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Current Practice
Hybrid Systems Modelers
Some issues

Interlude: interacting with a numerical solver

Key elements of our approach
Non Standard Synchronous Semantics
Typing
Causality
Compilation
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Trends for building safe and complex embedded systems

Write executable mathematical specifications in a
high-level language so that a model is:

A reference semantics independent of any implementation.

A base for simulation, testing, formal verification.

Then compiled into executable code, sequential or parallel.

A way to achieve correct-by-construction software.
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Synchronous Block Diagram Languages1

E.g., The Cruise control in SCADE 6 (Esterel-Technologies/ANSYS).

1Cf. previous courses by Gérard Berry.
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A good match for programming discrete-time controllers
Their semantics is simple and mathematically precise:

Difference equations; hierarchical automata; parallel composition.
Simulate/test/verify throughout the development process.

Then compiler ensures strong safety properties.

The program is deterministic.
The generated code runs in bounded time and memory.

Efficient and fully traceable code generation.

The code is correct w.r.t the source model.
Meets the highest quality level of civil avionics (DO178C, level A).2

SCADE 6 is used for programming various critical control software.3
2Cf. Seminar by Bruno Pagano, in Spring 2013.
3Cd. Seminar by Emmanuel Ledinot, in Spring 2013.
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But modern systems need more. . .
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The Current Practice of Hybrid Systems Modeling
Embedded software interacts with physical devices.
The whole system has to be modeled: the controller and the plant.4

4Image by Esterel-Technologies/ANSYS.
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Example: a Bang-bang controller [demo].

Bang−Bang Control Using Temporal Logic

for Temperature Control of a Boiler

Copyright 1990−2010 The MathWorks, Inc.

Temperature
Set Point

20

?

Boiler
Plant model

on/off

actual temp

digital temp

Bang−Bang
Controller

reference

temp

LED

boiler

1 sec Timer

BOILER CMD {OFF=0, ON=1}

TEMP (deg C)

LED {OFF=0, RED=1, GREEN=2}
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A Wide Range of Hybrid Systems Modelers Exist

Ordinary Differential Equations + discrete time:

Simulink/Stateflow (≥ 106 licences), LabView, Ptolemy II, etc.

Differential Algebraic Equations + discrete time:

Modelica, VHDL-AMS, VERILOG-AMS, etc.

Dedicated tools for multi-physics:

Mechanics, electro-magnetics, fluid, etc.

Co-simulation/combination of tools:
Agree on a common format/protocol: FMI/FMU, S-functions, etc.
Convert the model of one tool into another.
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Underlying Mathematical Models

Synchronous parallelism, sequence equations:5

Time is discrete and logical (indices in N)
Equation o = x + y means ∀n ∈ N.o(n) = x(n) + y(n)

x

y
o

Add

Ordinary Differential Equations (ODEs):6

Time is continuous (indices in R)
Equation o = 1

s (x) init v means ∀t ∈ R.o(t) = v(0) +
∫ t
0 x(τ) dτ

x

o

v

Integrator

1

s
xo

5Cf. Course by Gerard Berry, Spring 2013.
6Cf. Seminar by Juliette Leblond, Feb. 2014.
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Is there anything left to do?

We know how to build tools for discrete-time models.

We know how to build tools for continuous-time models.

But what if the two are mixed together?

Is it enough to connect one to the other?

Can you trust code automatically generated from such tools?
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Strange beasts. . .
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Typing issue 1: Mixing continuous & discrete components

Unit Delay
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• The shape of cpt depends on the steps chosen by the solver.
• Putting another component in parallel can change the result.
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Typing issue 2: Boolean guards in continuous automata

Integrator

1
s

54

DisplayConstant

1

Chart

t cpt

s1
{cpt := 0}

[t<=42]{cpt := cpt + 1}

How long is a discrete step?

• Adding a parallel component changes the result.
• No warning by the compiler.
• The manual says: “A single transition is taken per major step”.

