
A Brief History of Synchronous Programming

Marc Pouzet
DIENS

Equipe INRIA PARKAS 1

PSL/ENS
Marc.Pouzet@ens.fr

SYNCHRON
28 nov. 2022

1https://parkas.di.ens.fr
1 / 50

Marc.Pouzet@ens.fr
https://parkas.di.ens.fr

A French researcher go to a conference...

2 / 50

flygskam!

✗

flygskam!

✗
✓

flygskam!

✗
✓

x = 0 fby x + 1

flygskam!

✗
✓

x = 0 fby x + 1

Justificatifs!

flygskam!

✗
✓

x = 0 fby x + 1

Justificatifs!

How to specify, program, verify the software of this small printer?

What is different from other programs?

Physical components, e.g., sensors, actuators, stepper motor (paper roll),
etc.

Control permanently (temperature), fast enough, regularly (the motor), etc.

More widely...

fly-by-wire command of a plane, on-board control of a train, the
management of enery in a car, etc.

They are all embedded reactive systems.

3 / 50

What is it all about?

Environment

Reactive System
inputsoutputs

4 / 50

Write Assembly/C/C++/JavaScript/Python/OCaml/Coq by hand?

5 / 50

And compare it to what?

What is the specification?

6 / 50

And compare it to what?

What is the specification?

6 / 50

And if we have a formal specification,

in what programming language to write it?

how to make sure the product code is safe and correct? E.g.,

there is no run-time error;

the memory used is bounded and known statically;

the worst-case execution time is bounded and known statically;

the executed code faithfully implements the specification.

7 / 50

And if we have a formal specification,

in what programming language to write it?

how to make sure the product code is safe and correct? E.g.,

there is no run-time error;

the memory used is bounded and known statically;

the worst-case execution time is bounded and known statically;

the executed code faithfully implements the specification.

7 / 50

And if we have a formal specification,

in what programming language to write it?

how to make sure the product code is safe and correct? E.g.,

there is no run-time error;

the memory used is bounded and known statically;

the worst-case execution time is bounded and known statically;

the executed code faithfully implements the specification.

7 / 50

And if we have a formal specification,

in what programming language to write it?

how to make sure the product code is safe and correct? E.g.,

there is no run-time error;

the memory used is bounded and known statically;

the worst-case execution time is bounded and known statically;

the executed code faithfully implements the specification.

7 / 50

And if we have a formal specification,

in what programming language to write it?

how to make sure the product code is safe and correct? E.g.,

there is no run-time error;

the memory used is bounded and known statically;

the worst-case execution time is bounded and known statically;

the executed code faithfully implements the specification.

7 / 50

And if we have a formal specification,

in what programming language to write it?

how to make sure the product code is safe and correct? E.g.,

there is no run-time error;

the memory used is bounded and known statically;

the worst-case execution time is bounded and known statically;

the executed code faithfully implements the specification.

7 / 50

And if we have a formal specification,

in what programming language to write it?

how to make sure the product code is safe and correct? E.g.,

there is no run-time error;

the memory used is bounded and known statically;

the worst-case execution time is bounded and known statically;

the executed code faithfully implements the specification.

7 / 50

A language for writing executable math specifications?

8 / 50

SAO (Spécification Assistée par Ordinateur) — Airbus 80’s

9 / 50

Accurate drawings

Engineers in control/signal processing had presise maths before the use of
computers.

Sampled systems: stream equations, state machines, etc.

Example: a linear filter

Y0 = bX0 , ∀n Yn+1 = aYn + bXn+1

6

ha Z- - h -

?

?

hbX

Y

...but not executable! Write code and convince that it is correct.

10 / 50

How to make those maths executable?

11 / 50

Somewhere in Grenoble... the language Lustre
(1987) [CHPP87]

count
init
incr

reset
n

E=(co e2 es

9 tt tt

. . . 1

B=(tt f . ..)

X=E when B =(z. = co 21 = e2 x2 = es . . .)

