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Typed Functional Programming

Program in a mathematical language as an attempt to achieve code with zero

defect. High-level languages abstracting some details to focus on what computes a

system.

A computation is a sequence of reductions :

fact(3) → 3× fact(2) → 3× 2× fact(1) → 3× 2× 1 → 3× 2 → 6

Follow few principles :

– Function composition

– Types as specifications/properties of these functions

– A method to check that a function agrees with its type

A rich collection of languages :

– Lazy languages restricted to pure functions (without side-effect) : Haskell, etc.

– Strict languages : Objective Caml, StandardML, etc.

– Proof assistants (e.g., Coq) to write total functions (which always terminate)

An important vehicule of ideas for other languages and the use of formal methods

in industry (Esterel-Tech., Microsoft, etc.)
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Real-time Systems

Focus on systems which continuously interact with each others.

– with a physical environment (e.g., fly-by-wire command, control-engine)

– or other digital devices (e.g., phone, TV boxes)

Real time is always related to the environment and is not an absolute notion. To

ensure safety, think of “what is the worst case” ?

The environment is often not precisely known : most systems run in closed-loop

+/−

disturbance

controlled outputerrordesired input
controller plant

environmentcontroller

How can we program those systems, focusing on the functionality and abstracting

from subtle implementation details ?
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What is new, why do we need mathematical languages ?

Conciliate three notions :

– a formal (and computable) model of time

– express deadlines, simultaneous events, etc.

– parallelism to describe complex systems from simpler ones

– control at the same time rolling and pitching

– closed-loop systems (the controller and the plant run in parallel)

– statically guaranty safety properties (both functional and non functional)

– determinism, dead-lock freedom

– execution in bounded time and memory

Safety is important :

– critical systems : fly-by-wire, braking, airbags, etc.

– some systems do not have a stable position (plane ?)

– properties must be guaranteed statically : “dynamic” = “too late”
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A bit of History

In the 80’s, several team invented (at about the same time) languages dedicated to

the design/implementation of control-systems.

– Lustre (Caspi & Halbwachs, Grenoble) : data-flow (block-diagrams), functional

model (deterministic) ;

– Signal (Benveniste & Le Guernic, Rennes) : data-flow but relational (to define also

non-deterministic systems) ;

– Esterel (Berry & Gonthier, Sophia) : hierarchical automata and process algebra

Base it on the mathematical culture and models of the field of embedded

control-systems

Quite a successful story : security systems in nuclear plants (Schneider Electric),

fly-by-wire (Airbus A340-380), automotive, trains, etc.
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Control-theory, Signal Processing, Electronic

– A discrete signal/event is a stream

↪→ stream equations, Z transforms

↪→ graphical formalisms (block-diagrams) to represent these networks

– manual transcription of these equations into imperative code

– hard and error-prone

Y0 = bX0 , ∀n Yn+1 = aYn + bXn+1
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The idea of Lustre :

– write stream equations as executable specifications

– provide static analysis/verification tools and a compiler to produce code

– the generated code is correct-by-construction
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SCADE V5
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The Synchronous Model of Time

Separate the functionality of the system from its implementation.

o

i
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– Time is a logical notion as a sequence of atomic reactions of the system

think as if the machine was infinitely fast and react instantaneously

– Is my abstraction reasonable ? Is the machine fast enough ?

Worst Case Execution Time analysis

This coincide with the zero-model of synchronous circuits but for software

Important consequences :

– Specifications become mathematical objects which can be statically verified,

transformed and compiled

– They become portable and can be reused
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Synchronous Functional Programming

Lustre is a (first-order) functional language : a system is a stream function and we

write invariants

y = a * pre(y) + z;

z = b * x

for ∀t ∈ D.{yt = (a ∗ pre(y) + z)t = a ∗ yt−1 + z ∧ zt = b ∗ xt}

Questions :

– increase modularity/expressiveness, re-usability (software components) : E.g.,

type synthesis, polymorphism, higher-order, etc.

– mix data and control-dominated systems in a unified model

– more dedicated static analysis to ensure safety properties

E.g., does the program behave synchronously ? is-it causal ? Is-it deterministic ?

– (mathematically) certify code-generation ? Improve compilation techniques ?