Discrete time is not logical: it is that of the simulation engine.
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Causality issue: the Simulink state port
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Integrator1

1

s

xo

Integrator0

1

s

xo

Gain1

−4

Gain0

−3

Constant

1

Bias

u−2.0
x

y

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−6

−4

−2

0

2

x

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−20

−10

0

10

20

Time

y

The output of the state port is the same as the output of the
block’s standard output port except for the following case. If
the block is reset in the current time step, the output of the
state port is the value that would have appeared at the block’s
standard output if the block had not been reset.
–Simulink Reference (2-685)
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y = −4 · x = 24 !

ExpectedActual
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Excerpt of C code produced by RTW (release R2009)
static void mdlOutputs(SimStruct * S, int_T tid)
{ _rtX = (ssGetContStates(S));

...
_rtB = (_ssGetBlockIO(S));
_rtB->B_0_0_0 = _rtX->Integrator1_CSTATE + _rtP->P_0;
_rtB->B_0_1_0 = _rtP->P_1 * _rtX->Integrator1_CSTATE;
if (ssIsMajorTimeStep (S))

{ ...
if (zcEvent || ...)

{ (ssGetContStates (S))->Integrator0_CSTATE =
_ssGetBlockIO (S))->B_0_1_0;

}
...

(_ssGetBlockIO (S))->B_0_2_0 =
(ssGetContStates (S))->Integrator0_CSTATE;
_rtB->B_0_3_0 = _rtP->P_2 * _rtX->Integrator0_CSTATE;
if (ssIsMajorTimeStep (S))
{ ...

if (zcEvent || ...)
{ (ssGetContStates (S))-> Integrator1_CSTATE =

(ssGetBlockIO (S))->B_0_3_0;
}

... } ... }

x = −3 · last y

Before assignment:
integrator state
contains ‘last’ value

After assignment: integrator
state contains the new value

y = −4 · x
So, y is updated with the new value of x

There is a problem in the treatment of causality. 16 / 51



Current Practice: conclusion

What is the semantics of these tools?
When the manual and implementions diverge, which is right?
There are side effects, global variables, backtracking.
Hard to judge whether the generated code is correct.

What more could we want?
An cleaner integration of discrete and continous time.
Static rejection of bizarre programs.
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Interacting with a numerical solver

It is not always feasible, nor even possible, to calculate the behaviour
of a hybrid model analytically.
All major tools thus calculate approximate solutions numerically.

Numerical solvers (e.g., LLNL Sundials CVODE)

Designed by experts!
Compute a discrete-time approximations of continuous-time signals.
Subtle: variable step, change order dynamically, explicit/implicit.
Define compilation schemes with solver’s internals kept abstract.
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Bouncing ball
model

h

F = m · a

m · −g = m · d
2h(t)
dt2

d2h(t)
dt2 = −g

v̇ = −g v(0) = v0
ḣ = v h(0) = h0

First-order ODE

v(t) = v0 +
∫ t

0
−g .dτ

h(t) = h0 +
∫ t

0
v(τ) .dτ

Ideal solution

Solver[v̇ ; ḣ] = f(t, [v ; h])

yi = [v0; h0]
approximation

[uph] = g(t, [v ; h])

event!

up(-h)

20 / 51



Bouncing ball
model

h

F = m · a

m · −g = m · d
2h(t)
dt2

d2h(t)
dt2 = −g

v̇ = −g v(0) = v0
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Solver execution (e.g., LLNL Sundials CVODE)
Give solver two functions: ẏ = fσ(t, y), upz = gσ(t, y)

t

t

y(t0)

upz(t0)

f · · ·

y(t1)

upz(t1)

f · · ·

y(t2)

upz(t2)

approximation error too large

f · · ·

y(t3)

upz(t3)

f · · ·

y(t4)

upz(t4)

expression crosses zero

upz(t5)

y(t5)

• Bigger and bigger steps (bound by hmin and hmax)
• t does not necessarily advance monotonically

• No side-effects within f or g
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Give solver two functions: ẏ = fσ(t, y), upz = gσ(t, y)

t

t

y(t0)

upz(t0)

f · · ·

y(t1)

upz(t1)

f · · ·

y(t2)

upz(t2)

approximation error too large

f · · ·

y(t3)

upz(t3)

f · · ·

y(t4)

upz(t4)

f · · ·

expression crosses zero

upz(t5)

y(t5)

