Modular Static Scheduling of Synchronous Data-flow Networks

Marc Pouzet

LRI, Univ. Paris-Sud and IUF

INRIA/Orsay

Pascal Raymond

Verimag-CNRS

Grenoble

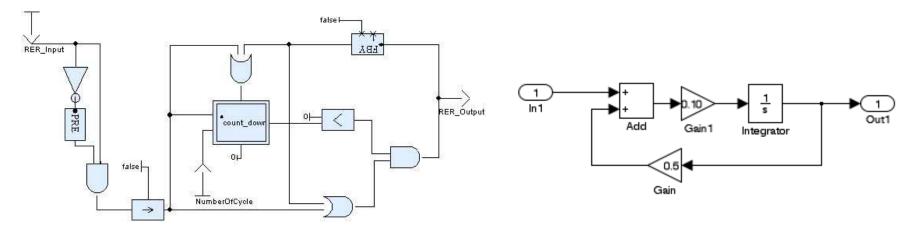
Journée du GDR Programmation, 21 octobre 2009

Code Generation for Synchronous Block-diagram

The problem

- Input: a *parallel* data-flow network made of synchronous operators. E.g., LUSTRE, SCADE, SIMULINK
- **Output:** a sequential procedure (e.g., C, Java) to compute one step of the network: *static scheduling*

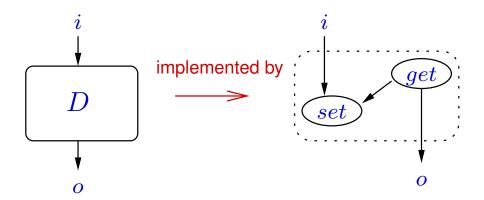
Examples: (SCADE and SIMULINK)



Abstract Data-flow Network and Scheduling

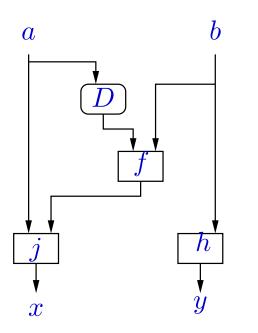
Whatever be the language, a data-flow network is made of:

- instantaneous nodes which need their current input to produce their current output. E.g., combinatorial operators.
 - \hookrightarrow atomic *actions*, (partially) ordered by data-dependency
- *delay* nodes whose output depend on the previous value of their input. E.g., pre of SCADE, 1/z and integrators in SIMULINK, etc.
 - \hookrightarrow state variables + 2 side-effect actions read (*set*) and update (*get*)
 - \hookrightarrow reverse dependency (and allow feed back)



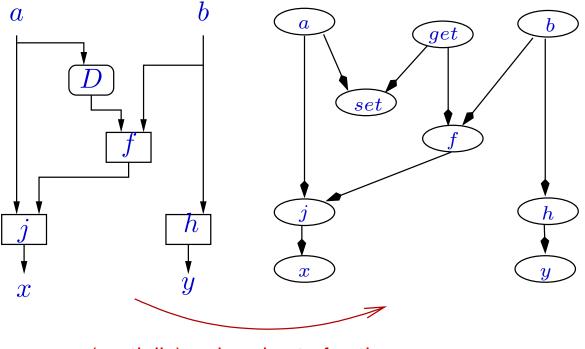
Sequential Code Generation

Build a static schedule from a partial ordered set of actions



Sequential Code Generation

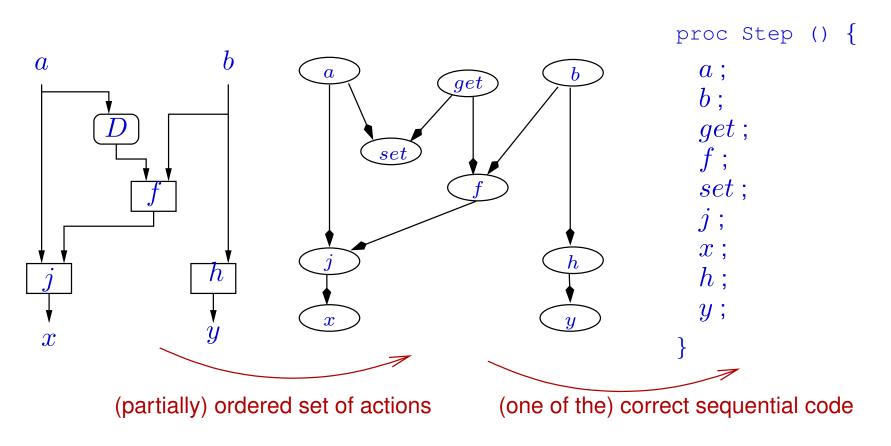
Build a static schedule from a partial ordered set of actions



