Scade 6, a Formal Language
for
Embedded Software Development

Marc Pouzet

Ecole normale supérieure
Paris, France

Forum on specification & Design Languages (FDL)
September 4, 2019

Jean-Louis Colaco, Bruno Pagano, Marc Pouzet.
Scade 6: A Formal Language for Embedded Critical Software Development.
Theoretical Aspect of Software Engineering (TASE), 2017.

SCADE

VVvVvyVvVvYvVvyVvyYVvYyy

Safety Critical Application Development Environment

used to model and implement safety critical reactive control software
SCADE 6 is the underlying language of SCADE Suite

belongs to the family of synchronous languages

is a dialect of LUSTRE (data-flow oriented)

includes major extensions in its version 6 (SCADE 6)

is a DSL dedicated to the development of critical systems
developed at ANSYS.

Scade and related tools

System Safety Analysis
Model-Based Systems Engineering =

=
o seaee,”

Model-Based Software Engineering 3D Physics Simulation

SCADE and safety critical applications

vVvYyyvy

most of safety critical applications are digital controllers;

block diagrams and state machines are widely used in control engineering;
good matching between language and diagrams (semantics and intuition);
good properties of the language: runs in finite memory, deterministic;

SCADE compiler (code generator) is qualified for several standards: DO-178C
(DO-330 TQL 1), EN-50128, IEC-61508.
i.e. it can be used without having to verify its output.

Formal Methods in avionics standard

From Formal Methods Supplement to DO-178C and DO-278A (DO-333, Dec. 2011):

"Establishing a formal model of the software artifact of interest is fundamental to all
formal methods. In general a model is an abstract representation of a given set of
aspects of the software that is used for analysis, simulation, and/or code generation. In
the context of this document, to be formal, a model should have an unambiguous,
mathematically defined syntax and semantics. This makes it possible to use automated
means to obtain guarantees that the model has certain specified properties.”

Take it as an encouragement to design a high level language for critical control software
where every step is precisely defined but simple enough to be convincing and accepted
together with compile-time checks to ensure some important safety properties.

Apply state-of-the-art techniques from PL theory and practice.

Dedicated type systems to reject programs certain programs.

Dynamic semantics (denotational, operational, logical).

Specify all the compilation chain from the source to the target code.

Incorporate the programming constructs that are expressive enough but keeps type
checks, error diagnostics and/or code generation reasonnably simple.

Modularity and traceability all along the chain, e.g., type check, code generation.

Synchronous Reactive System
LUSTRE/SCADE 5

SCADE 6

Type systems

Qualified Compiler (KCG)

Formal Verification of SCADE 6 models

Conclusion

Synchronous Reactive System

Reactive System

A system that interacts continuously with its environment (physics, user, ...)

Reactive
System

The synchronous mathematical interpretation

A signal is a sequence; a system is a function from sequences to sequences.

Reactive
System

fo,il,...,in,... 00,01,...,0n,...

The synchronous mathematical interpretation

A signal is a sequence; a system is a function from sequences to sequences.

Reactive
System
o,y ylny... 00,01,...,0n,...

SCADE is a language to define sequences that can be mutually recursive and stream
functions.

Operational viewpoint

io

So

Reactive
System

00

Operational viewpoint

o, I1

51

Reactive
System

00, 01

Operational viewpoint

oy ity

» In

Sn

Reactive
System

00,01, ..

» On

Operational viewpoint

Sn

Reactive
System
0,115+ -5 1n 00,01,---,0n

A step:
» read inputs
> compute outputs
P> update internal state

let f be the function that computes one reaction: 05, Sp1 = f(in, Sp)
the code generator produces the function f and the initial state Sp.