Table 1: The when operator

B=(tt fl tt tt 8 f . . .)

E=(ee el e2 es e4 e5 . . . 1
X=EwhenB=(co e2 es . . . 1

Y= current(X) =(ee e0 e2 es e.3 e5 . . . 1

Table 2: The current operator

does not ahave the same notion of time” ss E and B, as
shown by Table 1. Now, several remarks must be made
about this operation.

In the above example, X is said to be computed on clock
B. This means that the only notion of time that X “knows”
is the sequence of cycles where B is true. As a consequence,
the question =what is the value of X when B is not true?”
makes no more sense than the question “what is the value
of a variable between two integer instants?“.

Our model of variables consisting of sequences is no
longer sufficient: two variables may describe the same se-
quence of values without being equal. Henceforth, a vari-
able will be characterized not only by its sequence of values,
but also by its clock. Let us call a stream the couple formed
by a sequence and a clock. Streams and clocks are recur-
sively defined as follows:

< clock> ::= true 1 <boolean stream>
<stream of type T > ::= <sequence of type T ><clock >

Intuitively, if the stream associated with an expression is of
clock true, then the expression is renewed with the basic
cycle of the program. Constants are always assumed to be
on the basic clock. A non basic clock is defined by a boolean
expression, which in turn has a clock. Thus clocks may be

nested: for instance, the millisecond can be modeled as a
clock (a boolean variable which is true at each tick of a
quartz) and the second can be another ciock defined on the
millisecond clock. Moreover, this example shows that the
when operation allows the basic cycle to be quite unrelated
to physical time, which can be handled as an input to the
program.

Now, suppose that we wish to apply an operator on
expressions with different clocks (e.g., to sum X and E in
the example of Table 1). Since an operator operates on
terms of the same rank, and since these terms can exist
at different instants, either the causality or the bounded
memory condition could be violated. In order to operate on
expressions with different clocks, we must first put them on
the same clock, either by sampling (when) or by projecting,
using our last operator, current.

If E is an expression of clock B, then current(E) is an
expression whose clock is the same as that of B and whose
value at each cycle of this clock is the value taken by E at

the last cycle when B was true. Table 2 illustrates the com-
bination of the when and current operators. The current
operator allows operations over variables of different clocks,
since if x and X’ are variables of respective clocks B and B’,
and if B and B’ have the same clock,

current (X1 op current (X’>

is a legal expression for every binary operator op.

1.3 Nodes and Nets

A node is a LUSTRE subprogram. It receives input vari-
ables, computes output variables, and possibly local vari-
ables, by means of a system of equations. For instance, we
can define a general counter as follows:

node COUNT (init. incr: int; reset: boo11
returns (n: int):

let
n = init ->

if reset then init else prefn) + incr:
tel:

Node instantiation takes a functional form: if N is the
name of a node declared with heading

node N (ir : 71; ir : 7s; . . . ; & : rP)
returns f jl : Bi; j2 : 82; j, : 8,) :

and if &,...,E,, are expressions of type 71,. . . , r,,, then
the instantiation N (El,. . . ,EJ is an expression of type
tuple(&, . . .) e,) whose n-th value is the tuple (jl., . . . , jp,,)
computed by the node from input parameters El,. . . , E,,,
Conditional and sequence operators are polymorphic, and
can be applied to tuples. Coming back to the general
counter, one may write

even = COUNTfO. 2. false):
mod5 = COUNTfO. 1. pre(mod5=4));

thus defining even to be the sequence of even numbers and
mod6 to be the cyclic sequence of integers module 5.

Concerning clocks, and in agreement with the data-flow
philosophy, the basic execution cycle of a node is deter-
mined by the clock of its input parameters. As an example,
the instantiation

180

12 / 50

Programming with stream equations

A discrete system: a function of sequences; the sequences are synchronous.

X 1 2 1 4 5 6 ...

Y 2 4 2 1 1 2 ...