What can we learn from the relationships with typed functional languages ?
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Lucid Synchrone

How to extend Lustre in a conservative way (without breaking it) ?

Build a “laboratory” language

– study and prototype extensions of Lustre

– experiment things, language extensions/static analysis and manage all the

compilation chain

Follow a few principles :

– be conservative wrt the Lustre semantics

– formulate the synchronous data-flow model into the typed lambda-calculus

– functional composition, static properties as (special) types

– modularity everywhere (type analysis, separate compilation)
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Clocks as Types

How to mix several time scales in a safe manner ?

– multi-sampled systems (software), multi-clock (hardware)

– what does it mean to communicate between two software components which do

dot agree on a common time scale ?

– statically detect possible synchronisation issues

x = x0 ∗ ∗ ∗ x1 ∗ x2 ∗ ∗ x3 x4 ∗ x5 ...

y = ∗ y0 y1 y2 ∗ y3 ∗ ∗ y4 ∗ y5 ∗ ∗ ...

– Express the clock information as a type which express the instants where a value

is defined

– Express the verification as a (classical) type system. Can I prove ?

H ` e : ct

– Safety property : every well-clocked program can be executed synchronously
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Unifying Data-dominated and Control-dominated Systems

Data-dominated systems : typically from periodic sampling of continuous systems

– simulation tools (e.g., Simulink), programming tool (e.g., SCADE)

Control-dominated systems : discrete control, transition systems, automata

– StateFlow, StateCharts or synchronous models (e.g., SSM, Esterel)

Real systems rarely fall in one of these category

– systems have modes : take-off, landing, full-flight

– each mode is defined by its control-law, naturally described by stream equations

– the control part is made as an automaton which activate some of the modes

Most tools provide means to combine both : Simulink/StateFlow, SCADE/Esterel

SSM, Ptolemy Mocs, etc.

This is rather ad-hoc and there is no real unified semantics of the whole.
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Cruise-control in SCADE+SSM (V5)
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Scade V6 (dec. 2007)
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Unifying Data-flow and Control-flow

Follow a clock-based approach. Take a basis synchronous data-flow with clocks

(e.g., Lustre)

– efficient code generators exist

– in the case of SCADE, the code generator is certified (DO 178B)

– clocks play a central role in synchronous compilers (semantics/optimisation)

– clocks are about “when” a data is ready

Extending the basic language with rich automata constructs and define a

translation semantics

– a clock-preserving program transformation into the basic language

H ` e : ct ⇒ H ` T (e) : ct

– reuse the existing code generation techniques

– the final code appeared to be as good than dedicated techniques
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Practical Applications

This embedding of synchronous data-flow into a functional setting is fruitful.

Several features originally introduced in Lucid Synchrone are now integrated in

industrial tools.

– the ReLuC compiler of SCADE is based (and improves) techniques introduced in

Lucid Synchrone

– same philosophy : types everywhere, modularity, etc.

– program constructs (e.g., merge), control-structures

– static analysis (initialisation, clock calculus)

– design/semantics of SCADE 6

Now new applications for CAD tools, mixing both programming and simulation.

17



What Else ?

Can we relax the synchronous model to address simulation problems and general

reactive systems (e.g., graphical interfaces, games) ?
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Reactive Programming

Fundational work by Boussinot (Reactive C, Loft, etc.). ReactiveML (by Mandel)

Simulation of sensor networks (VERIMAG and FT, 2006-2008)

– The system is both real-time and dynamical

– Global simulation : each node, the interaction between nodes and its environment,

simulation aspects (display, computing metrics, etc). . .

Example : Simulation of the power consumption in a sensor network
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Conclusion and Perspectives

Mixing discrete/continuous time

– can we have more faithful models by integrating programming and numerical

simulation techniques (for continuous laws) ?

– a unified model/language for both discrete and continuous time with clean

semantics ?

Video Intensive Computation

– Kahn Process Networks widely used (e.g., NXP)

– A synchronous model to program parallel architectures ?

Certified compilation

– do not program into C anymore (or rarely) embedded software

– only prove the specification, not the code

– can we certify a synchronous compiler using a proof assistant (e.g., Coq) ?
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