Synchronous Reactive System
LUSTRE/SCADE 5

SCADE 6

Type systems

Qualified Compiler (KCG)

Formal Verification of SCADE 6 models

Conclusion

«4Or «F>r « >

« =

DA

SCADE 5 example

altitude

speed

L H
001 10000.0

MCP_UnlockRoll >_-—

pwiinear::ClockCounter

alculated Pitch|

mathext::AtanR

UnitConvert

> pitch

RDoDEG

libPlane: TimingConstants:-Time_cy cle * 20.0

mulated Roll

mathext::SinR

MCP_UnlockRoll

10.0 - 0.0 '—D/D—> ol

Until 2008, the underlying language of Scade was essentially Lustre
associated to a graphical interface and the key addition of a qualified compiler.

The synchronous data-flow language Lustre (1984)
The pionneering work of Caspi and Halbwachs.

node COUNT (init, incr: int; reset: bool)
returns (n: int);
lat
n = init ->
if reset then init else pre(n) + iner:
tel;

P. Caspi, N. Halbwachs, D. Pilaud, and J. Plaice.
Lustre: a declarative language for programming synchronous systems.
In 14th ACM Symposium on Principles of Programming Languages. 1987

P. Caspi, N. Halbwachs, P. Raymond and D. Pilaud.
The Synchronous Dataflow Programming Language Lustre.
Proceedings of the IEEE, volume 79. September 1991

N. Halbwachs and P. Raymond.
A tutorial of Lustre. 2002.

N. Halbwachs, P. Raymond and C. Ratel.
Generating Efficient Code From Data-Flow Programs.
Third International Symposium on Programming Language Implementation and Logic Programming. 1991

The data-flow kernel

Point-wise extension of combinatorial operators:

2 o | a || x |
vl v | o o o |
x+y|xo+y|xxtyi| .| X0 +yn|

x+y represents the sequence (X, + ¥n)nen

The data-flow kernel

Point-wise extension of combinatorial operators:

2 o | a || x |
vl v | o o o |
x+y|xo+y|xxtyi| .| X0 +yn|

x+y represents the sequence (X, + Yn)nen
likewise for: not, and, or, -, *, ...

The data-flow kernel

Point-wise extension of combinatorial operators:

XH X0 ‘ X1 ‘m

x|
vl w [on [o |
X+yHm+m‘m+ﬂ‘m‘M+m‘m
x+y represents the sequence (X, + Yn)nen
likewise for: not, and, or, -, *, ...
Constants and literals are lifted to sequences:
2 2 2 2
X0 X1 | ...| Xp
2 % X ||2%x0 | 2%x1|...|2%X,

The data-flow kernel

Unit delay:

x| %0 [x] .| % |...

pre XH ni/‘xo‘...‘xn,l‘...

The data-flow kernel

Unit delay: ‘ ‘
oxe |-

N

|0 |
pre x H nil ‘ X0

let x represent the sequence (x,)ncn, Pre x represents the sequence (pp)nen defined
by:
po = nil and Vn € N, pp11 = X,

where nil is an undefined value of the right type.

The data-flow kernel

Initialization:

X || Xo | X1 Xn
Y| Yo|n Yn
X =>y|X|n Yn

The data-flow kernel

Initialization:
X Xo|X1]|.--]Xn
YiYo|YL]|---|Yn
X=>y|xX|Y1|---|VYn

combined with pre to build a delayed stream without nil:

X X0 | X1 |- Xn

pre y||nil |yol|...|Yn-1

X —>preyj xo|yo|.--|Yn-1

The data-flow kernel

filtering with a clock:

h || true | false | true | true | false
X X0 X1 X2 X3 X4
x when h| xp _ X X3 _

The data-flow kernel

filtering with a clock:

h || true | false | true | true | false
X X0 X1 X2 X3 X4
x when h| xp _ X X3 _
Extension on the clock of the clock:
h || true | false | false | true | false
a ao - - ai -
current a ao ao ao a ai

This is all!

Lustre is a neat language, volutarily small in the number of programming
constructions, with a carrefully defined static and dynamic semantics.

Yet, a few things raised our mind...

Determinism of LUSTRE

Determinist? ...if the operators pre and current are used with care!

Determinism of LUSTRE

Determinist? ...if the operators pre and current are used with care!

Synchronous principles give deterministic parallel composition.

Determinism of LUSTRE

Determinist? ...if the operators pre and current are used with care!
Synchronous principles give deterministic parallel composition.
But this is not the only source of non determinism:

the initial state must be well managed

and LUSTRE does not guarantee that because of the nil in memories.

Determinism of LUSTRE

Determinist? ...if the operators pre and current are used with care!
Synchronous principles give deterministic parallel composition.
But this is not the only source of non determinism:
the initial state must be well managed
and LUSTRE does not guarantee that because of the nil in memories.

Can we ensure, at compile time, that the output of system does not depend on the
actual value of those nil values?

note: this is not an issue to verify properties because either they are independent of
the initial state or they are falsifiable.

Synchronous Reactive System
LUSTRE/SCADE 5

SCADE 6

Type systems

Qualified Compiler (KCG)

Formal Verification of SCADE 6 models

Conclusion

«4Or «F>r « >

« =

nae

The genesis of Scade 6

Some of the needs or questions:

» Control (activation) structures: conditionals, automaton
» Arrays and primitives to use them

» Remove non-determism issues introduced by nil

Solving non determinism

The case of current is hard to solve in general:

h || false | false | false | true | false
a - - - do -
current a nil nil nil ao ao

Solving non determinism

The case of current is hard to solve in general:

h || false | false | false | true | false

a - - - do -
current a nil nil nil ao ao

motto: do not depend on a model-checker to state the correctness, use classical tools
of programming language design:
» constructions (syntax, semantic);

» typing disciplines.

Solving non determinism

The case of current is hard to solve in general:

h || false | false | false | true | false

a - - - do -
current a nil nil nil ao ao

motto: do not depend on a model-checker to state the correctness, use classical tools
of programming language design:

» constructions (syntax, semantic);

» typing disciplines.
proposition:

P> replace current and

» define a dedicated type system that ensures determinism.

An alternative to " current”

To avoid initialization issue, a common LUSTRE pattern is to use it combined with a
test of the clock:

if h then current x else e

where h is the clock of x.

An alternative to " current”

To avoid initialization issue, a common LUSTRE pattern is to use it combined with a
test of the clock:

if h then current x else e

where h is the clock of x.
proposition: introduce a primitive that merges streams on complementary clocks.

Paul Caspi and Marc Pouzet
Synchronous Kahn Networks.
In ACM SIGPLAN International Conference on Functional Programming (ICFP), Philadelphia, Pennsylvania, May 1996.

Grégoire Hamon
Calcul d'horloge et Structures de Contrdle dans Lucid Synchrone, un langage de flots synchrones a la ML
These Université Pierre et Marie Curie, 14 Nov. 2002

Marc Pouzet
Lucid Synchrone version 3.0, Tutorial and Reference Manual.
2006

merge

h || true | false | true | true | false

a ag _ a1 an _

b _ bo _ _ b

merge (h; a; b) ao bo a a by

merge

h || true | false | true | true | false

a ag _ a1 an _

b _ bo _ _ b
merge (h; a; b) ao bo ai ar by

in LUSTRE: if h then current a else current b.

Its implementation used two memories and a conditional, whereas the merge does not
need any memory.

Initialization analysis

principle: add a very simple type system with two types:
» 1 for a stream that may start by nil;
» 0 for a stream that is always defined.

subsumption: an argument of type 0 can always be used in a position where 1 is
required.

Property: the outputs of the root node never contain a nil.

Jean-Louis Colago and Marc Pouzet.
Type-based Initialization Analysis of a Synchronous Data-flow Language.
International Journal on Software Tools for Technology Transfer (STTT), Vol.6, Num.3, November 2004

Initialization analysis: pre and ->

pre: 0—>1
pre (pre x) : cannot be typed

pre (pre x) | nil | nil

X0

v -> pre (pre x) H %) ‘ nil

the nil in second position cannot be eliminated.

=> Vo, x1 =9

X0

Example: Rising edge detection

node rising_edge(a : bool) returns (o : bool)
o = a and not pre a;

type: 0 — 1

node root(a, b : bool) returns (o : bool)
o = rising_edge(a) or rising_edge(b);

type: 0x0—1

Example: Rising edge detection

Terminal 4+ - 0OX

% cat root_bad.scade =
node rising_edge (a : bool) returns (o : bool)
o = a and not pre a ;

node root (a , b : bool) returns (o : bool)
0 = rising_edge (a) or rising_edge (b);

% kcgbb -root root root_bad.scade
SCADE Suite (R) KCG Code Generator 64-bit dev builds/proto/KCG-6.6113-Z2-gaddZc4f
Copyright (C) Esterel Technologies 2082-2015 All rights reserved

##% Tnitialization Error (ERR_38@): Initialization error
at path root/
Root node output must be well-initialized

No warning was found

1 error was found

No failure occurred

i |

Example: Rising edge detection

node rising_edge(a : bool) returns (o : bool)
o = a and not pre a;

type: 0 — 1

node root(a, b : bool) returns (o : bool)
o = false ->

(rising_edge(a) or rising_edge(b));

type: 0x0—0

Example: Rising edge detection

Terminal 4+ - 0OX

% cat root_good.scade =
node rising_edge (a : bool) returns (o : bool)
o = a and not pre a ;

node root (a , b : bool) returns (o : bool)
o = false —>
(rising_edge (a) or rising_edge (b));

% kcgbb -root root root_good.scade
SCADE Suite (R) KCG Code Generator 64-bit dev builds/proto/KCG-6.6113-2-gaddZcdf
Copyright (C) Esterel Technologies 20@2-2@15 All rights reserved

No warning was found
No error was found
No failure occurred
il |

Need of control structure

In LUSTRE, only clocks allow to control computation; but they are hard to use. Users
prefer to use conditional activation:

» SCADE 5: condact (c; N; e; i)

> SCADE 6: (activate N every c initial default i) (e)
drawback: needs to introduce an operator N and does not allow to easily share a
stream between different activations.

Scopes, control and explicit memories
» Introduction of guarded scopes: allows to select different sets of equations that
produce the same streams.

» If a stream x is defined in two (exclusive) modes, how to read the previously
computed value of it?

> last ’x: access to the last value of x in its declaration scope (new construct).

Scopes, control and explicit memories

» Introduction of guarded scopes: allows to select different sets of equations that
produce the same streams.

» If a stream x is defined in two (exclusive) modes, how to read the previously
computed value of it?

» last ’x: access to the last value of x in its declaration scope (new construct).

» Allows for different styles:

node counter () returns (o : int32)
o =1 -> pre (o + 1);

Scopes, control and explicit memories

» Introduction of guarded scopes: allows to select different sets of equations that
produce the same streams.

» If a stream x is defined in two (exclusive) modes, how to read the previously
computed value of it?

» last ’x: access to the last value of x in its declaration scope (new construct).

» Allows for different styles:

node counter () returns (o : int32)
o =1 -> pre (o + 1);

can also be written:

node counter () returns (o : int32 last = 0)
o = last o + 1;

o is manipulated as an explicit named memory.

it seems to be imperative but it is not: the language still ensures SSA.

Example: second degree equation

function second_degree(a, b, c: float64) returns (xr , xi , yr , yi: float64)
var delta : float64;
let

delta = bxb — 4 % axc ;

activate

if delta >0

then
var d : float64;
let

d = sqrt (delta)
(b +d) / (2 %3a), 0)

Xr, Xi =
yro yi =((=b—=d) / (2 x a), 0)
tel
else if delta =0
then
let
xr, xi =(=b / (2 x a), 0);
yr, yi = (xr, xi);
tel
else — delta < 0
let
xr, xi = (=b / (2 % a), sqrt (—delta) / (2 * a));
yr, yi = (xr, — xi);
tel
returns xr, yr, xi, yi;

tel

Example: 1% § €4

node sillywalk (c bool) returns (o int32 last = 0)
let
activate
if c¢ then
var inc : int32;
let
o= last 'o + inc;
inc (—17) —> pre (36 —> pre inc);
tel
else
var inc : int32;
let
o= last 'o + inc;
inc = (—3) —> pre ((—33) — pre (25 —> pre inc));
tel
returns o ;
tel
c||true true true false false false false true true false false false true false false false false false false true true false true true true true: - -
_then/inc|| -17 36 -17 - - 36 -17 - - 36 - - - -17 36 -17 36 -17 36 - - -
-else /inc 3 -3 -33 25 -3 - - -33 25 -3 -33 25 -3 -33 25 -3
of| -17 19 2 -1

32 -1 24 21 -12 13 10 -7 29 -4 -21 16 -2

34 ...

SCADE 6 other constructs

» arrays and iterators

Lionel Morel and Florence Maraninchi
Arrays and contracts for the specification and analysis of regular systems
In Proceedings. Fourth International Conference on Application of Concurrency to System Design, 2004. ACSD 2004

» modular reset of node instances

Grégoire Hamon and Marc Pouzet
Modular Resetting of Synchronous Data-flow Programs
In ACM International conference on Principles of Declarative Programming (PPDP’'00)

» hierarchical state machines

Jean-Louis Colago and Bruno Pagano and Marc Pouzet.
A Conservative Extension of Synchronous Data-flow with State Machines.
In ACM International Conference on Embedded Software (EMSOFT'05)

Jean-Louis Colaco and Grégoire Hamon and Marc Pouzet.
Mixing Signals and Modes in Synchronous Data-flow Systems.
In ACM International Conference on Embedded Software (EMSOFT'06)

Hierarchical state machines

Two forms of transitions: weak or strong, with reset of the target state or not.

node up_down() returns (o : int32 last = 0)
automaton
initial state Up o = last 'o + 2;
until if o >= 12 resume Down;
state Down o = last 'o — 1;
until if o = 0 resume Up;

returns o;

node tictoctic (tic, toc : bool) returns (o : int32 last = 0)
automaton
initial state WaitTic
unless if tic restart CountTocs;

state CountTocs
unless if tic resume WaitTic;
o=0—> if toc then (last 'o + 1) else last 'o;
returns o;

» Replacing until by unless in the first leads to a causality error.

> Automata and data-flow equations can be mixed arbitrarily.

SCADE 6 example: digital watch

<chonos o o <spay> .- k>
reset ang

oL (= B)

~ Sopped \ ot o |
st et fy—]

Tast ‘chrono [chrono modCount —D ck.min_n
160, 241 ——|

G * /] l* / - T T
BN

et an m(kam/
display_chvoro.] ‘lock_mode.
start_stop ana

star_stop ¢ sta_stop and . <chiono_dsplay_mode> —--__ s
“clock_mode click d not reset and clck and
“clock_mode. i

3

“chrono_unning
&

Y (T \
nnring

mapfold<<a>|

e ———a

modCount _@_D ehrono
(100, 60. 60] F————|

clack_mode

J setm
\ start_stop and click -

{last ‘el min_p(0] + 1, fast clk_min_h{1)] ———4
setn
D chvono_runming

ER——
X e——

st), s

coctcmose | evasp T

i1+ 1) —f

maprola<<z>>| N
> e ropie min
motcout = T wh .
0. 60} F——y | ctminn C o &

o

Lo |

SCADE 6 and LUSTRE kernels

LUSTRE

Scade 6

Type systems

Type checking

[LRN-149] [LRM-150]
(TrRUE) — e (FALSE) — e
H;S,; CF true : bool H; S,;C I false : bool

The type of the boolean values true and false is bool.

[LRM-151] [LR¥-152] [LR¥-153]
(CHAR) (INTEGER) (REAL)

0 0 0
H;8,;C I cuar : char H;8S,;C - INTEGER : int H;S,;C I FLOAT : real

These three rules give the type associated to the three value kinds: CHAR, INTEGER and FLOAT.

[LRM-643]
(POLYMORPHIC LITERAL)

0
H;8S.;C F (INTEGER : ‘) : 't where 't is num

An integer value can be used as a polymorphic literal. Its type must be a numerical type.

k k
(l[}lg:;ilfgé) H;S;;CFHf:n ﬁwrz,kl <k H;S;;Cke:7q{ CFT{Cn

k
H;S:;CF f(e):m

An operator f can be instantiated with an expression e if the type of e matches the types of the arguments of
[the type of the instance is the output type of f. The expression f(e) must be typable in a context that has
at least the memory of f (ky < k).

Operators arguments are of the right type.
Array accesses are within array bounds.

Clock checking

clf
[LRM-252] HF f:VaVXy,...,Xpcli — cla
(CLK OPERATOR SPECIALISATION)

i
H b frely — cla[clf' fa][mi/ Xilicrr.m)

A polymorphic operator signature can be specialized by substituting the quantified clock variable a by a clock
type clf’ and the carrier variables X; by carrier names m;.

clf clf
HbE fiey—els HEe:ch

LAN-253]
(CLK INSTANCE) ar
HE fe):cl

An operator f with a clock signature e¢l; —+ ¢ly can be instantiated with parameters e of clock type el;.

The program can execute synchronously.
Corollary: no need to bufferize streams, can run with a finite amount of memory.

Jean-Louis Colago and Marc Pouzet.
Clocks as first class abstract types.
In Third International Conference on Embedded Software (EMSOFT'03)

Causality analysis

HyHigor; Wi G fr¥yr, e X Xy — ct
Vi € [l.n),~ ¢ FCV(H)

Hi Higot; Wi CF f oy X oo x oy — etV /ilieiin

[LRM-330]
(DEP QPERATOR SPECIALISATION)

An operator signature with quantified type variables can be replaced by a signature without universal quantifi-
cation by replacing the quantified variables by fresh variables that are free in the typing environment.

(DE;%;?EQLCEJ H; Hips; W, CF fretfy x -+ x ctf, — cf Hy Higo; Wi C et ctfy x -+ x ctf),
H; Higor; W; (CU{ctf; D ctf; /i€ [Ln]}) F fle): ct

The causality type of an operator instantiation is the causality type of the outputs if the inputs satisfy the
constraint of being bigger than the type of the argument i.e. if the inputs of this instance depend on the flows
represented by e.

No "instantaneous” cycle (x, = f(xp))
Corollary: equations can be statically scheduled.

Inspired by:

Pascal Cuoq and Marc Pouzet
Modular Causality in a Synchronous Stream Language.
In European Symposium on Programming (ESOP'01)

Initialization analysis

(IN[]LTMA%W) H;Hpoqber:dfy x -~ x df H;Hpas b ea: dfs x --- x df?
H;Hpgo b ey— >epc df x oo x dfy,

An init expression (e;— >e;) is well initialized if e; and ey are; the initialization type of the expression is the
one of its first parameter.

H;iHppgbe:0x---x0
n
H;Hp,-pree:1x---x1

n

[LRM-432]
(INIT PRE)

Outputs are always defined (no nif).
Corollary: determinism.

Jean-Louis Colago and Marc Pouzet.
Type-based Initialization Analysis of a Synchronous Data-flow Language.
International Journal on Software Tools for Technology Transfer (STTT), Vol.6, Num.3, November 2004.

Qualified Compiler (KCG)

SCADE 6 Compiler organization

Static
analyses correct
SCADE 6 1 SCADE 6
Automata 9
translation
Dataflow
Core compilation Sequential
Dataflow 3 Code

1. see previous 4 slides

2.

3.

Jean-Louis Colago and Bruno Pagano and Marc Pouzet.
A Conservative Extension of Synchronous Data-flow with State Machines.
In ACM International Conference on Embedded Software (EMSOFT'05)

D. Biernacki, J.-L. Colago, G. Hamon, and M. Pouzet,
Clock-directed Modular Code Generation of Synchronous Data-flow Languages.
In ACM International Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES), Tucson, Arizona, June 2008

Implementation of the qualified compiler (KCG)

» OCaml (=~ 50Klocs);

» with specific developments: code coverage tool for OCaml, simplified runtime
with a Stop&Copy GC;

» formalized static semantics used as a precise specification (=~ 100p);

» based on a standards process: plans, specification, design (= 1000p) , dev., unit
tests (= 500Klocs), tests and reviews.

B. Pagano, O. Andrieu, B. Canou, E. Chailloux, J-L. Colago, T. Moniot and P. Wang.
Certified development tools implementation in Objective Caml.
In International Symposium on Practical Aspects of Declarative Languages PADL 08. LNCS. Springer-Verlag, January 2008.

B. Pagano, O. Andrieu, B. Canou, E. Chailloux, J-L. Colago, T. Moniot, P. Wang and P. Manoury.

Experience Report: Using Objective Caml to Develop Safety-Critical Embedded Tools in a Certification Framework

In International Conference on Functional Programming Proceeding of the 14th ACM SIGPLAN international conference on Functional
programming, ICFP 2009, Edinburgh, Scotland, UK, August 31 - September 2, 2009

Formal Verification of SCADE 6 models

Formal Verification of SCADE models

A SCADE model involves a bounded amount of memory
=> it represents a finite state system
= model checking techniques apply

Formal Verification of SCADE models

A SCADE model involves a bounded amount of memory
=> it represents a finite state system
= model checking techniques apply

Safety: something bad (undesirable) cannot happen
e.g. " Train doors cannot open while the train is rolling.”

Liveness: something good (hoped-for) will eventually happen
e.g. " The train will eventually leave the station.”

Formal Verification of SCADE models

A SCADE model involves a bounded amount of memory
=> it represents a finite state system
= model checking techniques apply

Safety: something bad (undesirable) cannot happen
e.g. " Train doors cannot open while the train is rolling.”

Liveness: something good (hoped-for) will eventually happen
e.g. " The train will eventually leave the station.”

> A satefy property expresses in SCADE as a Boolean stream;

» proving it consists in verifying that this stream is constant and equal to true.

N. Halbwachs, F. Lagnier and C. Ratel.
Programming and verifying critical systems by means of the synchronous data-flow programming language Lustre.
In IEEE Transactions on Software Engineering, Special Issue on the Specification and Analysis of Real-Time Systems. September 1992

SCADE design verifier

» Based on Prover Technology proof engine PREVER"

NoOoLOG Y

» SAT based model-checker: BMC, k—induction.

» Supports:
> bounded integers (bitblasting).
» unbounded integers.
» rationals, used to support floats but not a safe abstraction.

» The translation from SCADE 6 to the engine (TECLA/HLL) is based on KCG.

M. Sheeran, S. Singh and G. Stalmark.
Checking safety properties using induction and a SAT-solver.
FMCAD 2000

Formal Verification in Embedded Software Industry

» Is a must have for SCADE evaluations.

» Main limitations to deployment:

> Skills and patience (fantasy of push button solution).
> Limited capabilities of the tool on numerical aspects (floats and non-linearities).
» Lack of clear positioning in existing processes and standards.

» Successes in railway transportation:
» RATP: http://projects.laas.fr/IFSE/FMF /J4 /slides/P07_Evguenia_Dmitrieva.pdf
» RATP recommends the usage of formal verification to their suppliers; once skilled

some use it for other project.
» Order of magnitude of SAT instances: 10° variables and 107 clauses.

http://projects.laas.fr/IFSE/FMF/J4/slides/P07_Evguenia_Dmitrieva.pdf

Example: The Gilbreath Trick

Presentation of the magic trick in G.Huet paper:

Why is this a card trick? Our boolean words arc card decks, with true for red and false for black.
Take an even deck z, arranged alternatively red, black, red, black, etc. Ask a spectator to cut the
deck, into sub-decks u and v. Now shuffle » and v into a new deck w. When shuffling, note carefully
whether u and v start with opposite colors or not. If they do, the resulting deck is composed of pairs
red-black or black-red; otherwise, you get the property by first rotating the deck by one card. The
trick is usually played by putting the deck behind your back after the shuffle, to perform “magic”.
The magic is either rotating or doing nothing. When showing the pairing property, say loudly “red
black red black...” in order to confuse in thc spectator’s mind the weak paired property with the
strong alternate one.

There is a variant. If the cut is favorable, that is if u and v are opposite, just go ahead showing
the pairing, without the “magic part.” If the spectator says that he understands the trick, show
him the counter-example in the non-favorable case. Of course now you have to leave him puzzled,

and refuse to redo the trick.

G. Huet.
The Gilbreath Trick: A case study in axiomatisation and proof development in the Coq Proof Assistant.
In Proceedings, Second Workshop on Logical Frameworks, Edinburgh, May 1991

Example: The Gilbreath Trick

P take a card deck where card color alternate; % —
P split it in two; —
———
> ensure the bottom cards of the two sub-decks have >
different colors; /\
> riffle shuffle them. —_é
Property: —

the resulting deck is a list of pairs red-black or black-red.

G. Huet.
The Gilbreath Trick: A case study in axiomatisation and proof development in the Coq Proof Assistant.
In Proceedings, Second Workshop on Logical Frameworks, Edinburgh, May 1991

Example: The Gilbreath Trick

The property is implied by the following one on Boolean

streams: e —

e —
if s1 and s2 be two alternate streams starting with different >
values; let o be a stream built by “riffle shuffling” s1 and s2; %\
thin o is such that it is a succession of pairs of different "S‘
values. ——

G. Huet.

The Gilbreath Trick: A case study in axiomatisation and proof development in the Coq Proof Assistant.
In Proceedings, Second Workshop on Logical Frameworks, Edinburgh, May 1991

Example: The Gilbreath Trick

node Gilbreath_stream (clock c:bool) returns (o, property: bool)
var

sl bool when c;

s2 bool when not c;

half bool;
let

sl = (false when c) —> not (pre sl);

s2 = (true when not c) —> not (pre s2);

o = merge (c; sl; s2);

half = false —> (not pre half);

property =
tel

true —> not (half and (o = pre o0));

G. Huet.
The Gilbreath Trick: A case study in axiomatisation and proof development in the Coq Proof Assistant.
In Proceedings, Second Workshop on Logical Frameworks, Edinburgh, May 1991

Conclusion

Timeline of SCADE and influences

1983 1986 1988 1995 2000 2008 2011 2015 2017

Lustre v3 va

V3+
SAGA-CG (schneider tectric)

SAO (Airbus)
Scade 6 Hybrid Proto

SCADE A

V3!

Lucid Synchrone

V5 V7

Esterel

Zélus http://zelus.di.ens.fr/

Conclusion

» Use of state of the art programming language principles for an industrial qualified
tool (> 100 avionic systems certified);

» Implementation in OCaml;
» Further step: certification in Coq and DO-330 qualification.

T. Bourke, P.-E. Dagand, M. Pouzet, and L. Rieg. T. Bourke, L. Brun, P-E. Dagand, X. Leroy, M. Pouzet and L. Rieg
A Formally Verified Compiler for Lustre .
In International Conference on Programming Language, Design and Implementation (PLDI)

X. Leroy,
How much is a mechanized proof worth, certification-wise?
In Principles in Practice, January 2014

Current work and perspectives

» Evolution of the language: periodic clocks; richer array constructs; deeper
integration of test/simulation and programming; of the model together with the
display.

» Generation of code for a parallel architecture and/or running a RT OS.

> More agressive compiler optimisations.

This work is the result of a long, fruitful and continuing collaboration which started in
1999 with Jean-Louis Colaco (ANSYS, SBU).

Access to the Scade language and its environment

Academic program (teaching and research):
http://www.esterel-technologies.com /scade-academic-program/

Contact: scade-academics@ansys.com

http://www.esterel-technologies.com/scade-academic-program/
mailto:scade-academics@ansys.com

	Synchronous Reactive System
	Lustre/Scade 5
	Scade 6
	Type systems
	Qualified Compiler (KCG)
	Formal Verification of Scade 6 models
	Conclusion