• Bigger and bigger steps (bound by hmin and hmax)
• t does not necessarily advance monotonically

• No side-effects within f or g

21 / 51



Solver execution (e.g., LLNL Sundials CVODE)
Give solver two functions: ẏ = fσ(t, y), upz = gσ(t, y)
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The Simulation Engine of Hybrid Systems
Alternate discrete steps and integration steps

D C
reaction

[reinitialize]

zero-crossing event
integrate

σ′, y ′ = dσ(t, y) upz = gσ(t, y) ẏ = fσ(t, y)

Properties of the three functions

• dσ gathers all discrete changes.
• gσ defines signals for zero-crossing detection.
• fσ and gσ should be free of side effects and, better, continuous.
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Numerical Integration (Sundials CVODE)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

 0  2  4  6  8  10

ramp

ideal

ẏ(t) =


1 if t < 3
0 if 3 ≤ t ≤ 7
−1 if 7 < t

y(0) = 0
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Numerical Integration: a derivative with a discontinuity

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

 0  2  4  6  8  10

ramp (with discontinuities)

ideal

y

l e t f ( t , y ) =
i f t < 3 .0 then 1 .0
e l s e i f t <= 7 .0 then 0 .0
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Numerical Integration: discrete state with three modes
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| RampingDown → −1.0

l e t g ( d i s c r e t e _ s t a t e ) ( t , y ) =
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| F l a t when z → RampingDown
| s → s
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Numerical Integration: with no reinit of the solver
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Current Practice
Hybrid Systems Modelers
Some issues

Interlude: interacting with a numerical solver

Key elements of our approach
Non Standard Synchronous Semantics
Typing
Causality
Compilation
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Key elements of our approach

Build a hybrid modeler on top of a synchronous language.
Use synchronous constructs for arbitray mix of discrete and
continuous.
Divide and Recycle

Recycle existing synchronous languages techniques.
Semantics, static checking, code-generation.
Divide from the code what is for the solver.
Simulate with off-the-shelf numerical solvers.
Be conservative: any synchronous program must be compiled,
optimized, and executed as per usual.

These elements are experimented within the language Zélus.
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Zélus
zelus.di.ens.fr
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Combinatorial and sequential functions
A signal is a sequence of values. Nothing is said about the actual
time to go from one instant to another.

let add (x,y) = x + y

let node min_max (x, y) = if x < y then (x, y) else (y, x)

let node after (n, t) = (c = n) where
rec c = 0 → pre(min(tick, n))
and tick = if t then c + 1 else c

When fed into the compiler, we get:
val add : int × int A→ int
val min_max : α× α

D→ α× α

val after : int × bool D→ bool

x, y, etc. are infinite sequences of values.
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The counter can be instantiated twice in a two state automaton,
let node blink (n, m, t) = x where
automaton
| On → do x = true until (after(n, t)) then Off
| Off → do x = false until (after(m, t)) then On

which returns a value for x that alternates between true for n
occurrences of t and false for m occurrences of t.

let node blink_reset (r, n, m, t) = x where
reset
automaton
| On → do x = true until (after(n, t)) then Off
| Off → do x = false until (after(m, t)) then On

every r

The type signatures inferred by the compiler are:
val blink : int × int × bool D→ bool
val blink_reset : bool × int × int × bool D→ bool
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Examples

Up to syntactic details, these are Scade 6 or Lucid Synchrone
programs. E.g., a simple heat controller.7

(∗ an hysteresis controller for a heater ∗)
let hybrid heater(active) = temp where
rec der temp = if active then c −. k ∗. temp else −. k ∗. temp init temp0

let hybrid hysteresis_controller(temp) = active where
rec automaton

| Idle → do active = false until (up(t_min −. temp)) then Active
| Active → do active = true until (up(temp −. t_max)) then Idle

let hybrid main() = temp where
rec active = hysteresis_controller(temp)
and temp = heater(active)