(partially) ordered set of actions

Sequential Code Generation

Build a static schedule from a partial ordered set of actions

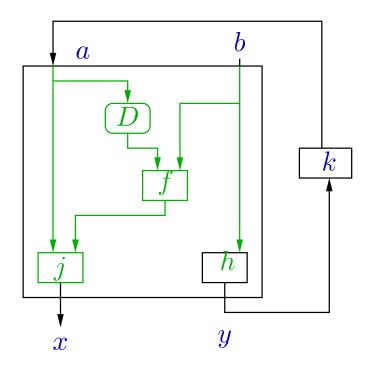


Modularity and Feedback

Modularity: a user defined node can be reused in another network

The problem with feedback loops

- this feedback is correct in a *parallel implementation*
- no *sequential single step procedure* can be used

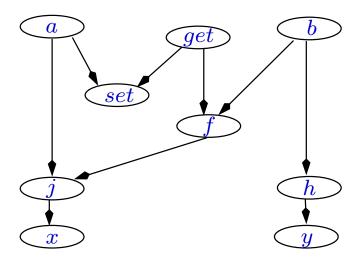


Modularity and Feedback: classical approaches

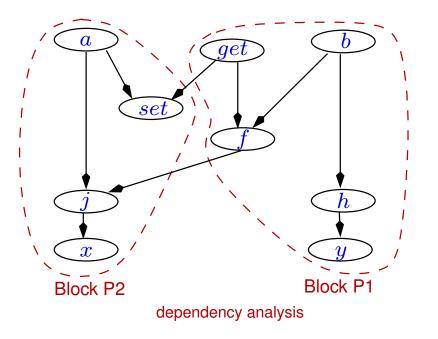
- Black-boxing: user-defined nodes are considered as *instantaneous*, whatever be their actual input/output dependencies
 - \hookrightarrow compilation is modular
 - \hookrightarrow rejects causally correct feed-back;
 - \hookrightarrow E.g., Lucid Synchrone, SCADE, Simulink
- White-boxing: nodes are recursively *inlined* in order to schedule only atomic nodes
 - \hookrightarrow Any correct feed-back is allowed but modular compilation is lost
 - → E.g., Academic Lustre compiler; on user demand in SCADE via *inline* directives.
- Grey-boxing?

- find such a (*minimal*) set of blocks together with their inter-dependencies: this is called the (Optimal) Static Scheduling Problem
- only need to inline the *blocks dependency graph* within the caller

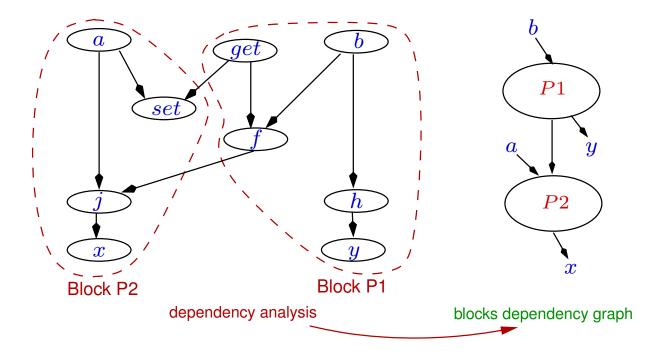
- find such a (*minimal*) set of blocks together with their inter-dependencies: this is called the (Optimal) Static Scheduling Problem
- only need to inline the *blocks dependency graph* within the caller



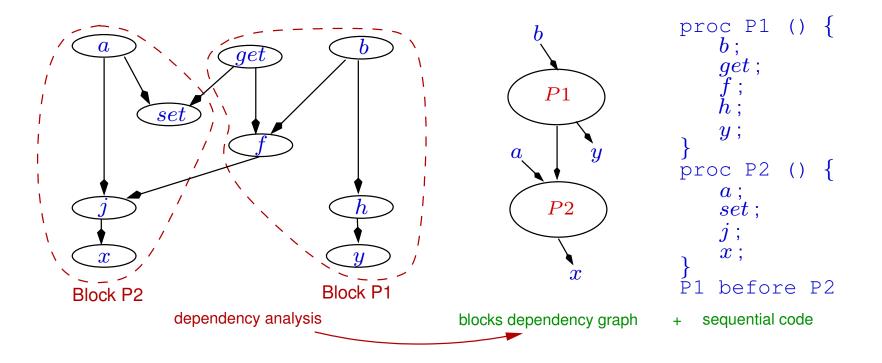
- find such a (minimal) set of blocks together with their inter-dependencies: this is called the (Optimal) Static Scheduling Problem
- only need to inline the *blocks dependency graph* within the caller



- find such a (*minimal*) set of blocks together with their inter-dependencies: this is called the (Optimal) Static Scheduling Problem
- only need to inline the *blocks dependency graph* within the caller



- find such a (minimal) set of blocks together with their inter-dependencies: this is called the (Optimal) Static Scheduling Problem
- only need to inline the *blocks dependency graph* within the caller



State of the Art

- Separate compilation of LUSTRE [Raymond, 1988]: non optimal
- Compilation/code distribution of SIGNAL [Benveniste et al, 90's]: more general: conditional scheduling, not optimal
- More recently, [Lublinerman, Szegedy and Tripakis, POPL'09]: optimal, proof of NP-hardness, iterative search of the optimal solution through 3-SAT encoding.

State of the Art

- Separate compilation of LUSTRE [Raymond, 1988]: non optimal
- Compilation/code distribution of SIGNAL [Benveniste et al, 90's]: more general: conditional scheduling, not optimal
- More recently, [Lublinerman, Szegedy and Tripakis, POPL'09]: optimal, proof of NP-hardness, iterative search of the optimal solution through 3-SAT encoding.

This work addresses the Optimal Static Scheduling Problem (OSS):

- proposes an encoding of the problem based on input/output analysis which gives:
 - \hookrightarrow in (most) cases, an optimal solution in polynomial time
 - \hookrightarrow or a 3-sat simplified encoding.
- practical experiments show that the 3-sat solving is almost never necessary

Formalization of the Problem _____

Definition: Abstract Data-flow Networks

A system (A, I, O, \preceq) :

- 1. a finite set of actions A,
- 2. a subset of inputs $I \subseteq A$,
- 3. a subset of output $O \subseteq A$ (not necessarily disjoint from I)
- 4. and a partial order \leq to represent precedence relation between actions.

Definition: Compatibility

Two actions $x, y \in A$ are said to be (static scheduling) compatible and this is written $x\chi y$ when the following holds:

$$x\chi y \stackrel{def}{=} \forall i \in I, \forall o \in O, ((i \preceq x \land y \preceq o) \Rightarrow (i \preceq o)) \land ((i \preceq y \land x \preceq o) \Rightarrow (i \preceq o))$$

If two nodes are incompatible, gathering them into the same block creates an extra input/output dependency, and then forbids a possible feedback loop

The goal is to find an *equivalence relation* (the set of blocks) implying compatibility plus a *dependence order* between blocks, that is, a *preorder relation*

The goal is to find an *equivalence relation* (the set of blocks) implying compatibility plus a *dependence order* between blocks, that is, a *preorder relation*

Definition: (Optimal) Static Scheduling A static scheduling over (A, \preceq, I, O) is a relation \precsim satisfying: $(SS-0) \precsim is a$ pre-order (reflexive, transitive) $(SS-1) x \preceq y \Rightarrow x \precsim y$ $(SS-2) \forall i \in I, \forall o \in O, i \precsim o \Leftrightarrow i \preceq o$

The goal is to find an *equivalence relation* (the set of blocks) implying compatibility plus a *dependence order* between blocks, that is, a *preorder relation*

Definition: (Optimal) Static Scheduling A static scheduling over (A, \leq, I, O) is a relation \preceq satisfying: $(SS-0) \preceq$ is a pre-order (reflexive, transitive) $(SS-1) x \preceq y \Rightarrow x \preceq y$ $(SS-2) \forall i \in I, \forall o \in O, i \preceq o \Leftrightarrow i \preceq o$

Corrolary: let \preceq be a S.S. and $(x \simeq y) \Leftrightarrow (x \preceq y \land y \preceq x)$ the associated equivalence, then \simeq *implies* χ .

The goal is to find an *equivalence relation* (the set of blocks) implying compatibility plus a *dependence order* between blocks, that is, a *preorder relation*

Definition: (Optimal) Static Scheduling A static scheduling over (A, \preceq, I, O) is a relation \precsim satisfying: $(SS-0) \precsim$ is a pre-order (reflexive, transitive) $(SS-1) x \preceq y \Rightarrow x \precsim y$ $(SS-2) \forall i \in I, \forall o \in O, i \precsim o \Leftrightarrow i \preceq o$

Corrolary: let \preceq be a S.S. and $(x \simeq y) \Leftrightarrow (x \preceq y \land y \preceq x)$ the associated equivalence, then \simeq *implies* χ .

Moreover, a Static Scheduling is optimal iff:

 $(SS-3) \simeq$ has a minimal number of classes.

Theoretical Complexity

- Lublinerman, Szegedy and Tripakis proved OSS to be NP-hard through a reduction to the *Minimal Clique Cover (MCC)* problem
- Since the OSS problem is an optimization problem whose associated decision problem is *does it exist a solution with* k *classes?* —, they solve it iteratively by searching for a solution with k = 1, 2, ... such as:
 - \hookrightarrow for each k, encode the decision problem as a Boolean formula;
 - \hookrightarrow solve it using a SAT solver

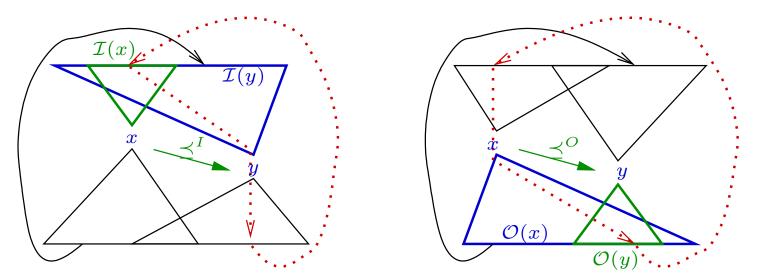
However, real programs do not reveal such complexity

- this complexity seems to happen for programs with a large number of inputs and outputs with complex and unusual dependences between them
- can we identify simple cases by analyzing input/output dependences?

Input/output Analysis

Input (resp. output) pre-orders

Let ${\mathcal I}$ (resp. ${\mathcal O})$ be the input (resp. output) function:



It is *never the case* that x should be computed after y if either:

- $\mathcal{I}(x) \subseteq \mathcal{I}(y)$, noted $x \preceq^{I} y$, which is a valid of SS, (inclusion of inputs),
- $\mathcal{O}(y) \subseteq \mathcal{O}(x)$, noted $x \precsim^{O} y$, which is a valid SS. (reverse inclusion of outputs),

Input/output Analysis _

Input/output preorder

An even more precise preorder can be build by considering input preorder over output preorder:

- $\mathcal{I}_{\mathcal{O}}(x) = \{i \in I \mid i \precsim^O x\}$
- $x \precsim^{I_O} y \Leftrightarrow \mathcal{I}_{\mathcal{O}}(x) \subseteq \mathcal{I}_{\mathcal{O}}(y),$
- $x \simeq^{I_O} y \iff \mathcal{I}_{\mathcal{O}}(x) = \mathcal{I}_{\mathcal{O}}(y)$
- N.B. a similar reasoning leads to the output/input preorder.

Properties

- \precsim^{I_O} is a valid SS,
- moreover, it is *optimal for the inputs/outputs*:

$$\forall x, y \in I \cup \mathcal{O} \ x \simeq^{I_O} y \Leftrightarrow x \chi y$$

• it follows that, in any optimal solution, input/output that are compatible are necessarily in the same class (see proof in the paper)

Input-Set Encoding _____

- In any solution, the class of a node can be characterized by a subset of inputs or key: intuitively this key is the set of inputs that are computed before or with the node.
- As shown before, the only possible key for an input or output node x is $\mathcal{I}_{\mathcal{O}}(x)$

How to formalize what can be the key of an internal node?

Input-Set Encoding _

- In any solution, the class of a node can be characterized by a subset of inputs or key: intuitively this key is the set of inputs that are computed before or with the node.
- As shown before, the only possible key for an input or output node x is $\mathcal{I}_{\mathcal{O}}(x)$

How to formalize what can be the key of an internal node?

Definition: KI-encoding A KI-enc. is function $\mathcal{K} : A \mapsto 2^{I}$ which associate a key to every node such that: $(KI-1) \forall x \in I \cup O; \mathcal{K}(x) = \mathcal{I}_{\mathcal{O}}(x)$ $(KI-2) \forall x, y \ x \preceq y \Rightarrow \mathcal{K}(x) \subseteq \mathcal{K}(y)$

Moreover:

(KI-opt) it is optimal if the image set is minimal.

Solving the KI-encoding

A system of (in)equations with a variable K_x for each $x \in A$:

•
$$K_x = \mathcal{I}_{\mathcal{O}}(x)$$
 for $x \in I \cup O$

•
$$\bigcup_{y \to x} K_y \subseteq K_x \subseteq \bigcap_{x \to z} K_z$$
 otherwise

where \rightarrow is the dependency graph relation (a concise representation of \leq)

KI-encoding vs Static Scheduling

- a solution of KI "is" a solution of SS (modulo key inclusion)
- any solution of SS *is not* a solution of KI (e.g, \leq itself, in general)
- but, any optimal solution of SS is also an optimal solution of KI (to the absurd, via Input/output preorder).

In other terms: the KI formulation is better than the SS one: it has less solutions, but does not miss any optimal one.

KI-encoding vs Static Scheduling

- a solution of KI "is" a solution of SS (modulo key inclusion)
- any solution of SS *is not* a solution of KI (e.g, \leq itself, in general)
- but, any optimal solution of SS is also an optimal solution of KI (to the absurd, via Input/output preorder).

In other terms: the KI formulation is better than the SS one: it has less solutions, but does not miss any optimal one.

Complexity of the encoding

- $O(n \cdot m^2 \cdot (\log m^2))$ where n is the number of actions, m the maximum number of input/outputs.
- That is, $O(n \cdot m \cdot B(m) \cdot A(m))$, where *B* is the cost of union/intersection between sets and *A*, the cost of insertion in a set.

$$K_{a} = \{a, b\} \quad K_{b} = \{b\} \quad K_{x} = \{a, b\} \quad K_{y} = \{b\}$$

$$\emptyset \subseteq K_{get} \subseteq K_{set} \cap K_{f}$$

$$K_{a} \cup K_{get} \subseteq K_{set} \subseteq \{a, b\}$$

$$K_{b} \cup K_{get} \subseteq K_{f} \subseteq K_{j}$$

$$K_{a} \cup K_{f} \subseteq K_{j} \subseteq K_{x}$$

$$K_{b} \subseteq K_{h} \subseteq K_{y}$$

- The system to solve:
 - \hookrightarrow a variable K_x for each key
 - \hookrightarrow input/output keys are *mandatory*
 - \hookrightarrow set intervals for others

$$K_{a} = \{a, b\} \quad K_{b} = \{b\} \quad K_{x} = \{a, b\} \quad K_{y} = \{b\}$$

$$\emptyset \subseteq \quad K_{get} \subseteq \{a, b\} \cap K_{set} \cap K_{f}$$

$$K_{a} \cup K_{get} \cup \{a, b\} \subseteq \quad K_{set} \subseteq \{a, b\}$$

$$K_{b} \cup K_{get} \cup \{b\} \subseteq \quad K_{f} \subseteq \{a, b\} \cap K_{j}$$

$$K_{a} \cup K_{f} \cup \{a, b\} \subseteq \quad K_{j} \subseteq \{a, b\} \cap K_{x}$$

$$K_{b} \cup \{b\} \subseteq \quad K_{h} \subseteq \{b\} \cap K_{y}$$

• Compute lower and upper bounds:

 $\hookrightarrow k_x^\perp = \bigcup_{y \to x} k_y^\perp \text{ and } k_x^\top = \bigcap_{x \to z} k_z^\top$

$$K_{a} = \{a, b\} \quad K_{b} = \{b\} \quad K_{x} = \{a, b\} \quad K_{y} = \{b\}$$

$$\emptyset \subseteq K_{get} \subseteq \{a, b\} \cap K_{f}$$

$$\{a, b\} \subseteq K_{set} \subseteq \{a, b\}$$

$$\{b\} \subseteq K_{f} \subseteq \{a, b\}$$

$$\{a, b\} \subseteq K_{j} \subseteq \{a, b\}$$

$$\{b\} \subseteq K_{h} \subseteq \{b\}$$

• Compute lower and upper bounds:

$$\hookrightarrow k_x^{\perp} = \bigcup_{y \to x} k_y^{\perp}$$
 and $k_x^{\top} = \bigcap_{x \to z} k_z^{\top}$

• Propagate, simplify: new equations, constant intervals, others

$$K_a = \{a, b\} \quad K_b = \{b\} \quad K_x = \{a, b\} \quad K_y = \{b\}$$

$$\emptyset = K_{get}$$

$$\{a, b\} = K_{set}$$

$$\{b\} = K_f$$

$$\{a, b\} = K_j$$

$$\{b\} = K_h$$

Check for "obvious" solutions:

 $\hookrightarrow \mathcal{K}^{\perp}: x \to k_x^{\perp}$

- \hookrightarrow strategy: compute as soon as possible
- \hookrightarrow not "proven" optimal: \emptyset not mandatory

$$K_{a} = \{a, b\} \quad K_{b} = \{b\} \quad K_{x} = \{a, b\} \quad K_{y} = \{b\}$$

$$K_{get} = \{a, b\}$$

$$K_{set} = \{a, b\}$$

$$K_{f} = \{a, b\}$$

$$K_{j} = \{a, b\}$$

$$K_{h} = \{b\}$$

• Check for "obvious" solutions:

 $\hookrightarrow \mathcal{K}^\top : x \to k_x^\top$

- \hookrightarrow strategy: compute as late as possible
- \hookrightarrow optimal: all keys are mandatory

Dealing with complex systems ____

Let S be the simplified system, X be the set of actions whose key is still unknown, $\kappa_1, \dots, \kappa_c$ be the c mandatory keys:

- try to find a solution with c + 0 classes:
 - \hookrightarrow build the formula: $\mathcal{S} \bigwedge_{x \in X} \bigvee_{j=1}^{j=c} (K_x = \kappa_j)$
 - \hookrightarrow call a SAT-solver...
- if it fails, try to find a solution with c + 1 classes:
 - \hookrightarrow introduce a new variable B_1 ,
 - \hookrightarrow build the formula: $\mathcal{S} \bigwedge_{x \in X} (\bigvee_{j=1}^{j=c} (K_x = \kappa_j) \lor (K_x = B_1))$
 - \hookrightarrow call a SAT-solver...
- if it fails, try to find a solution with c+2 classes, etc.

Experimentation _____

The prototype

- extract dependency informations from a LUSTRE (or SCADE) program
- build the simplified KI-encoded system (polynomial)
- check for obvious solutions (linear)
- if no obvious solution, iteratively call a Boolean solver.

We have considered three benchmarks made of the components comming from:

- the whole SCADE V4 standard library
 - \hookrightarrow reusable programs, modular compilation is relevant
- two large industrial applications
 - \hookrightarrow not reusable programs, less relevant
 - \hookrightarrow but bigger programs, more likely to be *complex*

Results Overview

	# prgs	# nodes	# i/o	сри	triv.	solved	other
					(# blocks)	(# blocks)	(# blocks)
SCADE lib.	223	av. 12	2 to 9	0.14s	65	158	
					(1)	(1 or 2)	
Airbus 1	27	av. 25	2 to 19	0.025s	8	19	
					(1)	(1 to 4)	
Airbus 2	125	av. 65	2 to 26	0.2s	41	83	1*
		(up to 600)			(1 to 3)	(1 to 4)	

- as expected: programs in SCADE lib. are (small) and then simple
- but also in Airbus, even with "big" interface
- 1^{*}: not really "complex" (solved by a heuristic: intersection of k_x^{\top})
- the whole test takes 0.35 seconds (CoreDuo 2.8Ghz, MacOS X); 350 LO(Caml).

Conclusion ____

- Optimal Static Scheduling is theoretically NP-hard
- thus it could be solved, through a suitable encoding, with a general purpose Sat-solver
- A polynomial analysis of inputs/outputs can give:
 - \hookrightarrow non trivial lower and upper bounds on the number of classes
 - \hookrightarrow a proved optimal solution in some cases
 - \hookrightarrow a optimized SAT-encoding that emphazises the sources of complexity
- Experiments show that complex instances are hard to find in real examples

Reference:

Marc Pouzet and Pascal Raymond, Modular Static Scheduling of Synchronous Data-flow Networks: An efficient symbolic representation. In *ACM Int. Conf. on Embedded Software (EMSOFT)*, oct. 2009.