X + Y 3 6 3 5 6 8 ...

pre X nil 1 2 1 4 5 ...

Y ->X 2 2 1 4 5 6 ...

Equation Z = 0 -> pre Z + X + Y means Z0 = 0 ∧ Zn = Zn−1 + Xn ∗ Yn.

Time is logical: inputs X and Y arrive “at the same time”; the output Z is
produced “at the same time”

Euh... is-it real-time?

Reason in worst case: check that the generated code produces the output
before the next input arrives.

13 / 50

The beautiful idea of Lustre

A synchronous interpretation of the Kahn and MacQueen
networks [Kah74, KM77] and Lucid [AW85].

Express directly sampled models from control engineering.

Analyze/transform/simulate/test/verify them.

Automatically translate them into executable code.

A Lustre program is a precise specification.

An immediate resonance with industrial practice:

• SAO (Spécification Assistée par Ordinateur) - Airbus.

• Saga - Merlin Gerin
14 / 50

SCADE: Safety Critical Application Dev. Env. (Verilog, 95)

15 / 50

At the same time...

16 / 50

In Rennes: the Signal language (1987) [BLJ91]

Same influence and approach as Lustre but much more expressive.

A system: a relation between sequences.

Write specifications (partial, non-deterministic) of a system.

A Signal program is used to specify the interface of a component.

Study refinement relations.

Sildex industrial tool: based on Signal (TNI-Software then DS).

17 / 50

À Nice: the Esterel language (1984) [Gon88, BG92]

“Control” dominated systems (e.g., Mealy machines) and their transcription
into sequential circuits.

Theoretical computer science (process calculus, lambda calculus,
semantics).

Several radical ideas:

• A programming style closer to computer science: sequence, loops,
interrupt, suspension of task, parallel composition, hierarchy, etc. to
increase expressiveness.

• Several semantics, in SOS form.

• How to make this portable and deterministic?

Composition of boolean automata (e.g., Argos) [Mar92]

18 / 50

The beautiful idea of Esterel

Do as if the machine were computing infinitely fast!

Reconcile parallelism (for expressiveness) and determinism (for safety) 2.

A new discovery: compile Esterel into circuits (Lustre).

module ABRO
input A, B, R;
output C
loop

[await A || await B];
emit C

each R;
end module

Industrial tool: Esterel-Studio then start-up Esterel-Technologies (1999).

2“Write things once” (The Esterel Language Primer Version5.91, G. Berry, 2000).
19 / 50

The same synchronous approach

With very different programming styles, all these languages share the same
principles

(1) reason ideally;

(2) Compile the parallelism and compute the WCET of the generated code.

It’s much easier.

20 / 50

Some programs are monsters...

how to reject them?

21 / 50

Different t́ime scales

Synchronize slow and fast processes?

X 1 2 3 4 5 ...

half true false true false true ...

X when half 1 3 5 ...

X + (X when half) 2 5 8 ...

let half = true -> not (pre half);
o = x + (x when half);

tel

Define the sequence: ∀n ∈ N.on = xn + x2n

• cannot be implemented with bounded memory (buffer);
• reject it statically: we can do it by typing [CP96, CP03].

22 / 50

Analyze dependences between signals
Programs have zero solutions (deadlock) or too many (non-determinism)

In Lustre/Signal
• x = y + 1 and y = x + 2
• y = x and x = y

For Lustre, a simple choice: “Syntactic causality” [CHPP87]:
“every loop must cross a delay”, i.e., partial order between calculations.

This analysis can be done in a modular way, by typing and independent of
clock calculus [CP01, BBC+14]. And we can compile in independent
blocks [PR09].

For Signal, conditional dependencies: “x depends on y if c”.

Detect “true” cycles. Combines the computation of clocks and causality;
analysis and code generation are more complex [ABG95].

23 / 50

Analyze dependences between signals

In Esterel
• present S else emit S
• present S1 then emit S2 || present S2 then emit S1
• present I then

present O2 then emit O1 else present O1 then emit O2

Two discoveries [Draft book’02] 3

Constructive semantics by calculating a fixed-point at each
instant [Gon88, Ber02].