7This is the hybrid version of one of Nicolas Halbwachs’ examples with which he
presented Lustre at the Collège de France, in January 2010.
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The Bouncing ball [demo]
let hybrid bouncing(x0,y0,x’0,y’0) = (x,y) where
rec

der x = x’ init x0
and

der x’ = 0.0 init x’0
and

der y = y’ init y0
and

der y’ = −. g init y’0 reset up(−. y) → −0.9 ∗. last y’

Its type signature is:
val bouncing : float × float × float × float C→ float × float

• When −y crosses zero, re-initialize the speed y’ with −0.9 ∗ last y’.
• When y’ is continuous, last y’ is the left limit of y’.
• As y’ is immediately reset, writing last y’ is mandatory

—otherwise, y’ would instantaneously depend on itself.
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Summary of Programming Constructs

• Synchronous constructs: data-flow equations/automata.
• An ODE with initial condition: der x = e init e0
• last x is the left limit of x.
• Detect a zero-crossing (from negative to positive): up(x).
• This defines a discrete instant, that is, an event.
• All discrete changes must occur on an event. E.g.,:

let hybrid f(x, y) = (v, z1, z2) where
rec v = present z1 → 1 | z2 → 2 init 0
and z1 = up(x)
and z2 = up(y)

val f : float × float C→ int × zero × zero
• If x = up(e), all handlers using x are governed by the same event.
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Three difficulties
Semantics

• An ideal semantics to say which program make sense;
• useful to prove that compilation is correct.

Ensure that continuous and discrete time signals interfere correctly.

• Discrete time should stay logical and independent on when the
solver decides to stop.

• Otherwise, we get the bizarre behaviors seen previously.

Ensure that fix-points exist and code can be scheduled.

• Algebraic loops must be statically detected.
• Restrict the use of last x so that signals are proved to be

continuous during integration.
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A Non-standard Semantics for Hybrid Modelers [JCSS’12]
We proposed to build the semantics on non-standard analysis.

der y = z init 4.0 and z = 10.0 −. 0.1 ∗. y and k = y +. 1.0

defines signals y , z and k , where for all t ∈ R+:

dy
dt (t) = z(t) y(0) = 4.0 z(t) = 10.0−0.1 ·y(t) k(t) = y(t)+1

What would be the value of y if it were computed by an ideal solver
taking an infinitesimal step of duration ∂?
?y(n) stands for the values of y at instant n∂, with n ∈ ?N a
non-standard integer.

?y(0) = 4 ?z(n) = 10− 0.1 · ?y(n)
?y(n + 1) = ?y(n) + ?z(n) · ∂ ?k(n) = ?y(n) + 1
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Non standard semantics [JCSS’12]
Let ?R and ?N be the non-standard extensions of R and N.
Let ∂ ∈ ?R be an infinitesimal, i.e., ∂ > 0, ∂ ≈ 0.
Let the global time base or base clock be the infinite set of instants:

T∂ = {tn = n∂ | n ∈ ?N}

T∂ inherits its total order from ?N. A sub-clock T ⊂ T∂.
What is a discrete clock?

A clock T is termed discrete if it is the result of a
zero-crossing or a sub-sampling of a discrete clock.
Otherwise, it is termed continuous.

If T ⊆ T, we write •T (t) for the immediate predecessor of t in T
and T •(t) for the immediate successor of t in T .
A signal is a partial function from T to a set of values.
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Semantics of basic operations
Replay the classical semantics of a synchronous language.

An ODE with reset on clock T : der x = e init e0 reset z −→ e1

?x(t0) = ?e0(0) if t0 = minT
?x(t) = if ?z(t) then ?e1(t) else ?x(•T (t)) + ∂ · ?e(•T (t)) if t ∈ T

last x if x is defined on clock T

?last x(t) = ?x(•T (t))

