract Data-flow Network and Scheduling

Whatever be the language, a data-flow network is made of:

• instantaneous nodes which need their current input to produce their current

output. E.g., combinatorial operators.

↪→ atomic actions, (partially) ordered by data-dependency

• delay nodes whose output depend on the previous value of their input. E.g.,

pre of SCADE, 1/z and integrators in SIMULINK, etc.

↪→ state variables + 2 side-effect actions read (set) and update (get)

↪→ reverse dependency (and allow feed back)

D

implemented by

i

o o

i

get

set

Code Generation for Synchronous Block-diagram 2/20

Sequential Code Generation

Build a static schedule from a partial ordered set of actions

y

f

h

b

j

a

D

x

Code Generation for Synchronous Block-diagram 3/20

Sequential Code Generation

Build a static schedule from a partial ordered set of actions

a

j

x y

get b

h

f

set

(partially) ordered set of actions

y

f

h

b

j

a

D

x

Code Generation for Synchronous Block-diagram 3/20

Sequential Code Generation

Build a static schedule from a partial ordered set of actions

y ;
h ;
x ;
j ;
set ;
f ;
get ;
b ;
a ;

proc Step () {

}

(one of the) correct sequential code

a

j

x y

get b

h

f

set

(partially) ordered set of actions

y

f

h

b

j

a

D

x

Code Generation for Synchronous Block-diagram 3/20

Modularity and Feedback

Modularity: a user defined node can be reused in another network

The problem with feedback loops

• this feedback is correct in a parallel implementation

• no sequential single step procedure can be used

b

x y

a

D

f

j h

k

Code Generation for Synchronous Block-diagram 4/20

Modularity and Feedback: classical approaches

• Black-boxing: user-defined nodes are considered as instantaneous, whatever be

their actual input/output dependencies

↪→ compilation is modular

↪→ rejects causally correct feed-back;

↪→ E.g., Lucid Synchrone, SCADE, Simulink

• White-boxing: nodes are recursively inlined in order to schedule only atomic

nodes

↪→ Any correct feed-back is allowed but modular compilation is lost

↪→ E.g., Academic Lustre compiler; on user demand in SCADE via inline

directives.

• Grey-boxing?

Code Generation for Synchronous Block-diagram 5/20

Grey-boxing

Some actions can be gathered without forbidding correct feedback loops:

• find such a (minimal) set of blocks together with their inter-dependencies:

this is called the (Optimal) Static Scheduling Problem

• only need to inline the blocks dependency graph within the caller

Code Generation for Synchronous Block-diagram 6/20

Grey-boxing

Some actions can be gathered without forbidding correct feedback loops:

• find such a (minimal) set of blocks together with their inter-dependencies:

this is called the (Optimal) Static Scheduling Problem

• only need to inline the blocks dependency graph within the caller

a

j

x y

get b

h

f

set

Code Generation for Synchronous Block-diagram 6/20

Grey-boxing

Some actions can be gathered without forbidding correct feedback loops:

• find such a (minimal) set of blocks together with their inter-dependencies:

this is called the (Optimal) Static Scheduling Problem

• only need to inline the blocks dependency graph within the caller

Block P2 Block P1
dependency analysis

a

j

x y

get b

h

f

set

Code Generation for Synchronous Block-diagram 6/20

Grey-boxing

Some actions can be gathered without forbidding correct feedback loops:

• find such a (minimal) set of blocks together with their inter-dependencies:

this is called the (Optimal) Static Scheduling Problem

• only need to inline the blocks dependency graph within the caller

P2

x

a y

b

P1

blocks dependency graph
Block P2 Block P1

dependency analysis

a

j

x y

get b

h

f

set

Code Generation for Synchronous Block-diagram 6/20

Grey-boxing

Some actions can be gathered without forbidding correct feedback loops:

• find such a (minimal) set of blocks together with their inter-dependencies:

this is called the (Optimal) Static Scheduling Problem

• only need to inline the blocks dependency graph within the caller

sequential code

proc P1 () {

}
P1 before P2

j ;
x ;

f ;
h ;
y ;

}
proc P2 () {

a ;

b ;
get ;

set ;

+

P2

x

a y

b

P1

blocks dependency graph
Block P2 Block P1

dependency analysis

a

j

x y

get b

h

f

set

Code Generation for Synchronous Block-diagram 6/20

State of the Art

• Separate compilation of LUSTRE [Raymond, 1988]: non optimal

• Compilation/code distribution of SIGNAL [Benveniste et al, 90’s]: more general:

conditional scheduling, not optimal

• More recently, [Lublinerman, Szegedy and Tripakis, POPL’09]:

optimal, proof of NP-hardness, iterative search of the optimal solution through

3-SAT encoding.