Are there any undetermined signals?

For Esterel, the “good” notion of causality is that of the électricity.
“If we wire the synchronous program, are the outputs stable?

Coincides with what is provable in constructive logic [MSB12]
3The Constructive Semantics of Pure Esterel Draft Version 3, 2002, G. Berry.

24 / 50

A bit later, somewhere between Grenoble and Jussieu...

25 / 50

Lucid Synchrone and ReactiveML
An idea of Paul Caspi, in 1994, in Grenoble.

“Marc, take a good look, we can write recursive Lustre programs in a
few lines of LazyML!”

Very expressive: higher order, type inference, recursion, etc.

but the “monsters” are still there.

typing, typing, typing... and adapt the compilation.

Lucid Synchrone (95-06) [CP96, Pou06]
Build a functional synchronous language with ML features.

ReactiveML (05-15) [MP05]
Synchronous parallelism in an ML-like language (OCaml)

Boussinot model [Bou91]: delayed reaction to absence.
26 / 50

Functional and synchronous: quesaco? 4

Operations on streams in a language a la ML.

A synchronous interpretation [CP96, CP98] of Kahn & MacQueen’s
networks.

Make it a laboratory to experiment with new ideas.

New programming constructs: pattern matching, signals, last, automata,
higher-order, etc.

Express the static semantics in term of dedicated type systems: clock
calculus [CP96, CP03], causality analysis [CP01, BBC+14], initialization
analysis [CP04],etc.

A semantics by translation/collapse: being able to explain the high-level
constructions in terms of clocked data-flow equations with reset.

To ensure that the proposed new constructs are conservative.

A collaboration with Jean-Louis Colaço (Esterel-Tech./ANSYS).
4What is this?

27 / 50

Scade/KCG 6 [CPP17]

• A new language and compiler, in 2008; written in OCaml;
• many ideas from Lucid Synchrone.

28 / 50

Are your drawings correct? Prove it!

29 / 50

‘What you prove is what you execute’ (Berry ’89)

L1 = pre L7;
L2 = (L11) −> (L5);
L3 = event;
L4 = reset;
count = L2;
L5 = L6 + L1;
L6 = if L3 then (L8) else (L9);
L7 = if L4 then (L10) else (L2);
L8 = 1;
L9 = 0;
L10 = 0;
L11 = 0;

void counter_reset(outC_counter ∗outC)
{

outC−>init = kcg_true;
}

void counter(inC_counter ∗inC, outC_counter ∗outC)
{

kcg_int tmp;

if (outC−>init) {
outC−>count = 0;

}
else {

if (inC−>event) {
tmp = 1;

}
else {

tmp = 0;
}
outC−>count = tmp + outC−>_L9;

}
if (inC−>reset) {

outC−>_L9 = 0;
}
else {

outC−>_L9 = outC−>count;
}
outC−>init = kcg_false;

}

code gen.

30 / 50

A certified compiler? an idea born in 1992/1993

Scade: a language from Lustre (common lab VERILOG/IMAG =
VERIMAG).

Make a certified compiler for the strictest standards avionics.

Avoid having to recheck that the generated code is correct with respect to
the source.

Based on the simple and precise definition of Lustre and its code
generation.

The major evolutions of the language (Scade 6) and of the compiler were
all guided by this objective.

An obligation of means vs an bligation of result (e.g., CompCert).

Can (and how) be developed a proven synchronous compiler?

31 / 50

A certified compiler? an idea born in 1992/1993

Scade: a language from Lustre (common lab VERILOG/IMAG =
VERIMAG).

Make a certified compiler for the strictest standards avionics.

Avoid having to recheck that the generated code is correct with respect to
the source.

Based on the simple and precise definition of Lustre and its code
generation.

The major evolutions of the language (Scade 6) and of the compiler were
all guided by this objective.

An obligation of means vs an bligation of result (e.g., CompCert).

Can (and how) be developed a proven synchronous compiler?

31 / 50

Vélus: a proven Lustre compiler to CompCert
Untyped
Lustre Lustre NLustre

Stc

Obc

Clight

Assembly

Theorem behavior_asm:
∀ D G Gp P main ins outs,
elab_declarations D = OK (exist _ G Gp) →
wt_ins G main ins →
sem_node G main (vstr ins) (vstr outs) →
compile D main = OK P →
∃ T, program_behaves (Asm.semantics P) (Reacts T)

∧ bisim_io G main ins outs T.

• Timothy Bourke et al.: PLDI’17, POPL’20, EMSOFT’21
• 100kLOC de Coq.
• https://velus.inria.fr

32 / 50

https://velus.inria.fr

Vélus: a proven Lustre compiler to CompCert
Untyped
Lustre Lustre NLustre

Stc

Obc

Clight

Assembly

Theorem behavior_asm:
∀ D G Gp P main ins outs,
elab_declarations D = OK (exist _ G Gp) →
wt_ins G main ins →
sem_node G main (vstr ins) (vstr outs) →
compile D main = OK P →
∃ T, program_behaves (Asm.semantics P) (Reacts T)

∧ bisim_io G main ins outs T.

typing and elaboration have succeed,

∀ well typed input streams link to output streams
by the
data-flow semantics,

if the compilation
succeed,

then, the generated assembly
produces an infinite trace. . .

. . . which corresponds to the data-flow model.

• Timothy Bourke et al.: PLDI’17, POPL’20, EMSOFT’21
• 100kLOC de Coq.
• https://velus.inria.fr

32 / 50

https://velus.inria.fr

The stepper motor?

https://vertmo.org/jsofocaml/try-velus/ 5

5Thanks to Timothy Bourke and Basile Pesin.
33 / 50

https://vertmo.org/jsofocaml/try-velus/

A short focus on Causality

It has been the subject of strong debates.

There is no absolute notion of causality: there is not one that is better
than the other.

Some are more powerful (they accept more program).

The choice is determined by the code you target, e.g., circuit or software.

For circuits, if cyclic circuits are forbidden by the synthesis tool, why
fighting for constructive causality?

For software, different compromises, e.g., code size of the target code.

34 / 50

A demo with Zrun
An experiment with the zrun interpreter of Zélus 6

https://github.com/INRIA/zelus/tree/work

The causality in Lustre vs Signal vs Esterel correspond to different
interpretations of the conditional. With zrun, you can try several.

Syntactic Causality (Lustre)

⋆if ⊥ then _ else _ def
= ⊥

⋆if _ then⊥ else _ def
= ⊥

⋆if _ then _ else ⊥ def
= ⊥

⋆if true then x else _ def
= x

⋆if false then _ else y def
= y

6See previous talks at SYNCHRON - winter 2019 and 2021.
35 / 50

https://github.com/INRIA/zelus/tree/work

Causality

Lazy Causality

⋆if ⊥ then _ else _ def
= ⊥

⋆if true then x else _ def
= x

⋆if false then _ else y def
= y

Constructive Causality (Esterel)

⋆if ⊥ then v1 else v2
def
= if v1 = v2 then v1 else ⊥

⋆if true then x else _ def
= x

⋆if false then _ else y def
= y

36 / 50

Causality
With the following definition for the or/and gates:

⋆or(x , y) def
= if x then true else y

⋆and(x , y) def
= if x then y else false

With the first interpretation, the two operators are strict. With the second
one, they are “sequential” (left-to-right); with the third one, it coicindes
with the 3-valued logic for boolean operators.

⋆or(true,_) = true
⋆or(_, true) = true
⋆or(false, x) = x
⋆or(x , false) = x
⋆and(false,_) = false
⋆and(_, false) = false
⋆and(true, x) = x
⋆and(x , true) = x

37 / 50

Examples in Zélus
Examples available at:
https://github.com/INRIA/zelus/tree/work/zrun/tests/good/.

A simple counter.

The cyclic circuit of Malik.

The Bus arbiter by R. de Simone.

A surprise: this later example does not need the interpretation given by
Esterel for the or and and gate. It is enough to use a lazy conditional. See
arbiter.zls.

Modular causality analysis
The causality analysis in Zélus and Scade is done modularily through a
dedicated type system. In the academic Lustre compiler, it is done on the
result of the static inlining of nodes.

38 / 50

https://github.com/INRIA/zelus/tree/work/zrun/tests/good/

Timeline
Timeline

Lustre

SAGA-CG (Schneider Electric)

SAO (Airbus)

SCADE

Lucid Synchrone

Esterel

Zélus http://zelus.di.ens.fr/

1983 1986 1988 1995 2000 2008 2011 2015

V3

V3+

V4

Scade 6
Hybrid Proto

V7V5

V3

38 Timeline c© ANSYS, Inc.

39 / 50

I forgot very important subjects and works.

40 / 50

Synchronous observers [HLR92, HLR93]

A synchronous program that observes the inputs/outputs.

A wide set of formal verification techniques, actively participating in the
progress of model-checking.

Direct links with circuit verification.

e.g., enumerative methods (before 90); symbolic by BDD (90-00); based
on SAT (00-08); SMT (08-).

Academic tools (e.g., Lesar, Kind, Kind2 [CMST16]) and industrial.

The idea of synchronous observers has been taken up everywhere, e.g.,
Scade, Simulink.

Original synchronous languages for specifying properties: HLL (RATP and
Prover) [OBC18], Lutin [RRJ08], Stimulus, CCSL [ZWCM21], etc.

41 / 50

An abundance of languages and compilers
Many languages/compilers to test/experiment with new ideas.

Integrate ideas from the synchronous into an existing language.

ReactiveC (from reactive in C), SugarCubes (from reactive in Java),
ReactiveML (from reactive in ML), HipHop (from reactive to Esterel in
JavaScript), etc.

To express finer (C-style) imperative features in a synchronous language,
e.g. SCCharts [vHDM+14].

To express and exploit periodic calculations: Lucy-n [MPP10],
Prelude [CBF+11].

And many others... SaxoRt compiler from Esterel, Quartz language, Shim,
Blech, etc.

Distribute code, quasi-synchronous model, generation into tasks, etc.
42 / 50

The SYNCHRON workshop
An annual and uninterrupted workshop since 1994.

http://synchron2021.inria.fr

A precious and unique place to present on-going or more complete work.

Invite colleagues on new topics, e.g., synchronous programming for music,
modeling of hybrid systems.

No publication, no selection committee, no referee, no program.

but open debates, confrontation of ideas.
43 / 50

Conclusion

• Dedicated, parallel and deterministic languages;

• adapted to the mathematical culture and the practice of engineers;

• adopted from the beginning.

• Do not compromise on principles: static and dynamic semantics
specified in detail as well as the compiler.

• A continuous evolution of languages, compilation methods,
compile-time checks.

• Ideas used in other applications: web, high frequency trading, mixed
music, ChatBot, etc.

• A direct impact on industrial tools used every day.

• Some to build software; others to specify/verify properties of systems
implemented otherwise.

44 / 50

And the story continues

• Industrial certification: can Coq specs complement/replace current
(human) verification steps?

• Compilation that includes translation validation, independent testing
that uses an executable semantics.

• Relax some synchronism constraints but control end-to-end latencies
(Airbus’s practice, etc.).

• Express real-time constraints and exploit them to generate sequential
code, in tasks or parallel.

• Write hybrid models; probabilistic.

• An old topic: calculating with arrays. What’s new?

A surprise: the principles and style of the language SISAL 7 works well
with Lustre.