Zero-crossing up(x) on clock T

?up(x)(t0) = false if t0 = minT
?up(x)(t) = (?x(•T (t) ≤ 0) ∧ (?x(t) > 0) if t ∈ T
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Non-standard time vs. Super-dense time
• Maler et al., Lee et al. super-dense time modeling R× N

real time
t
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(v , 1)
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Non-standard time vs. Super-dense time
• Edward Lee & al. super-dense time modeling R× N
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• non-standard time modeling T∂ = {n∂ | n ∈ ?N}

non-standard time

∂ ∂ ∂
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Typing: mixing discrete (logical) time and continuous time
The following two parallel composition make sense.
Discrete time: the clock should be discrete

let node sum(x) = cpt where
rec cpt = 0 → pcpt
and pcpt = pre(cpt) + x

Continuous time: the clock should be continuous
let hybrid bouncing(y0, y’0) = o where
rec der y = y’ init y0
and der y’ = −.g init y’0
and o = y +. 10.0

The following do not make sense
At what clock should we compute cpt?

rec der t = 1.0 init 0.0
and cpt = 0.0 → pre(cpt) + t
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Intuition

Distinguish functions with three kinds A/D/C.
• Combinatorial function get kind A (for “any”).
• Discrete-time (synchronous) functions get kind D (for “discrete”).
• Continuous-time (hybrid) functions get kind C (for “continuous”).

Explicitly relate simulation and logical time
All discontinuities and side effects must be aligned with a
zero-crossing instant.

let hybrid correct (z) = (time, y) where
rec der time = 1.0 init 0.0
and y = present up(z) → sum(time) init 0.0
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Basic typing [LCTES’11]
A simple ML type system with effects.

The type language

bt ::= float | int | bool | zero
t ::= bt | t × t | β
σ ::= ∀β1, ..., βn.t k−→ t
k ::= D | C | A A

D C

Initial conditions

(+) : int× int A−→ int
if : ∀β.bool× β × β A−→ β

(=) : ∀β.β × β D−→ bool
pre(·) : ∀β.β D−→ β

· fby · : ∀β.β × β D−→ β

up(·) : float C−→ zero
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What about continuous automata? [EMSOFT’11]
Stateflow User’s Guide The Mathworks, pages 16-26 to 16-29, 2011.

16 Modeling Continuous-Time Systems in Stateflow® Charts

Design Considerations for Continuous-Time Modeling in
Stateflow Charts

In this section...

“Rationale for Design Considerations” on page 16-26

“Summary of Rules for Continuous-Time Modeling” on page 16-26

Rationale for Design Considerations
To guarantee the integrity — or smoothness — of the results in
continuous-time modeling, you must constrain your charts to a restricted
subset of Stateflow chart semantics. The restricted semantics ensure that
inputs do not depend on unpredictable factors — or side effects— such as:

• Simulink solver’s guess for number of minor intervals in a major time step

• Number of iterations required to stabilize the integration loop or zero
crossings loop

By minimizing side effects, a Stateflow chart can maintain its state at minor
time steps and, therefore, update state only during major time steps when
mode changes occur. Using this heuristic, a Stateflow chart can always
compute outputs based on a constant state for continuous-time.

A Stateflow chart generates informative errors to help you correct semantic
violations.

Summary of Rules for Continuous-Time Modeling
Here are the rules for modeling continuous-time Stateflow charts:

Update local data only in transition, entry, and exit actions

To maintain precision in continuous-time simulation, you should update local
data (continuous or discrete) only during physical events at major time steps.

In Stateflow charts, physical events cause state transitions. Therefore, write
to local data only in actions that execute during transitions, as follows:
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• State exit actions, which execute before leaving the state at the beginning
of the transition

• Transition actions, which execute during the transition

• State entry actions, which execute after entering the new state at the
end of the transition

• Condition actions on a transition, but only if the transition directly reaches
a state

Consider the following chart.

In this example, the action {n++} executes even when conditions c2 and
c3 are false. In this case, n gets updated in a minor time step because
there is no state transition.

Do not write to local continuous data in during actions because these actions
execute in minor time steps.

Do not call Simulink functions in state during actions or transition
conditions

This rule applies to continuous-time charts because you cannot call functions
during minor time steps. You can call Simulink functions in state entry or
exit actions and transition actions. However, if you try to call Simulink
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functions in state during actions or transition conditions, an error message
appears when you simulate your model.

For more information, see Chapter 24, “Using Simulink Functions in
Stateflow Charts”.