Code Generation for Synchronous Block-diagram 7/20

State of the Art

• Separate compilation of LUSTRE [Raymond, 1988]: non optimal

• Compilation/code distribution of SIGNAL [Benveniste et al, 90’s]: more general:

conditional scheduling, not optimal

• More recently, [Lublinerman, Szegedy and Tripakis, POPL’09]:

optimal, proof of NP-hardness, iterative search of the optimal solution through

3-SAT encoding.

This work addresses the Optimal Static Scheduling Problem (OSS):

• proposes an encoding of the problem based on input/output analysis which

gives:

↪→ in (most) cases, an optimal solution in polynomial time

↪→ or a 3-sat simplified encoding.

• practical experiments show that the 3-sat solving is almost never necessary

Code Generation for Synchronous Block-diagram 7/20

Formalization of the Problem
Definition: Abstract Data-flow Networks

A system (A, I, O,�):

1. a finite set of actions A,

2. a subset of inputs I ⊆ A,

3. a subset of output O ⊆ A (not necessarily disjoint from I)

4. and a partial order � to represent precedence relation between actions.

Definition: Compatibility

Two actions x, y ∈ A are said to be (static scheduling) compatible and this is

written xχ y when the following holds:

xχ y
def
= ∀i ∈ I,∀o ∈ O, ((i�x∧y�o)⇒(i�o)) ∧ ((i�y∧x�o)⇒(i�o))

If two nodes are incompatible, gathering them into the same block creates an extra

input/output dependency, and then forbids a possible feedback loop

Formalization of the Problem 8/20

Formalization of the goal

The goal is to find an equivalence relation (the set of blocks) implying compatibility

plus a dependence order between blocks, that is, a preorder relation

Formalization of the Problem 9/20

Formalization of the goal

The goal is to find an equivalence relation (the set of blocks) implying compatibility

plus a dependence order between blocks, that is, a preorder relation

Definition: (Optimal) Static Scheduling

A static scheduling over (A,�, I, O) is a relation - satisfying:

(SS-0) - is a pre-order (reflexive, transitive)

(SS-1) x�y ⇒ x-y

(SS-2) ∀i ∈ I,∀o ∈ O, i-o ⇔ i�o

Formalization of the Problem 9/20

Formalization of the goal

The goal is to find an equivalence relation (the set of blocks) implying compatibility

plus a dependence order between blocks, that is, a preorder relation

Definition: (Optimal) Static Scheduling

A static scheduling over (A,�, I, O) is a relation - satisfying:

(SS-0) - is a pre-order (reflexive, transitive)

(SS-1) x�y ⇒ x-y

(SS-2) ∀i ∈ I,∀o ∈ O, i-o ⇔ i�o

Corrolary: let - be a S.S. and (x ' y)⇔(x-y ∧ y-x) the associated

equivalence, then ' implies χ .

Formalization of the Problem 9/20

Formalization of the goal

The goal is to find an equivalence relation (the set of blocks) implying compatibility

plus a dependence order between blocks, that is, a preorder relation

Definition: (Optimal) Static Scheduling

A static scheduling over (A,�, I, O) is a relation - satisfying:

(SS-0) - is a pre-order (reflexive, transitive)

(SS-1) x�y ⇒ x-y

(SS-2) ∀i ∈ I,∀o ∈ O, i-o ⇔ i�o

Corrolary: let - be a S.S. and (x ' y)⇔(x-y ∧ y-x) the associated

equivalence, then ' implies χ .

Moreover, a Static Scheduling is optimal iff:

(SS-3) ' has a minimal number of classes.

Formalization of the Problem 9/20

Theoretical Complexity

• Lublinerman, Szegedy and Tripakis proved OSS to be NP-hard through a

reduction to the Minimal Clique Cover (MCC) problem

• Since the OSS problem is an optimization problem whose associated decision

problem is — does it exist a solution with k classes? —, they solve it iteratively

by searching for a solution with k = 1, 2, ... such as:

↪→ for each k, encode the decision problem as a Boolean formula;

↪→ solve it using a SAT solver

However, real programs do not reveal such complexity

• this complexity seems to happen for programs with a large number of inputs and

outputs with complex and unusual dependences between them

• can we identify simple cases by analyzing input/output dependences?

Formalization of the Problem 10/20

Input/output Analysis

Input (resp. output) pre-orders

Let I (resp. O) be the input (resp. output) function:

y

x

I(y)

x

y

O(x)

�I �O

I(x)

O(y)

It is never the case that x should be computed after y if either:

• I(x) ⊆ I(y), noted x-Iy, which is a valid of SS, (inclusion of inputs),

• O(y) ⊆ O(x), noted x-Oy, which is a valid SS. (reverse inclusion of outputs),

Input/output Analysis 11/20

Input/output preorder

An even more precise preorder can be build by considering input preorder over

output preorder:

• IO(x) = {i ∈ I | i-Ox}

• x-IOy ⇔ IO(x) ⊆ IO(y),

• x'IOy ⇔ IO(x) = IO(y)

N.B. a similar reasoning leads to the output/input preorder.

