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SCADE

I Safety Critical Application Development Environment

I used to model and implement safety critical reactive control software

I Scade 6 is the underlying language of SCADE Suite

I belongs to the family of synchronous languages

I is a dialect of Lustre (data-flow oriented)

I includes major extensions in its version 6 (Scade 6)

I is a DSL dedicated to the development of critical systems

I developed at ANSYS.



Scade and related tools



Scade and safety critical applications

I most of safety critical applications are digital controllers;

I block diagrams and state machines are widely used in control engineering;

I good matching between language and diagrams (semantics and intuition);

I good properties of the language: runs in finite memory, deterministic;

I Scade compiler (code generator) is qualified for several standards: DO-178C
(DO-330 TQL 1), EN-50128, IEC-61508.
i.e. it can be used without having to verify its output.



Formal Methods in avionics standard

From Formal Methods Supplement to DO-178C and DO-278A (DO-333, Dec. 2011):

”Establishing a formal model of the software artifact of interest is fundamental to all
formal methods. In general a model is an abstract representation of a given set of
aspects of the software that is used for analysis, simulation, and/or code generation. In
the context of this document, to be formal, a model should have an unambiguous,
mathematically defined syntax and semantics. This makes it possible to use automated
means to obtain guarantees that the model has certain specified properties.”



Take it as an encouragement to design a high level language for critical control software
where every step is precisely defined but simple enough to be convincing and accepted
together with compile-time checks to ensure some important safety properties.

Apply state-of-the-art techniques from PL theory and practice.

Dedicated type systems to reject programs certain programs.

Dynamic semantics (denotational, operational, logical).

Specify all the compilation chain from the source to the target code.

Incorporate the programming constructs that are expressive enough but keeps type
checks, error diagnostics and/or code generation reasonnably simple.

Modularity and traceability all along the chain, e.g., type check, code generation.
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Reactive System

A system that interacts continuously with its environment (physics, user, . . . )

Reactive
System

Environment



The synchronous mathematical interpretation

A signal is a sequence; a system is a function from sequences to sequences.

S0

i0, i1, . . . , in, . . .

Reactive
System

o0, o1, . . . , on, . . .

Scade is a language to define sequences that can be mutually recursive and stream
functions.
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Operational viewpoint

Sn

i0, i1, . . . , in, . . .

Reactive
System

o0, o1, . . . , on, . . .

A step:

I read inputs

I compute outputs

I update internal state

let f be the function that computes one reaction: on,Sn+1 = f (in,Sn)
the code generator produces the function f and the initial state S0.
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Scade 5 example



Until 2008, the underlying language of Scade was essentially Lustre
associated to a graphical interface and the key addition of a qualified compiler.



The synchronous data-flow language Lustre (1984)

The pionneering work of Caspi and Halbwachs.

E=( co e2 es 

9 tt tt 

. . . 1 

B=( tt f . ..) 

X=E when B =( z. = co 21 = e2 x2 = es . . . ) 

Table 1: The when operator 

B=( tt fl tt tt 8 f . . .) 

E=( ee el e2 es e4 e5 . . . 1 
X=EwhenB=( co e2 es . . . 1 

Y= current(X) =( ee e0 e2 es e.3 e5 . . . 1 

Table 2: The current operator 

does not ahave the same notion of time” ss E and B, as 
shown by Table 1. Now, several remarks must be made 
about this operation. 

In the above example, X is said to be computed on clock 
B. This means that the only notion of time that X “knows” 
is the sequence of cycles where B is true. As a consequence, 
the question =what is the value of X when B is not true?” 
makes no more sense than the question “what is the value 
of a variable between two integer instants?“. 

Our model of variables consisting of sequences is no 
longer sufficient: two variables may describe the same se- 
quence of values without being equal. Henceforth, a vari- 
able will be characterized not only by its sequence of values, 
but also by its clock. Let us call a stream the couple formed 
by a sequence and a clock. Streams and clocks are recur- 
sively defined as follows: 

< clock> ::= true 1 <boolean stream> 
<stream of type T > ::= <sequence of type T ><clock > 

Intuitively, if the stream associated with an expression is of 
clock true, then the expression is renewed with the basic 
cycle of the program. Constants are always assumed to be 
on the basic clock. A non basic clock is defined by a boolean 
expression, which in turn has a clock. Thus clocks may be 

nested: for instance, the millisecond can be modeled as a 
clock (a boolean variable which is true at each tick of a 
quartz) and the second can be another ciock defined on the 
millisecond clock. Moreover, this example shows that the 
when operation allows the basic cycle to be quite unrelated 
to physical time, which can be handled as an input to the 
program. 

Now, suppose that we wish to apply an operator on 
expressions with different clocks (e.g., to sum X and E in 
the example of Table 1). Since an operator operates on 
terms of the same rank, and since these terms can exist 
at different instants, either the causality or the bounded 
memory condition could be violated. In order to operate on 
expressions with different clocks, we must first put them on 
the same clock, either by sampling (when) or by projecting, 
using our last operator, current. 

If E is an expression of clock B, then current(E) is an 
expression whose clock is the same as that of B and whose 
value at each cycle of this clock is the value taken by E at 

the last cycle when B was true. Table 2 illustrates the com- 
bination of the when and current operators. The current 
operator allows operations over variables of different clocks, 
since if x and X’ are variables of respective clocks B and B’, 
and if B and B’ have the same clock, 

current (X1 op current (X’> 

is a legal expression for every binary operator op. 

1.3 Nodes and Nets 

A node is a LUSTRE subprogram. It receives input vari- 
ables, computes output variables, and possibly local vari- 
ables, by means of a system of equations. For instance, we 
can define a general counter as follows: 

node COUNT (init. incr: int; reset: boo11 
returns (n: int): 

let 
n = init -> 

if reset then init else prefn) + incr: 
tel: 

Node instantiation takes a functional form: if N is the 
name of a node declared with heading 

node N ( ir : 71; ir : 7s; . . . ; & : rP) 
returns f jl : Bi; j2 : 82; . . . . j, : 8,) : 

and if &,...,E,, are expressions of type 71,. . . , r,,, then 
the instantiation N (El,. . . ,EJ is an expression of type 
tuple(&, . . . ) e,) whose n-th value is the tuple (jl., . . . , jp,,) 
computed by the node from input parameters El,. . . , E,,, 
Conditional and sequence operators are polymorphic, and 
can be applied to tuples. Coming back to the general 
counter, one may write 

even = COUNTfO. 2. false): 
mod5 = COUNTfO. 1. pre(mod5=4)); 

thus defining even to be the sequence of even numbers and 
mod6 to be the cyclic sequence of integers module 5. 

Concerning clocks, and in agreement with the data-flow 
philosophy, the basic execution cycle of a node is deter- 
mined by the clock of its input parameters. As an example, 
the instantiation 
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The data-flow kernel

Point-wise extension of combinatorial operators:

x x0 x1 . . . xn . . .

y y0 y1 . . . yn . . .

x + y x0 + y0 x1 + y1 . . . xn + yn . . .

x+y represents the sequence (xn + yn)n∈N

likewise for: not, and, or, -, *, . . .
Constants and literals are lifted to sequences:

2 2 2 . . . 2 . . .

x x0 x1 . . . xn . . .

2 * x 2 ∗ x0 2 ∗ x1 . . . 2 ∗ xn . . .
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The data-flow kernel

Unit delay:
x x0 x1 . . . xn . . .

pre x nil x0 . . . xn−1 . . .

let x represent the sequence (xn)n∈N, pre x represents the sequence (pn)n∈N defined
by:

p0 = nil and ∀n ∈ N, pn+1 = xn

where nil is an undefined value of the right type.
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The data-flow kernel

Initialization:
x x0 x1 . . . xn . . .

y y0 y1 . . . yn . . .

x -> y x0 y1 . . . yn . . .

combined with pre to build a delayed stream without nil :
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x -> pre y x0 y0 . . . yn−1 . . .
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The data-flow kernel

filtering with a clock:

h true false true true false . . .

x x0 x1 x2 x3 x4 . . .

x when h x0 x2 x3 . . .

Extension on the clock of the clock:

h true false false true false . . .

a a0 a1 . . .

current a a0 a0 a0 a1 a1 . . .
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This is all!