7Stream and Iteration in a Single Assignment Language [FCO90]
45 / 50

References I

T. Amagbegnon, L. Besnard, and P. Le Guernic.
Implementation of the data-flow synchronous language signal.
In Programming Languages Design and Implementation (PLDI), pages 163–173. ACM, 1995.

E. A. Ashcroft and W. W. Wadge.
Lucid, the data-flow programming language.
A.P.I.C. Studies in Data Processing, Academic Press, 1985.

Albert Benveniste, Timothy Bourke, Benoit Caillaud, Bruno Pagano, and Marc Pouzet.
A Type-based Analysis of Causality Loops in Hybrid Systems Modelers.
In International Conference on Hybrid Systems: Computation and Control (HSCC), Berlin, Germany, April
15–17 2014. ACM.

Gérard Berry.
The constructive semantics of pure esterel, draft, version 3.
Draft book. Available at:
http://www-sop.inria.fr/members/Gerard.Berry/Papers/EsterelConstructiveBook.pdf, 2002.

G. Berry and G. Gonthier.
The Esterel synchronous programming language, design, semantics, implementation.
Science of Computer Programming, 19(2):87–152, 1992.

A. Benveniste, P. LeGuernic, and Ch. Jacquemot.
Synchronous programming with events and relations: the SIGNAL language and its semantics.
Science of Computer Programming, 16:103–149, 1991.

F. Boussinot.
Reactive C: An Extension of C to Program Reactive Systems.
Software Practice and Experience, 21(4):401–428, 1991.

46 / 50

http://www-sop.inria.fr/members/Gerard.Berry/Papers/EsterelConstructiveBook.pdf

References II

Mikel Cordovilla, Frédéric Boniol, Julien Forget, Eric Noulard, and Claire Pagetti.
Developing critical embedded systems on multicore architectures: the Prelude-SchedMCore toolset.
In 19th International Conference on Real-Time and Network Systems, Nantes, France, September 2011.
Irccyn.

P. Caspi, N. Halbwachs, D. Pilaud, and J. Plaice.
Lustre: a declarative language for programming synchronous systems.
In 14th ACM Symposium on Principles of Programming Languages. ACM, 1987.

Adrien Champion, Alain Mebsout, Christoph Sticksel, and Cesare Tinelli.
The kind 2 model checker.
In Swarat Chaudhuri and Azadeh Farzan, editors, Computer Aided Verification - 28th International
Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part II, volume 9780 of Lecture
Notes in Computer Science, pages 510–517. Springer, 2016.

Paul Caspi and Marc Pouzet.
Synchronous Kahn Networks.
In ACM SIGPLAN International Conference on Functional Programming (ICFP), Philadelphia, Pensylvania,
May 1996.

Paul Caspi and Marc Pouzet.
A Co-iterative Characterization of Synchronous Stream Functions.
In Coalgebraic Methods in Computer Science (CMCS’98), Electronic Notes in Theoretical Computer Science,
March 1998.
Extended version available as a VERIMAG tech. report no. 97–07 at www.di.ens.fr/∼pouzet/bib/bib.html.

Pascal Cuoq and Marc Pouzet.
Modular Causality in a Synchronous Stream Language.
In European Symposium on Programming (ESOP’01), Genova, Italy, April 2001.

47 / 50

References III
Jean-Louis Colaço and Marc Pouzet.
Clocks as First Class Abstract Types.
In Third International Conference on Embedded Software (EMSOFT’03), Philadelphia, Pennsylvania, USA,
october 2003.

Jean-Louis Colaço and Marc Pouzet.
Type-based Initialization Analysis of a Synchronous Data-flow Language.
International Journal on Software Tools for Technology Transfer (STTT), 6(3):245–255, August 2004.

Jean-Louis Colaco, Bruno Pagano, and Marc Pouzet.
Scade 6: A Formal Language for Embedded Critical Software Development.
In Eleventh International Symposium on Theoretical Aspect of Software Engineering (TASE), Sophia
Antipolis, France, September 13-15 2017.