Properties

• -IO is a valid SS,

• moreover, it is optimal for the inputs/outputs:

∀x, y ∈ I ∪ O x'IOy ⇔ xχ y

• it follows that, in any optimal solution, input/output that are compatible are

necessarily in the same class (see proof in the paper)

Input/output Analysis 12/20

Input-Set Encoding

• In any solution, the class of a node can be characterized by a subset of inputs or

key: intuitivelly this key is the set of inputs that are computed before or with the

node.

• As shown before, the only possible key for an input or output node x is IO(x)

How to formalize what can be the key of an internal node?

Input-Set Encoding 13/20

Input-Set Encoding

• In any solution, the class of a node can be characterized by a subset of inputs or

key: intuitivelly this key is the set of inputs that are computed before or with the

node.

• As shown before, the only possible key for an input or output node x is IO(x)

How to formalize what can be the key of an internal node?

Definition: KI-encoding

A KI-enc. is function K : A 7→ 2I which associate a key to every node such that:

(KI-1) ∀x ∈ I ∪O;K(x) = IO(x)

(KI-2) ∀x, y x� y ⇒ K(x) ⊆ K(y)

Moreover:

(KI-opt) it is optimal if the image set is minimal.

Input-Set Encoding 13/20

Solving the KI-encoding

A system of (in)equations with a variable Kx for each x ∈ A:

• Kx = IO(x) for x ∈ I ∪O

•
⋃

y→x
Ky ⊆ Kx ⊆

⋂
x→z

Kz otherwise

where → is the dependency graph relation (a concise representation of �)

Input-Set Encoding 14/20

KI-encoding vs Static Scheduling

• a solution of KI ”is” a solution of SS (modulo key inclusion)

• any solution of SS is not a solution of KI (e.g, � itself, in general)

• but, any optimal solution of SS is also an optimal solution of KI (to the absurd, via

Input/output preorder).

In other terms: the KI formulation is better than the SS one: it has less solutions,

but does not miss any optimal one.

Input-Set Encoding 15/20

KI-encoding vs Static Scheduling

• a solution of KI ”is” a solution of SS (modulo key inclusion)

• any solution of SS is not a solution of KI (e.g, � itself, in general)

• but, any optimal solution of SS is also an optimal solution of KI (to the absurd, via

Input/output preorder).

In other terms: the KI formulation is better than the SS one: it has less solutions,

but does not miss any optimal one.

Complexity of the encoding

• O(n ·m2 · (log m2)) where n is the number of actions, m the maximum

number of input/outputs.

• That is, O(n ·m ·B(m) ·A(m)), where B is the cost of union/intersection

between sets and A, the cost of insertion in a set.

Input-Set Encoding 15/20

Solving the KI-encoding: Example

Ka = {a, b} Kb = {b} Kx = {a, b} Ky = {b}
∅ ⊆ Kget ⊆ Kset ∩Kf

Ka ∪Kget ⊆ Kset ⊆ {a, b}

Kb ∪Kget ⊆ Kf ⊆ Kj

Ka ∪Kf ⊆ Kj ⊆ Kx

Kb ⊆ Kh ⊆ Ky

• The system to solve:

↪→ a variable Kx for each key

↪→ input/output keys are mandatory

↪→ set intervals for others

Input-Set Encoding 16/20

Solving the KI-encoding: Example

Ka = {a, b} Kb = {b} Kx = {a, b} Ky = {b}
∅ ⊆ Kget ⊆ {a, b} ∩Kset ∩Kf

Ka ∪Kget ∪ {a, b} ⊆ Kset ⊆ {a, b}

Kb ∪Kget ∪ {b} ⊆ Kf ⊆ {a, b} ∩Kj

Ka ∪Kf ∪ {a, b} ⊆ Kj ⊆ {a, b} ∩Kx

Kb ∪ {b} ⊆ Kh ⊆ {b} ∩Ky

• Compute lower and upper bounds:

↪→ k⊥x =
⋃

y→x
k⊥y and k>x =

⋂
x→z

k>z

Input-Set Encoding 16/20

Solving the KI-encoding: Example

Ka = {a, b} Kb = {b} Kx = {a, b} Ky = {b}
∅ ⊆ Kget ⊆ {a, b} ∩Kf

{a, b} ⊆ Kset ⊆ {a, b}

{b} ⊆ Kf ⊆ {a, b}

{a, b} ⊆ Kj ⊆ {a, b}

{b} ⊆ Kh ⊆ {b}

• Compute lower and upper bounds:

↪→ k⊥x =
⋃

y→x
k⊥y and k>x =

⋂
x→z

k>z

• Propagate, simplify: new equations, constant intervals, others

Input-Set Encoding 16/20

Solving the KI-encoding: Example

Ka = {a, b} Kb = {b} Kx = {a, b} Ky = {b}
∅ = Kget

{a, b} = Kset

{b} = Kf

{a, b} = Kj

{b} = Kh

• Check for ”obvious” solutions:

↪→ K⊥ : x → k⊥x

↪→ strategy: compute as soon as possible

↪→ not ”proven” optimal: ∅ not mandatory

Input-Set Encoding 16/20

Solving the KI-encoding: Example

Ka = {a, b} Kb = {b} Kx = {a, b} Ky = {b}
Kget = {a, b}

Kset = {a, b}

Kf = {a, b}

Kj = {a, b}

Kh = {b}

• Check for ”obvious” solutions:

↪→ K> : x → k>x

↪→ strategy: compute as late as possible

↪→ optimal: all keys are mandatory

Input-Set Encoding 16/20

Dealing with complex systems

Let S be the simplified system, X be the set of actions whose key is still unknown,

κ1, · · · , κc be the c mandatory keys:

• try to find a solution with c + 0 classes:

↪→ build the formula: S
∧

x∈X

∨j=c
j=1(Kx = κj)

↪→ call a SAT-solver...

• if it fails, try to find a solution with c + 1 classes:

↪→ introduce a new variable B1,

↪→ build the formula: S
∧

x∈X(
∨j=c

j=1(Kx = κj) ∨ (Kx = B1))

↪→ call a SAT-solver...

• if it fails, try to find a solution with c + 2 classes, etc.

Dealing with complex systems 17/20

Experimentation

The prototype

• extract dependency informations from a LUSTRE (or SCADE) program

• build the simplified KI-encoded system (polynomial)

• check for obvious solutions (linear)

• if no obvious solution, iteratively call a Boolean solver.

We have considered three benchmarks made of the components comming from:

• the whole SCADE V4 standard library

↪→ reusable programs, modular compilation is relevant

• two large industrial applications

↪→ not reusable programs, less relevant

↪→ but bigger programs, more likely to be complex

Experimentation 18/20

Results Overview

prgs # nodes # i/o cpu triv. solved other

(# blocks) (# blocks) (# blocks)

SCADE lib. 223 av. 12 2 to 9 0.14s 65 158

(1) (1 or 2)

Airbus 1 27 av. 25 2 to 19 0.025s 8 19

(1) (1 to 4)

Airbus 2 125 av. 65 2 to 26 0.2s 41 83 1∗

(up to 600) (1 to 3) (1 to 4)

• as expected: programs in SCADE lib. are (small) and then simple

• but also in Airbus, even with ”big” interface

• 1∗: not really ”complex” (solved by a heuristic: intersection of k>x)

• the whole test takes 0.35 seconds (CoreDuo 2.8Ghz, MacOS X); 350 LO(Caml).

Experimentation 19/20

Conclusion

• Optimal Static Scheduling is theoretically NP-hard

• thus it could be solved, through a suitable encoding, with a general purpose

Sat-solver

• A polynomial analysis of inputs/outputs can give:

↪→ non trivial lower and upper bounds on the number of classes

↪→ a proved optimal solution in some cases

↪→ a optimized SAT-encoding that emphazises the sources of complexity

• Experiments show that complex instances are hard to find in real examples

Reference:

Marc Pouzet and Pascal Raymond, Modular Static Scheduling of Synchronous

Data-flow Networks: An efficient symbolic representation. In ACM Int. Conf. on

Embedded Software (EMSOFT), oct. 2009.

Conclusion 20/20

	Code Generation for Synchronous Block-diagram
	The problem
	Examples: (Scade and Simulink)
	Abstract Data-flow Network and Scheduling
	Sequential Code Generation
	Modularity and Feedback
	Modularity and Feedback: classical approaches
	Grey-boxing
	State of the Art
	This work addresses the Optimal Static Scheduling Problem (OSS):

	Formalization of the Problem
	Formalization of the goal
	Theoretical Complexity
	However, real programs do not reveal such complexity

	Input/output Analysis
	Input (resp. output) pre-orders
	Input/output preorder
	Properties

	Input-Set Encoding
	Solving the KI-encoding
	KI-encoding vs Static Scheduling
	Complexity of the encoding
	Solving the KI-encoding: Example

	Dealing with complex systems
	Experimentation
	The prototype
	Results Overview

	Conclusion
	Reference:

