A Conservative Extension of Synchronous
Data-flow with State Machines

Marc Pouzet
LRI

Marc.PouzetQlri.fr

Journées FAC
15 — 16 mars 2007
Toulouse

Joint work with Jean-Louis Colaco, Grégoire Hamon and Bruno Pagano

A Bit of History

Arround 1984, several groups introduced domain-specific languages to

program/design control embedded systems.

e Lustre (Caspi & Halbwachs, Grenoble): data-flow (block diagram) formalisms

with functional (deterministic) semantics;

e Signal (Benveniste & Le Guernic, Rennes): data-flow formalisms with

relational (non-deterministic) semantics to model also under-specified systems;

e Esterel (Berry & Gonthier, Sophia): hierarchical automata and process
algebra (and SCCS flavor)

All these languages were recognised to belong to the same family, sharing the same

synchronous model of time.

The Synchronous Model of Time

a global logical time scale shared by all the processes;
every event can be tagged according to this global time scale;

parallel processes all agree on the presence/absence of events during those

instants;

parallel process do not fight for resources (as opposed to time-sharing
concurrency): P||@Q means that P and @ (virtually) run in parallel;

this reconcile parallelism and determinism

0 | | | | | | |
I I I I I I I

ol 02 03 o4 05 06 o7

maximal reaction time max,cn(t, — tnh_1) < bound

Extension Needs for Synchronous Tools

Arround 1995, with Paul Caspi, we identified several “language” needs in

synchronous tools
e modularity (libraries), abstraction mechanisms

e how to mix dataflow (e.g., Lustre) and control-flow (e.g., Esterel) in a unified

way !

e language-based approach (vs verification) in order to statically guaranty some
properties at compile time: type and clock inference (mandatory in a graphical

tool), absence of deadlocks, etc.

e links with classical techniques from type theory (e.g., mathematical proof of

programs, certification of a compiler)

The origins of Lucid Synchrone
What are the relationships between:
e Kahn Process Networks
e Synchronous Data-flow Programming (e.g., Lustre)
e (Lazy) Functional Programming (e.g., Haskell)
e Types and Clocks
e State machines and stream functions

What can we learn from the relationships between

synchronous and functional programming?

Lucid Synchrone
Build a laboratory language to investigate those questions
e study extensions for SCADE /Lustre

e experiment things and write programs!

e Version 1 (1995), Version 2 (2001), V3 (2006)

Milestones

Synchronous Kahn Networks [ICFP’96]

Clocks as types [ICFP’96]

Compilation (co-induction wvs co-iteration) [CMCS’98]

Clock calculus a la ML [Emsoft’03]

Causality analysis [ESOP’01]

Initialization analysis [SLAP’03, STTT’04]

Higher-order and typing [Emsoft’04]

Mixing data-flow and state machines [EMSOFT 05, EMSOFT’06]]
N-Synchronous Kahn Networks [EMSOFT’05, POPL’06]

Some examples (V3)

e int denotes the type of integer streams,

e 1 denotes the (infinite) constant stream of 1,

e usual primitives apply point-wise

C t f t
X 0] I i)
y Yo Y1 Y2
if ¢ then x else y | g Y1 2

Combinatorial functions

Example: 1-bit adder

let xor x y = (x & not (y)) or (not x & y)

let full_add(a, b, c) = (s, co)
where

s = (a xor b) xor c
and co = (a & b) or (b & ¢c) or (a & c)

The compiler automatically infer the type and clock signature.

val full _add : bool * bool * bool -> bool * bool

val full add :: ’a * ’a x 2a -> ’a % ’3

Full Adder (hierarchical)

Compose two “half adder”

d
let half_add(a,b) = (s, co) 6_;YE:::>______S
where /
S = a xor b co
and co = a & b

Instantiate it twice

sl

let full_add(a,b,c) = (s, co)
where
(s1l, cl1) = half_add(a,b)

a
and (s, c2) = half_add(c, s1) E—ﬁiiij}———
/

and co = cl or c2

cl

S2
rﬁ) co

N

10

Temporal operators
Operators £by, —>, pre
e fby: unit initialized delay
e —>: stream initialization operator

e pre: non initialized delay (register)

x foy vy | 20 Yo W

pre x | nl =z =

X =>y | o Y1 Y2

11

Sequential functions

e Functions may depend on the past (the system has a state)

e Example: edge front detector

let node edge x = x -> not (pre x) & x

val edge : bool => bool

val edge :: ’a -> ’a

X t f
edge x [t f t

~ | =+
~ | o+
~ |

In the V3, we distinguish combinatorial functions (->) from sequential ones (=>)

12

Polymorphism (code reuse)

let node delay x = x —-> pre X

val delay : ’a => ’a

val delay :: ’a -> ’a

let node edge x = false -> x <> pre x

val edge : ’a => ’a

val edge :: ’a -> ’a

In Lustre, polymorphism is limited to a set of predefined operators (e.g,

if/then/else, when) and do not pass abstraction barriers.
Other features: higher-order, data-types, etc.

Question: How to mix data-flow and control-flow in an arbitrary way?

13

Designing Mixed Systems

Data dominated Systems: continuous and sampled systems, block-diagram
formalisms
— Simulation tools: Simulink, etc.

— Programming languages: SCADE/Lustre, Signal, etc.

Control dominated systems: transition systems, event-driven systems, Finite
State Machine formalisms
— StateFlow, StateCharts
— SyncCharts, Argos, Esterel, etc.
What about mixed systems?
e most system are a mix of the two kinds: systems have “modes”

e cach mode is a big control law, naturally described as data-flow equations

e a control part switching these modes and naturally described by a FSM

14

Extending SCADE /Lustre with State Machines

SCADE /Lustre:

data-flow style with synchronous semantics

certified code generator

Motivations

activation conditions between several “modes”

arbitrary nesting of automata and equations

well integrated, inside the same language (tool)

in a uniform formalism (code certification, code quality, readability)

be conservative: accept all Scade/Lustre and keep the semantics of the kernel
which can be formely certified (to meet avionic constraints)

efficient code, keep (if possible) the existing certified code generator

15

First approach: linking mechanisms

two (or more) specific languages: one for data-flow and one for control-flow

“linking” mechanism. A sequential system is more or less represented as a pair:
— a transition function f: S X I — O x §

— an initial memory M : S
agree on a common representation and add some glue code
this is provided in most academic and industrial tools

Ptolemyll, Simulink + StateFlow, Lustre + Esterel Studio SSM, etc.

16

An example: the Cruise Control (SCADE V5.1)

> =
I 0ff >

| AN RegulON

' L
Resume

Cruise State R
[>
Brake —l— RegulOFF

PedalsPressed

= >

Acsel RequisTDBY

|—>—- SpeedLimit ::D—

Speed

—
L &

Set
- >

QuickAceql Cruise Speed
Cruise Speedhigt R
e — = o
Quick Decel J’ | Throttle Cmd
l AN) 0.0 IJ 0.0 bJ Focel
Speed
. Enabled)
[Regulation)
AcceleratorPressed BrakePressed/
or SpeedOutOffLimits/
Aoy Interrupt
t/R 1_STDE¥
sl #/Riequl_OFF,
not (Speed0utOffLimits “he a
Off? or AcceleratorPressed) /
Resure and
not BrakePressed/
\ y
. S

17

Observations

automata can only appear at the leaves of the data-flow model: we need a finer

integration

forces the programmer to make decisions at the very beginning of the design
(what is the good methodology?)

the control structure is not explicit and hidden in boolean values: nothing

indicate that modes are exclusive

code certification?

efficiency /simplicity of the code?

how to exploit this information for program analysis and verification tools?

Can we provide a finer integration of both styles inside a unique
language?

18

Extending Synchronous Data-flow with Automata
[EMSOFTO05]

Basis
e Mode-Automata by Maraninchi & Rémond [ESOP98, SCP03]

e SignalGTI (Rutten [EuroMicro95] and Lucid Synchrone V2 (Hamon & Pouzet
[PPDP00))

Proposal
e cxtend a basic clocked calculus with automata constructions

e base it on a translation semantics into well clocked programs; gives both the

semantics and the compilation method
Two implementations

e Lucid Synchrone language and compiler

e ReLuC compiler of SCADE at Esterel-Technologies; the basis of SCADE V6

(released in summer 2007)

19

Semantic principles

only one set of equations is executed during a reaction

two kinds of transitions: Weak delayed (“until”) or Strong (‘“unless”)

o0 O U

both can be “by history” (H* in UML) or not (if not, both the SSM and the

data-flow in the target state are reseted

at most one strong transition followed by a weak transition can be fired during
a reaction

at every instant:

— what is the current active state?

— execute the corresponding set of equations

— what is the next state?

forbids arbitrary long state traversal, simplifies program analysis, better

generated code

20

Translation semantics into well-clocked programs

use clocks to give a precise semantics: we know how to compile clocked
data-flow programs efficiently

give a translation semantics into the basic clocked data-flow language;

clocks are fundamental here: classical one-hot (clock-less) coding (as done for
circuits) does not allow to generate good sequential code afterwards

type and clock preserving source-to-source transformation

— T : ClockedBasicCalculus + Automata — ClockedBasicCalculus
— HFe:tyiff HE T(e) : ty

— HFe:cifft HF T(e) : cl

21

A clocked data-flow basic calculus

Expressions:
e == C|x|efbyel(ee)|x(e)

z(e) every e

e when C(e)

merge ¢ (C — e) ... (C — e)
Equations:

D = DandD|z=c¢
Enumerated types:
td = typet|typet=C1+..+C, |td;td

Basics:

e synchronous data-flow semantics, type system, clock calculus, etc.

e cfficient compilation into sequential imperative code

22

N-ary Merge

merge combines two complementary flows (flows on complementary clocks) to

produce a faster one:

Mer ge N B EREEE B

b7| b6 b5| b4| b3| b2 bl

introduced in Lucid Synchrone V1 (1996), input language of ReLuC
Example: merge ¢ (a when c) (b whenot c)

(Generalization:

e can be generalized to n inputs with a specific extension of clocks with
enumerated types

e the sampling e when ¢ is now written e when True(c)
e the semantics extends naturally and we know how to compile it efficiently

e thus, a good basic for compilation

23

Reseting a behavior

e in Scade/Lustre, the “reset” behavior of an operator must be explicitly
designed with a specific reset input

let node count () = s where

rec s =0 -> pres + 1

let node resetable_counter r = s where

rec s = 1f r then 0 else 0 -> pre s + 1
e painful to apply on large model

e propose a primitive that applies on node instance and allow to reset any node

(no specific design condition)

24

Modularity and reset

Specific notation in the basic calculus: z(e) everyc

all the node instances used in the definition of node x are reseted when the

boolean c¢ is true

the reset is “asynchronous”: no clock constraint between the condition ¢ and

the clock of the node instance

is-it a primitive construct? yes and no

modular translation of the basic language with reset into the basic language
without reset [PPDPOO]

essentially a translation of the initialization operator —>

e1 —> eo becomes if true -> ¢ then e else e,

very demanding to the code generator whereas it is trivial to compile!
useful translation for verification tools, basic for compilation

thus, a good basic for compilation

25

Automata extension

Scade/Lustre implicit parallelism of data-flow diagrams
automata can be composed in parallel with these diagrams
hierarchy: a state can contain a parallel composition of automata and data-flow

each hierarchy level introduces a new lexical scope for variables

26

An example: the Franc/Euro converter

Fr anc Eur o
C
fr = v; fr = v*6. 55957;
eu = v/ 6.77957; eu = v;
c C

in concrete (Lucid Synchrone) syntax:

eu

let node converter v ¢ = (euro, fr) where
automaton
Franc -> do fr = v and eur = v / 6.55957
until c¢ then Euro
| Euro -> do fr = v *x 6.55957 and eu = v
until c¢ then Franc

end

Remark: fr and eur are shared flow but with only one definition at a time

27

Strong vs Weak pre-emption
Two types of transitions can be considered

let node converter v ¢ = (euro, fr) where
automaton
Franc -> do fr = v and eur = v / 6.55957
unless c¢ then Euro
| Euro -> do fr = v * 6.55957 and eu = v
unless c¢ then Franc

end

e until means that the escape condition is executed after the body has been
executed

e unless means that the escape condition is executed before and determines the
active state of the reaction

28

Equations and Expressions in States

every state defines the current value of a shared flow
a flow must be defined only once per cycle

the Lustre “pre” is local to its upper state (pre e gives the previous value of e,
the last time e was alive)

the substitution principle of Lustre is still true at a given hierarchy =
data-flow diagrams make sense!

the notation last x gives access to the latest value of x in its scope (Mode

Automata in the Maraninchi & Rémond sense)

an absent definition for a shared flow x is implicitly complemented (i.e.,

x = last x)

29

Mode Automata, a simple example

Up Down

W x =5
x =0 —> last x + x = last x - 1
X

I
|
o
—

x=01234543210-1-2-3-4-5-4-3-2-10 ...

let node two_modes () = x where

rec automaton
Up -> do x =0 -> last x + 1

until x = 5 continue Down

| Down -> do x = last x - 1

until x = -5 continue Up
end

Remark: replacing until by unless would lead to a causality error!

30

The Cruise Control with Scade 6

el

PedalsPressed | bool

Fecel

brake

accelerator

31

Fa on ™
(6 Regulation
(6
RegulOn s
accele
not
between /
cruise_speed <1
Percent
e J speed Regul > Percent ™\ ’
| > Throttle Cmd Fecel Throttle Cmd
7 ~ Speed
« off
Intermupt 7
Percent \,
Fecel Throttle Cmd Percent ™\
/
0o real N Focel Throttle Cmd
7
Cruise Speed
\ w
A
bool
| > <>
On Re e
| > bool !
<1 Set
bool cruise_speed
off s I—H Cruise Speedhigt Rl
Quick Accel Cruise Speed
| bogl
Quick Decel
| Spead
Speed bool -
spesatina [boo——])
between
A ~ ~
| Percent
Brake b

The extended language

- | last x
DandD |x =c¢
matchewithC — D ...C — D

reset D everye

automaton S —us..S —us
let Dinu | do D w
unless e then S s | unless e continue S s | €

until e then S w | until e continue S w | €

32

Translation semantics

e several steps in the compiler, each of them eliminating one new construction
e must be preserve type (in the general sense)
Several steps

e compilation of the automaton construction into the control structures
(match/with)

e compilation of the reset construction between equations into the basic reset

e climination of shared memory last x

33

Translation

T(reset D every e) = letx = T(e)in CReset, T(D)
where = & fu(D) U fu(e)
CMatch (T (e))

(Cr = (T(D1), Def(D1)))

T(match e with Cy — Dy ... C,, — D)

(Crn = (T(Dy), Def(Dy)))
T(automaton S; — u1 S1 ... Sy — Uy Sp) = CAutomaton

(51 = (Ts, (u1), Ts, (s1)))

(Sn = (Ts,,(un), Ts,(sn)))

34

Static analysis

e they should mimic what the translation does

e well typed source programs must be translated into well typed basic programs
Typing: easy

e check unicity of definition (SSA form)

e can we write last x for any variable?

e No (in Lucid Synchrone): only shared variables can be accessed through a last

e otherwise, possible confusion with the regular pre
Clock calculus: easy under the following conditions

e free variables inside a state are all on the same clock

e the same for shared variables

e corresponds exactly to the translation semantics into merge

35

Initialization analysis

More subtle: must take into account the semantics of automata

let node two x o where
automaton
S1 -> do o =0 ->1last o + 1
until x continue S2
| S2 -> do o = last o - 1 until x continue Si

end

o is clearly well defined. This information is hidden in the translated program.

let node two x = o where
o = merge s (S1 -> 0 -> (pre o) when S1(s) + 1)
(82 -> (pre o) when S2(s) - 1)
and
ns = merge s (S1 -> if x when S1(s) then S2 else S1)
(S2 -> if x when S2(s) then S1 else S2)
and

clock s = S1 -> pre ns

36

This program is not well initialized:

let node two x = o where
automaton
S1 -> do o =0 ->last o + 1
unless x continue S2
| S2 -=> do o = last o - 1

until x continue S1 end
e we can make a local reasoning
e because at most two transitions are fired during a reaction (strong to weak)

e compute shared variables which are necessarily defined during the initial

reaction

e intersection of variables defined in the initial state and variables defined in the

successors by a strong transition

e implemented in Lucid Synchrone (soon in ReL.uC)

37

New questions and extensions
A more direct semantics
e the translation semantics is good for compilation but...

e can we define a more “direct” semantics which expresses how the program

reacts?
e we introduce a logical reaction semantics
Further extensions

e can we go further in closing the gap between synchronous data-flow and

imperative formalisms?

e Parameterized State Machines: this provides a way to pass local
information between two states without interfering with the rest of the code

e Valued Signals: these are events tagged with values as found in Esterel and
provide an alternative to regular flows when programming control-dominated

systems

38

Parameterized State Machines

e it is often necessary to communicate values between two states upon taking a

transition

e c.g., a setup state communicate initialization values to a run state

(2

Setup ™~—_ —" " Run

cond/x<-...

e can we provide a safe mechanism to communicate values between two states?
e without interfering with the rest of the automaton, i.e.,

e without relying on global shared variables (and imperative modifications) in

states nor transitions?
Parameterized states:

e states can be Parameterized by initial values which can be used in turn in the

target automaton

e preserves all the properties of the basic automata
39

A typical example

several modes of normal execution and a failure mode which needs some contextual
information

let node controller inl in2 = out where
automaton
| Statel ->
do out = f (inl, in2)
until (out > 10) then State?2
until (in2 = 0) then Fail_safe(1, 0)
| State2 ->
let rec x = 0 -> (pre x) + 1 in
do out = g (inl,x)
until (out > 1000) then Fail_safe(2, x)
| Fail_safe(error_code, resume_after) ->
let rec
resume = resume_after -> (pre resume) - 1 in
do out = if (error_code = 1) then O
else 1000
until (resume <= 0) then State2

end
40

Parameterized states vs global modifications on transitions

Is all that useful?

expressiveness? every parameterized state machine can be programmed with

regular state machines using global shared flows

efficiency? depends on the program and code-generator (though parameters
only need local memory and are not all alive at the same time)

But this is bad!

who is still using global shared variables to pass parameters to a function in a
general-purpose language?

passing this information through shared memory would mean having global
shared variables to hold it

they would receive meaningless values during normal execution and be set on

the transition itself
this breaks locality, modularity principles and is error-prone
making sure that all such variables are set correctly before being use is not

trivial
41

Parameterized states

we want the language to provides a safer way to pass local information
complementary to global shared variables and do not replace them

keep the communication between two states local without interfering with the
rest of the automaton

do not raise initialization problems
reminiscent to continuation passing style (in functional programming)

yet, we provide the same compilation techniques (and properties) as in the case

of unparameterized state machines (initialization analysis, causality, type and
clocks)

42

Example (encoding Mealy machines)

e reduces the need to have equations on transitions

e adding equations on transitions is feasible but make the model awfully

complicated

cl/ ol automaton

@ | S(v) -> do o = v unless c1 then T1(ol)

unless cn then Tn(on)

cn/ on
end

43

Valued Signals and Signal Pattern Matching

in a control structure (e.g., automaton), every shared flow must have a value at

every instant

if an equation for x is missing, it keeps implicitly its last value (i.e.,
x = last x is added)

how to talk about absent value? If x is not produced, we want it to be absent

in imperative formalisms (e.g., Esterel), an event is present if it is explicitly

emitted and considered absent otherwise

can we provide a simple way to achieve the same in the context of data-flow

programming?

44

An example

let node vend drink cost v = (ol, 02) where
match v >= cost with
true ->
do emit ol = drink
and o2 = v - cost
done
| false —>
do 02 = v done

end
e 02 is a regular flow which has a value in every branch

e o1 is only emitted when (v >= cost) and is supposed to be absent otherwise

45

Accessing the value of a valued signal

e the value of a signal is the one which is emitted during the reaction
e what is the value in case where no value is emitted?

e Esterel: keeps the last computed value (i.e., implicitly complement the value
with a register)

emit SC 7?A + 1)

this is unsafe and raises initialization problems: what is the value if it has

never been emitted?

e need extra methodology development rules to guard every access by a test for

presence

present A then ... emit S(7A + 1)

provide a programming construct which forbid the access to a signal which is not

emitted

46

Signal pattern matching

e a pattern-matching construct testing the presence of valued signals and
accessing their content

a block structure and only present value can be accessed

let node sum x y = o where
present
| x(v) & y(w) -> do emit o = v + w done
| x(vl) -> do emit o = v1 done
| y(v2) -> do emit o = v2 done
| _ -> do done

end

47

Signals as existential clock types

let node sum x y = o where
present
| x(v) & y(w) -> do emit o = v + w done
| x(vl) -> do emit o = v1 done
| y(v2) -> do emit o = v2 done
| _ -> do done

end

e o is partially defined and should have clock ck on (?xA?y)V?xV7?y if x and y are

themselves on clock ck

e giving it the existential type X(c : ck).ck on ¢, that is, “exists ¢ on clock ck such

that the result is on clock ck on ¢ is a correct abstraction

48

Clock type of a signal: a dependent pair ck sig = (¢ : ck).ck on ¢ made of:
e a boolean sequence ¢ which is itself on clock type ck
e a sequence sampled on ¢, that is, with clock type ck on ¢

The flow is boxed with its presence information

e this is a restriction compared to what can provide a synchronous data-flow
language equipped with a powerful clock calculus

e but this is the way Esterel valued signal are implemented

e reminiscent to the constraints in Lustre to return the clock of a sampled

stream
Clock verification (and inference) only need modest techniques

e box/unbox mechanisms of a Milner type system + extension by Laufer &

Odersky for abstract data-types

HFe:ckonc

HFemitx=c¢:|x:cksig]

49

Translation Semantics

e parameterized state machines and signals can be combined in an arbitrary way
e a translation semantics of the extension into a basic language
Example

let node sum (a,b,7) = o where
automaton
| Await -> do unless a(z)&b(y) then Emit (x + y)

| Emit (v) -> do emit 0= v unless r then Await

50

e a signal of type t is represented by a pair of type bool X ¢

e nil stands for any value with the right type (think of a local stack allocated

variable

let node sum (a,b,7) = o where
match pnexistate with
| Await -> match (a,b) with
| ((True,x), (True,z)) -> state = Emit(z + y)
| _ -> state = Await
| Emit(v) -> match r with
| true -> state = Await
| false -> state = Emit(v)
and
match state with
| Await -> o = (False, nil) and nextstate = Await
| Emit(v) -> o= (True, nil) and nextstate = Emit(v)
and
pnextstate = Await -> pre nextstate

51

Conclusion

An extension of a data-flow language with automata constructs
various kinds of transitions, yet quite simple

translation semantics relying on the clock mechanism which give a good
discipline

the existing code generator has not been modified and the code is (at least as)
efficient than direct ad-hoc techniques

fully implemented in Lucid Synchrone; integration in Scade 6 is under way

distribution and documentation: www.lri.fr/~pouzet/lucid-synchrone

52

References

[1] Jean-Louis Colago, Grégoire Hamon, and Marc Pouzet. Mixing Signals and

Modes in Synchronous Data-flow Systems. In ACM International Conference
on Embedded Software (EMSOFT’06), Seoul, South Korea, October 2006.

2] Jean-Louis Colago, Bruno Pagano, and Marc Pouzet. A Conservative Extension
of Synchronous Data-flow with State Machines. In ACM International
Conference on Embedded Software (EMSOFT’05), Jersey city, New Jersey,
USA, September 2005.

3] Grégoire Hamon and Marc Pouzet. Modular Resetting of Synchronous
Data-flow Programs. In ACM International conference on Principles of
Declarative Programming (PPDP’00), Montreal, Canada, September 2000.

53