Lustre is a neat language, volutarily small in the number of programming
constructions, with a carrefully defined static and dynamic semantics.

Yet, a few things raised our mind...



Determinism of Lustre

Determinist? . . . if the operators pre and current are used with care!

Synchronous principles give deterministic parallel composition.

But this is not the only source of non determinism:

the initial state must be well managed

and Lustre does not guarantee that because of the nil in memories.

Can we ensure, at compile time, that the output of system does not depend on the
actual value of those nil values?

note: this is not an issue to verify properties because either they are independent of
the initial state or they are falsifiable.
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The genesis of Scade 6

Some of the needs or questions:

I Control (activation) structures: conditionals, automaton

I Arrays and primitives to use them

I Remove non-determism issues introduced by nil



Solving non determinism

The case of current is hard to solve in general:

h false false false true false . . .

a a0 . . .

current a nil nil nil a0 a0 . . .

motto: do not depend on a model-checker to state the correctness, use classical tools
of programming language design:

I constructions (syntax, semantic);

I typing disciplines.

proposition:

I replace current and

I define a dedicated type system that ensures determinism.
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An alternative to ”current”

To avoid initialization issue, a common Lustre pattern is to use it combined with a
test of the clock:

i f h then c u r r e n t x e l s e e

where h is the clock of x.

proposition: introduce a primitive that merges streams on complementary clocks.

Paul Caspi and Marc Pouzet
Synchronous Kahn Networks.
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Grégoire Hamon
Calcul d’horloge et Structures de Contrôle dans Lucid Synchrone, un langage de flots synchrones à la ML
Thèse Université Pierre et Marie Curie, 14 Nov. 2002
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Lucid Synchrone version 3.0, Tutorial and Reference Manual.
2006
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merge

h true false true true false . . .

a a0 a1 a2 . . .

b b0 b1 . . .

merge (h; a; b) a0 b0 a1 a2 b1 . . .

in Lustre: if h then current a else current b.

Its implementation used two memories and a conditional, whereas the merge does not
need any memory.
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Initialization analysis

principle: add a very simple type system with two types:

I 1 for a stream that may start by nil ;

I 0 for a stream that is always defined.

subsumption: an argument of type 0 can always be used in a position where 1 is
required.

Property: the outputs of the root node never contain a nil .

Jean-Louis Colaço and Marc Pouzet.
Type-based Initialization Analysis of a Synchronous Data-flow Language.
International Journal on Software Tools for Technology Transfer (STTT), Vol.6, Num.3, November 2004.



Initialization analysis: pre and ->

pre : 0→ 1
pre (pre x) : cannot be typed

pre (pre x) nil nil x0 . . . xn−2 . . .

v -> pre (pre x) v0 nil x0 . . . xn−2 . . .

the nil in second position cannot be eliminated.

-> : ∀δ, δ × 1→ δ



Example: Rising edge detection

node rising_edge(a : bool ) r e t u r n s (o : bool )
o = a and not pre a;

type: 0→ 1

node root(a, b : bool ) r e t u r n s (o : bool )
o = rising_edge(a) or rising_edge(b);

type : 0× 0→ 1
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node rising_edge(a : bool ) r e t u r n s (o : bool )
o = a and not pre a;

type: 0→ 1

node root(a, b : bool ) r e t u r n s (o : bool )
o = f a l s e ->
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type : 0× 0→ 0



Example: Rising edge detection



Need of control structure

In Lustre, only clocks allow to control computation; but they are hard to use. Users
prefer to use conditional activation:

I Scade 5: condact (c; N; e; i)

I Scade 6: (activate N every c initial default i) (e)

drawback: needs to introduce an operator N and does not allow to easily share a
stream between different activations.



Scopes, control and explicit memories
I Introduction of guarded scopes: allows to select different sets of equations that

produce the same streams.

I If a stream x is defined in two (exclusive) modes, how to read the previously
computed value of it?

I last ’x: access to the last value of x in its declaration scope (new construct).

I Allows for different styles:

node counter () r e t u r n s (o : i n t 3 2 )

o = 1 -> pre (o + 1);

can also be written:

node counter () r e t u r n s (o : i n t 3 2 l a s t = 0)

o = l a s t ’o + 1;

o is manipulated as an explicit named memory.

it seems to be imperative but it is not: the language still ensures SSA.
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Example: second degree equation

f u n c t i o n s e c o n d d e g r e e ( a , b , c : f l o a t 6 4 ) r e t u r n s ( x r , x i , y r , y i : f l o a t 6 4 )
v a r d e l t a : f l o a t 6 4 ;
l e t

d e l t a = b∗b − 4 ∗ a∗c ;

a c t i v a t e
i f d e l t a > 0
then

v a r d : f l o a t 6 4 ;
l e t

d = s q r t ( d e l t a ) ;
xr , x i = ((−b + d ) / (2 ∗ a ) , 0) ;
yr , y i = ((−b − d ) / (2 ∗ a ) , 0) ;

t e l
e l s e i f d e l t a = 0
then

l e t
xr , x i = (−b / (2 ∗ a ) , 0 ) ;
yr , y i = ( xr , x i ) ;

t e l
e l s e −− d e l t a < 0

l e t
xr , x i = (−b / (2 ∗ a ) , s q r t (−d e l t a ) / (2 ∗ a ) ) ;
yr , y i = ( xr , − x i ) ;

t e l
r e t u r n s xr , yr , x i , y i ;

t e l



Example:

node s i l l y w a l k ( c : boo l ) r e t u r n s ( o : i n t 3 2 l a s t = 0)
l e t

a c t i v a t e
i f c then

v a r i n c : i n t 3 2 ;
l e t

o = l a s t ’ o + i n c ;
i n c = (−17) −> pre (36 −> pre i n c ) ;

t e l
e l s e

v a r i n c : i n t 3 2 ;
l e t

o = l a s t ’ o + i n c ;
i n c = (−3) −> pre ((−33) −> pre (25 −> pre i n c ) ) ;

t e l

r e t u r n s o ;
t e l

c true true true false false false false true true false false false true false false false false false false true true false true true true true· · ·

then/inc -17 36 -17 36 -17 36 -17 36 -17 36 -17 36 · · ·

else /inc -3 -33 25 -3 -33 25 -3 -33 25 -3 -33 25 -3 -33 · · ·

o -17 19 2 -1 -34 -9 -12 24 7 -26 -1 -4 32 -1 24 21 -12 13 10 -7 29 -4 -21 15 -2 34 · · ·



Scade 6 other constructs

I arrays and iterators
Lionel Morel and Florence Maraninchi
Arrays and contracts for the specification and analysis of regular systems
In Proceedings. Fourth International Conference on Application of Concurrency to System Design, 2004. ACSD 2004.

I modular reset of node instances
Grégoire Hamon and Marc Pouzet
Modular Resetting of Synchronous Data-flow Programs
In ACM International conference on Principles of Declarative Programming (PPDP’00)

I hierarchical state machines
Jean-Louis Colaço and Bruno Pagano and Marc Pouzet.
A Conservative Extension of Synchronous Data-flow with State Machines.
In ACM International Conference on Embedded Software (EMSOFT’05)

Jean-Louis Colaço and Grégoire Hamon and Marc Pouzet.
Mixing Signals and Modes in Synchronous Data-flow Systems.
In ACM International Conference on Embedded Software (EMSOFT’06)



Hierarchical state machines

Two forms of transitions: weak or strong, with reset of the target state or not.

node up down ( ) r e t u r n s ( o : i n t 3 2 l a s t = 0)
automaton

i n i t i a l s t a t e Up o = l a s t ’ o + 2 ;
u n t i l i f o >= 12 resume Down ;

s t a t e Down o = l a s t ’ o − 1 ;
u n t i l i f o = 0 resume Up ;

r e t u r n s o ;

node t i c t o c t i c ( t i c , t o c : boo l ) r e t u r n s ( o : i n t 3 2 l a s t = 0)
automaton

i n i t i a l s t a t e WaitTic
u n l e s s i f t i c r e s t a r t CountTocs ;

s t a t e CountTocs
u n l e s s i f t i c resume WaitTic ;

o = 0 −> i f t o c then ( l a s t ’ o + 1) e l s e l a s t ’ o ;
r e t u r n s o ;

I Replacing until by unless in the first leads to a causality error.