Compute derivatives only in during actions

A Simulink model reads continuous-time derivatives during minor time steps.
The only part of a Stateflow chart that executes during minor time steps is the
during action. Therefore, you should compute derivatives in during actions
to give your Simulink model the most current calculation.

Do not read outputs and derivatives in states or transitions

This restriction ensures smooth outputs in a major time step because it
prevents a Stateflow chart from using values that may no longer be valid in
the current minor time step. Instead, a Stateflow chart always computes
outputs from local discrete data, local continuous data, and chart inputs.

Use discrete variables to govern conditions in during actions

This restriction prevents mode changes from occurring between major time
steps. When placed in during actions, conditions that affect control flow
should be governed by discrete variables because they do not change between
major time steps.

Do not use input events in continuous-time charts

The presence of input events makes a chart behave like a triggered subsystem
and therefore unable to simulate in continuous-time. For example, the
following model generates an error if the chart uses a continuous update
method.
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· · ·

‘Update local data only in transition, entry, and exit actions’

‘Do not call Simulink functions in state during
actions or transition conditions’

‘Compute derivatives only in during actions’

• ‘Restricted subset of Stateflow chart semantics’
• restricts side-effects to major time steps
• supported by warnings and errors in tool (mostly)

• Our D/C/A/zero system extends naturally for the same effect.
• For both discrete (synchronous) and continuous (hybrid)

contexts.

43 / 51



What about continuous automata? [EMSOFT’11]
Stateflow User’s Guide The Mathworks, pages 16-26 to 16-29, 2011.

16 Modeling Continuous-Time Systems in Stateflow® Charts

Design Considerations for Continuous-Time Modeling in
Stateflow Charts

In this section...

“Rationale for Design Considerations” on page 16-26

“Summary of Rules for Continuous-Time Modeling” on page 16-26

Rationale for Design Considerations
To guarantee the integrity — or smoothness — of the results in
continuous-time modeling, you must constrain your charts to a restricted
subset of Stateflow chart semantics. The restricted semantics ensure that
inputs do not depend on unpredictable factors — or side effects— such as:

• Simulink solver’s guess for number of minor intervals in a major time step

• Number of iterations required to stabilize the integration loop or zero
crossings loop

By minimizing side effects, a Stateflow chart can maintain its state at minor
time steps and, therefore, update state only during major time steps when
mode changes occur. Using this heuristic, a Stateflow chart can always
compute outputs based on a constant state for continuous-time.

A Stateflow chart generates informative errors to help you correct semantic
violations.

Summary of Rules for Continuous-Time Modeling
Here are the rules for modeling continuous-time Stateflow charts:

Update local data only in transition, entry, and exit actions

To maintain precision in continuous-time simulation, you should update local
data (continuous or discrete) only during physical events at major time steps.

In Stateflow charts, physical events cause state transitions. Therefore, write
to local data only in actions that execute during transitions, as follows:

16-26

Design Considerations for Continuous-Time Modeling in Stateflow® Charts

• State exit actions, which execute before leaving the state at the beginning
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• Transition actions, which execute during the transition

• State entry actions, which execute after entering the new state at the
end of the transition

• Condition actions on a transition, but only if the transition directly reaches
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Consider the following chart.

In this example, the action {n++} executes even when conditions c2 and
c3 are false. In this case, n gets updated in a minor time step because
there is no state transition.

Do not write to local continuous data in during actions because these actions
execute in minor time steps.
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This rule applies to continuous-time charts because you cannot call functions
during minor time steps. You can call Simulink functions in state entry or
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functions in state during actions or transition conditions, an error message
appears when you simulate your model.
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Compute derivatives only in during actions

A Simulink model reads continuous-time derivatives during minor time steps.
The only part of a Stateflow chart that executes during minor time steps is the
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the current minor time step. Instead, a Stateflow chart always computes
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This restriction prevents mode changes from occurring between major time
steps. When placed in during actions, conditions that affect control flow
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Do not use input events in continuous-time charts

The presence of input events makes a chart behave like a triggered subsystem
and therefore unable to simulate in continuous-time. For example, the
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• State exit actions, which execute before leaving the state at the beginning
of the transition

• Transition actions, which execute during the transition

• State entry actions, which execute after entering the new state at the
end of the transition
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Consider the following chart.