J. T. Feo, D. C. Cann, and R. R. Oldehoeft.
A report on the Sisal language project.
Journal of Parallel and Distributed Computation, 10:349–366, 1990.

Georges Gonthier.
Sémantiques et modèles d’exécution des langages réactifs synchrones.
PhD thesis, Université d’Orsay, 1988.

N. Halbwachs, F. Lagnier, and C. Ratel.
Programming and verifying real-time systems by means of the synchronous dataflow language lustre.
IEEE Transaction on Software Engineering, 18(9):785–793, September 1992.
Available through anonymous ftp at imag.fr:pub/SPECTRE/LUSTRE/PAPERS/lustre.tse.ps.gz.

N. Halbwachs, F. Lagnier, and P. Raymond.
Synchronous observers and the verification of reactive systems.
In M. Nivat, C. Rattray, T. Rus, and G. Scollo, editors, Third Int. Conf. on Algebraic Methodology and
Software Technology, AMAST’93, Twente, June 1993. Workshops in Computing, Springer Verlag.

48 / 50

References IV
Gilles Kahn.
The semantics of a simple language for parallel programming.
In IFIP 74 Congress. North Holland, Amsterdam, 1974.

Gilles Kahn and David B. MacQueen.
Coroutines and networks of parallel processes.
In IFIP Congress, pages 993–998, 1977.

Florence Maraninchi.
Operational and compositional semantics of synchronous automaton compositions.
In CONCUR, pages 550–564, 1992.

Louis Mandel and Marc Pouzet.
ReactiveML, a Reactive Extension to ML.
In ACM International Conference on Principles and Practice of Declarative Programming (PPDP), Lisboa,
July 2005.
Recipient of the price for the “most influential PPDP’05 paper” given in July 2015 at PPDP’15.

Louis Mandel, Florence Plateau, and Marc Pouzet.
Lucy-n: a n-Synchronous Extension of Lustre.
In 10th International Conference on Mathematics of Program Construction (MPC’10), Manoir St-Castin,
Québec, Canada, June 2010. Springer LNCS.

Michael Mendler, Thomas R. Shiple, and Gérard Berry.
Constructive boolean circuits and the exactness of timed ternary simulation.
Form. Methods Syst. Des., 40(3):283–329, June 2012.

Julien Ordioni, Nicolas Breton, and Jean-Louis Colaço.
HLL v.2.7 Modelling Language Specification.
Other STF-16-01805, RATP, May 2018.

49 / 50

References V

Marc Pouzet.
Lucid Synchrone, version 3. Tutorial and reference manual.
Université Paris-Sud, LRI, April 2006.
Distribution available at: https://www.di.ens.fr/~pouzet/lucid-synchrone/.

Marc Pouzet and Pascal Raymond.
Modular Static Scheduling of Synchronous Data-flow Networks: An efficient symbolic representation.
In ACM International Conference on Embedded Software (EMSOFT’09), Grenoble, France, October 2009.

Pascal Raymond, Yvan Roux, and Erwan Jahier.
Lutin: A language for specifying and executing reactive scenarios.
EURASIP J. Embed. Syst., 2008, 2008.

Reinhard von Hanxleden, Björn Duderstadt, Christian Motika, Steven Smyth, Michael Mendler, Joaquín
Aguado, Stephen Mercer, and Owen O’Brien.
Sccharts: sequentially constructive statecharts for safety-critical applications: Hw/sw-synthesis for a
conservative extension of synchronous statecharts.
In Michael F. P. O’Boyle and Keshav Pingali, editors, ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’14, Edinburgh, United Kingdom - June 09 - 11, 2014, pages 372–383.
ACM, 2014.

Yuanrui Zhang, Hengyang Wu, Yixiang Chen, and Frédéric Mallet.
A clock-based dynamic logic for the verification of CCSL specifications in synchronous systems.
Sci. Comput. Program., 203:102591, 2021.

50 / 50

https://www.di.ens.fr/~pouzet/lucid-synchrone/