I Automata and data-flow equations can be mixed arbitrarily.



SCADE 6 example: digital watch



Scade 6 and Lustre kernels

op
pre
->

when

merge

reset

current

Scade 6

LUSTRE
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Type checking

Operators arguments are of the right type.
Array accesses are within array bounds.



Clock checking

The program can execute synchronously.
Corollary: no need to bufferize streams, can run with a finite amount of memory.

Jean-Louis Colaço and Marc Pouzet.
Clocks as first class abstract types.
In Third International Conference on Embedded Software (EMSOFT’03)



Causality analysis

No ”instantaneous” cycle (xn = f (xn))
Corollary: equations can be statically scheduled.

Inspired by:

Pascal Cuoq and Marc Pouzet
Modular Causality in a Synchronous Stream Language.
In European Symposium on Programming (ESOP’01)



Initialization analysis

Outputs are always defined (no nil).
Corollary: determinism.

Jean-Louis Colaço and Marc Pouzet.
Type-based Initialization Analysis of a Synchronous Data-flow Language.
International Journal on Software Tools for Technology Transfer (STTT), Vol.6, Num.3, November 2004.
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Scade 6 Compiler organization

Scade 6
correct

Scade 6

Static
analyses

1

Automata
translation 2

Core
Dataflow

Sequential
Code

Dataflow
compilation

3

1. see previous 4 slides

2. Jean-Louis Colaço and Bruno Pagano and Marc Pouzet.
A Conservative Extension of Synchronous Data-flow with State Machines.
In ACM International Conference on Embedded Software (EMSOFT’05)

3. D. Biernacki, J.-L. Colaço, G. Hamon, and M. Pouzet,
Clock-directed Modular Code Generation of Synchronous Data-flow Languages.
In ACM International Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES), Tucson, Arizona, June 2008



Implementation of the qualified compiler (KCG)

I OCaml (≈ 50Klocs);

I with specific developments: code coverage tool for OCaml, simplified runtime
with a Stop&Copy GC;

I formalized static semantics used as a precise specification (≈ 100p);

I based on a standards process: plans, specification, design (≈ 1000p) , dev., unit
tests (≈ 500Klocs), tests and reviews.

B. Pagano, O. Andrieu, B. Canou, E. Chailloux, J-L. Colaço, T. Moniot and P. Wang.
Certified development tools implementation in Objective Caml.
In International Symposium on Practical Aspects of Declarative Languages PADL 08. LNCS. Springer-Verlag, January 2008.

B. Pagano, O. Andrieu, B. Canou, E. Chailloux, J-L. Colaço, T. Moniot, P. Wang and P. Manoury.
Experience Report: Using Objective Caml to Develop Safety-Critical Embedded Tools in a Certification Framework
In International Conference on Functional Programming Proceeding of the 14th ACM SIGPLAN international conference on Functional
programming, ICFP 2009, Edinburgh, Scotland, UK, August 31 - September 2, 2009
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Formal Verification of Scade models

A Scade model involves a bounded amount of memory
⇒ it represents a finite state system
⇒ model checking techniques apply

Safety: something bad (undesirable) cannot happen
e.g. ”Train doors cannot open while the train is rolling.”

Liveness: something good (hoped-for) will eventually happen
e.g. ”The train will eventually leave the station.”

I A satefy property expresses in Scade as a Boolean stream;

I proving it consists in verifying that this stream is constant and equal to true.

N. Halbwachs, F. Lagnier and C. Ratel.
Programming and verifying critical systems by means of the synchronous data-flow programming language Lustre.
In IEEE Transactions on Software Engineering, Special Issue on the Specification and Analysis of Real-Time Systems. September 1992.
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SCADE design verifier

I Based on Prover Technology proof engine

I SAT based model-checker: BMC, k−induction.
I Supports:

I bounded integers (bitblasting).
I unbounded integers.
I rationals, used to support floats but not a safe abstraction.

I The translation from Scade 6 to the engine (TECLA/HLL) is based on KCG.