In this example, the action {n++} executes even when conditions c2 and
c3 are false. In this case, n gets updated in a minor time step because
there is no state transition.

Do not write to local continuous data in during actions because these actions
execute in minor time steps.

Do not call Simulink functions in state during actions or transition
conditions

This rule applies to continuous-time charts because you cannot call functions
during minor time steps. You can call Simulink functions in state entry or
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functions in state during actions or transition conditions, an error message
appears when you simulate your model.
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The only part of a Stateflow chart that executes during minor time steps is the
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This restriction ensures smooth outputs in a major time step because it
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• State exit actions, which execute before leaving the state at the beginning
of the transition

• Transition actions, which execute during the transition

• State entry actions, which execute after entering the new state at the
end of the transition

• Condition actions on a transition, but only if the transition directly reaches
a state

Consider the following chart.

In this example, the action {n++} executes even when conditions c2 and
c3 are false. In this case, n gets updated in a minor time step because
there is no state transition.

Do not write to local continuous data in during actions because these actions
execute in minor time steps.

Do not call Simulink functions in state during actions or transition
conditions

This rule applies to continuous-time charts because you cannot call functions
during minor time steps. You can call Simulink functions in state entry or
exit actions and transition actions. However, if you try to call Simulink
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functions in state during actions or transition conditions, an error message
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to local data only in actions that execute during transitions, as follows:
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• State exit actions, which execute before leaving the state at the beginning
of the transition

• Transition actions, which execute during the transition

• State entry actions, which execute after entering the new state at the
end of the transition

• Condition actions on a transition, but only if the transition directly reaches
a state

Consider the following chart.

In this example, the action {n++} executes even when conditions c2 and
c3 are false. In this case, n gets updated in a minor time step because
there is no state transition.

Do not write to local continuous data in during actions because these actions
execute in minor time steps.

Do not call Simulink functions in state during actions or transition
conditions

This rule applies to continuous-time charts because you cannot call functions
during minor time steps. You can call Simulink functions in state entry or
exit actions and transition actions. However, if you try to call Simulink
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functions in state during actions or transition conditions, an error message
appears when you simulate your model.

For more information, see Chapter 24, “Using Simulink Functions in
Stateflow Charts”.

Compute derivatives only in during actions

A Simulink model reads continuous-time derivatives during minor time steps.
The only part of a Stateflow chart that executes during minor time steps is the
during action. Therefore, you should compute derivatives in during actions
to give your Simulink model the most current calculation.

Do not read outputs and derivatives in states or transitions

This restriction ensures smooth outputs in a major time step because it
prevents a Stateflow chart from using values that may no longer be valid in
the current minor time step. Instead, a Stateflow chart always computes
outputs from local discrete data, local continuous data, and chart inputs.

Use discrete variables to govern conditions in during actions

This restriction prevents mode changes from occurring between major time
steps. When placed in during actions, conditions that affect control flow
should be governed by discrete variables because they do not change between
major time steps.

Do not use input events in continuous-time charts

The presence of input events makes a chart behave like a triggered subsystem
and therefore unable to simulate in continuous-time. For example, the
following model generates an error if the chart uses a continuous update
method.
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‘Update local data only in transition, entry, and exit actions’

‘Do not call Simulink functions in state during
actions or transition conditions’

‘Compute derivatives only in during actions’

• ‘Restricted subset of Stateflow chart semantics’
• restricts side-effects to major time steps
• supported by warnings and errors in tool (mostly)

• Our D/C/A/zero system extends naturally for the same effect.
• For both discrete (synchronous) and continuous (hybrid)

contexts.
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Causality loops
Yet, some program are well typed but have algebraic loops.
Which programs should we accept?

• OK to reject (no solution).
rec x = x + 1

• OK as an algebraic constraint (e.g., Simulink and Modelica).
rec x = 1 − x

• But NOK if sequential code generation is targeted.
• last x does not necessarily break causality loops!

rec x = last x + 1
• OK

rec der x = 1.0 init 0.0 reset z → t
and y = x +. 1.0
and t = last y

Can we find a simple and uniform justification?
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ODEs with reset

Consider the sawtooth signal y : R+ 7→ R+ such that:

dy
dt (t) = 1 y(t) = 0 if t ∈ N

written:
der y = 1.0 init 0.0 reset up(y −. 1.0) → 0.0

The ideal non-standard semantics is:
?y(0) = 0 ?y(n) = if ?z(n) then 0.0 else ?ly(n)
?ly(n) = ?y(n − 1) + ∂ ?c(n) = (?y(n)− 1) ≥ 0
?z(0) = false ?z(n) = ?c(n) ∧ ¬?c(n − 1)

This set of equation is not causal: ?y(n) depends on itself.
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Accessing the “left limit” of a signal

There are two ways to break this cycle:
• consider that the effect of the zero-crossing is delayed by one

cycle, that is, the test is made on ?z(n− 1) instead of on z(n), or,
• distinguish the current value of ?y(n) from the value it would

have had were there no reset, namely ?ly(n).
Testing a zero-crossing of ly (instead of y),

?c(n) = (?ly(n)− 1) ≥ 0,

gives a program that is causal since ?y(n) no longer depends
instantaneously on itself.

der y = 1.0 init 0.0 reset up(last y −. 1.0) → 0.0
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An explanation of the bug

The source program
rec der x = 1.0 init 0.0 reset z → −3.0 ∗. last y
and der y = x init 0.0 reset z → −4.0 ∗. last x
and z = up(last x −. 2.0)

Its non-standard interpretation
?x(n) = if ?z(n) then−3 · ?y(n − 1) else ?x(n − 1) + ∂
?y(n) = if ?z(n) then−4 · ?x(n − 1) else ?y(n − 1) + ∂ · ?x(n − 1)

...

Explanation

• The first two equations are scheduled this way so ?x(n− 1) is lost.
• This is a scheduling bug: the sequential code lacks a copy

variable.
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Causality Analysis [HSCC’14]
Every feedback loop must cross a delay.
Intuition: associate a time stamp to every expression and ensure that
the relation between those time stamps is a partial order.
The type language

σ ::= ∀α1, ..., αn : C . ct k−→ ct
ct ::= ct × ct | α
k ::= D | C | A

Precedence relation:

C ::= {α1 < α′1, ..., αn < α′n}

< must be a strict partial order. C ` ct1 < ct2 means that ct1
precedes ct2 according to C .
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Associate a type that express input/output dependences. E.g.,
let node plus(x, y) = x + 0 → pre y

We get: f : ∀α1, α2.α1 × α2
D−→ α1

• der x breaks a loop: der temp = c −. temp init 20.0 is correct.
• last(x) breaks a loop in a discrete context.

The following is rejected; the next is accepted.
rec der y’ = −. g init 0.0 reset up(−.y) → −0.9 ∗. y’
and der y = y’ init y0

rec der y’ = −. g init 0.0 reset up(−.y) → −0.9 ∗. last y’
and der y = y’ init y0

Major theorem: [HSCC 14] Well typed programs define continuous
signals during integration.
The proof deeply rely on the use of the non-standard synchronous
semantics.
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Compiler architecture
lexing/
parsing typing causality/

initialization
inlining

automatanormalize
let/inperiodsdiscrete

zero-crossing

present/
signals

variable
completion

ODEs
zero-crossings last/fby/→

optimizationschedulingcode
generation

Built on an existing synchronous compiler

• Source-to-source and traceable transformations
• Resulting program is synchronous and translated

to sequential code
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Comparison with existing tools

Simulink/Stateflow (Mathworks)

• Integrated treatment of automata vs two distinct languages
• More rigid separation of discrete and continuous behaviors

Modelica
• Do not handle DAEs
• Our proposal for automata has been integrated into version 3.3

Ptolemy (E.A. Lee et al., Berkeley)

• A unique computational model: synchronous
• Everything is compiled to sequential code (not interpreted)
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