M. Sheeran, S. Singh and G. Stalmark.
Checking safety properties using induction and a SAT-solver.
FMCAD 2000



Formal Verification in Embedded Software Industry

I Is a must have for SCADE evaluations.
I Main limitations to deployment:

I Skills and patience (fantasy of push button solution).
I Limited capabilities of the tool on numerical aspects (floats and non-linearities).
I Lack of clear positioning in existing processes and standards.

I Successes in railway transportation:
I RATP: http://projects.laas.fr/IFSE/FMF/J4/slides/P07 Evguenia Dmitrieva.pdf
I RATP recommends the usage of formal verification to their suppliers; once skilled

some use it for other project.
I Order of magnitude of SAT instances: 106 variables and 107 clauses.

http://projects.laas.fr/IFSE/FMF/J4/slides/P07_Evguenia_Dmitrieva.pdf


Example: The Gilbreath Trick

G. Huet.
The Gilbreath Trick: A case study in axiomatisation and proof development in the Coq Proof Assistant.
In Proceedings, Second Workshop on Logical Frameworks, Edinburgh, May 1991.

Presentation of the magic trick in G.Huet paper:



Example: The Gilbreath Trick

G. Huet.
The Gilbreath Trick: A case study in axiomatisation and proof development in the Coq Proof Assistant.
In Proceedings, Second Workshop on Logical Frameworks, Edinburgh, May 1991.

I take a card deck where card color alternate;

I split it in two;

I ensure the bottom cards of the two sub-decks have
different colors;

I riffle shuffle them.
Property:
the resulting deck is a list of pairs red-black or black-red.



Example: The Gilbreath Trick

G. Huet.
The Gilbreath Trick: A case study in axiomatisation and proof development in the Coq Proof Assistant.
In Proceedings, Second Workshop on Logical Frameworks, Edinburgh, May 1991.

The property is implied by the following one on Boolean
streams:

if s1 and s2 be two alternate streams starting with different
values; let o be a stream built by “riffle shuffling” s1 and s2;
then o is such that it is a succession of pairs of different
values.



Example: The Gilbreath Trick

G. Huet.
The Gilbreath Trick: A case study in axiomatisation and proof development in the Coq Proof Assistant.
In Proceedings, Second Workshop on Logical Frameworks, Edinburgh, May 1991.

node G i l b r e a t h s t r e a m ( c l o c k c : boo l ) r e t u r n s ( o , p r o p e r t y : boo l )
v a r

s1 : boo l when c ;
s2 : boo l when not c ;
h a l f : boo l ;

l e t
s1 = ( f a l s e when c ) −> not ( pre s1 ) ;
s2 = ( t r u e when not c ) −> not ( pre s2 ) ;
o = merge ( c ; s1 ; s2 ) ;

h a l f = f a l s e −> ( not pre h a l f ) ;

p r o p e r t y = t r u e −> not ( h a l f and ( o = pre o ) ) ;
t e l
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Timeline of Scade and influences



Conclusion

I Use of state of the art programming language principles for an industrial qualified
tool (> 100 avionic systems certified);

I Implementation in OCaml;
I Further step: certification in Coq and DO-330 qualification.

T. Bourke, P.-E. Dagand, M. Pouzet, and L. Rieg. T. Bourke, L. Brun, P-E. Dagand, X. Leroy, M. Pouzet and L. Rieg
A Formally Verified Compiler for Lustre .
In International Conference on Programming Language, Design and Implementation (PLDI)

X. Leroy,
How much is a mechanized proof worth, certification-wise?
In Principles in Practice, January 2014



Current work and perspectives

I Evolution of the language: periodic clocks; richer array constructs; deeper
integration of test/simulation and programming; of the model together with the
display.

I Generation of code for a parallel architecture and/or running a RT OS.

I More agressive compiler optimisations.



This work is the result of a long, fruitful and continuing collaboration which started in
1999 with Jean-Louis Colaco (ANSYS, SBU).



Access to the Scade language and its environment

Academic program (teaching and research):

http://www.esterel-technologies.com/scade-academic-program/

Contact: scade-academics@ansys.com

http://www.esterel-technologies.com/scade-academic-program/
mailto:scade-academics@ansys.com
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