
Compilation of Zero-crossing Detection in

Languages for Hybrid Systems

Marc Pouzet
Marc.Pouzet@ens.fr

Timothy Bourke
Timothy.Bourke@ens.fr

Location: Département d’Informatique, École Normale Supérieure, 45 rue d’Ulm, 75230 Paris
cedex 05.

Prerequisite: Interest in the design and implementation of programming languages, some ex-
perience with functional programming. Knowledge in numerical analysis is a plus but is not
mandatory.

Collaboration: The team has close collaboration with the compiler group of SCADE at Esterel-
Technologies and that of Modelica at Dassault-Systèmes.

Research Context

We address the compilation of a language for modeling hybrid systems that mix discrete time and
continuous time behaviours. The most representative examples are Simulink/Stateflow,1 a
de-facto standard of embedded system industry with Modelica2 as a new player. Despite their
wide use, no comprehensive semantics nor formal description of their compilation exist. Several
attempts have been made nonetheless in the recent years, either for their discrete subset [7, 8] or
the mix of discrete and continuous time [5, 9, 4].

Our team is actively working on the topic with the purpose of defining a language and compiler
based on strong semantical grounds and built above a synchronous language. Indeed, synchronous
languages [1] are extensively used in the most critical control applications such as fly-by-wire con-
trol for planes, train tracking, or security system for energy plants. Several of these applications are
programmed with SCADE.3 Nonetheless, synchronous languages do not model continuous-time
systems, expressed in particular by Ordinary Differential Equations (ODEs). Continuous-time is
mandatory for modeling physical devices both faithfully and accurately (e.g., engine control).

In recent work, we have proposed a synchronous, Lustre-like language, extended with features
for modeling continuous dynamics (ODEs and zero-crossings) [6]. Its semantics is based on non
standard analysis [4]. The compilation is done through a source-to-source transformation into the
synchronous subset which is then translated to sequential code using an existing compiler [3, 2].
This approach enables to reuse many existing techniques (e.g., compilation and static analysis) in
order to generate efficient which is then paired with a black-box numerical solver (here SUNDIALS
CVODE from LLNL 4).

1 Project Description

The purpose of the intership is to work on the compilation problem raised by zero-crossing detec-
tion. In hybrid systems, a zero-crossing occurs when a continuous-time signal crosses zero (e.g.,

1http://www.mathworks.com/products/simulink with more than a million of licences
2https://www.modelica.org
3http://www.esterel-technologies.com
4https://computation.llnl.gov/casc/sundials/main.html

1

Marc.Pouzet@ens.fr
Timothy.Bourke@ens.fr
http://www.mathworks.com/products/simulink
https://www.modelica.org
http://www.esterel-technologies.com
https://computation.llnl.gov/casc/sundials/main.html


from negative to positive). This detection is performed by the numeric solver and is extremely
costly. It is thus key to reduce the number of zero-crossings to detect to the minimum. This calls
for the design of new compilation techniques. In particular, several zero-crossings can be merged
together when they are proved to be exclusive from each other (e.g., when they appear in differents
states of an automaton), or eliminated at an instant where a signal has a discontinuity. Moreover,
this can be combined with the definition of a dedicated type system in the form of a clock calculus
to record instants of discontinuities of a signal.

The intership will need both interest in language design, semantics, type systems and compi-
lation. It should propose effective solutions that can be prototyped inside the Zelus compiler.
The work can continue with a PhD. thesis, either in the group or funded by a CIFRE.

References

[1] A. Benveniste, P. Caspi, S.A. Edwards, N. Halbwachs, P. Le Guernic, and R. de Simone. The
synchronous languages 12 years later. Proceedings of the IEEE, 91(1), January 2003.

[2] Albert Benveniste, Timothy Bourke, Benoit Caillaud, and Marc Pouzet. A Hybrid Synchronous
Language with Hierarchical Automata: Static Typing and Translation to Synchronous Code. In
ACM SIGPLAN/SIGBED Conference on Embedded Software (EMSOFT’11), Taipei, Taiwan,
October 2011.

[3] Albert Benveniste, Timothy Bourke, Benoit Caillaud, and Marc Pouzet. Divide and recy-
cle: types and compilation for a hybrid synchronous language. In ACM SIGPLAN/SIGBED
Conference on Languages, Compilers, Tools and Theory for Embedded Systems (LCTES’11),
Chicago, USA, April 2011.

[4] Albert Benveniste, Timothy Bourke, Benoit Caillaud, and Marc Pouzet. Non-Standard Se-
mantics of Hybrid Systems Modelers. Journal of Computer and System Sciences (JCSS),
78:877–910, May 2012. Special issue in honor of Amir Pnueli.

[5] Olivier Bouissou and Alexandre Chapoutot. An operational semantics for simulink’s simulation
engine. In LCTES, pages 129–138, 2012.

[6] Timothy Bourke and Marc Pouzet. Zélus, a Synchronous Language with ODEs, 2012 Novem-
ber. Submitted for publication.

[7] P. Caspi, A. Curic, A. Maignan, C. Sofronis, and S. Tripakis. Translating Discrete-Time
Simulink to Lustre. ACM Transactions on Embedded Computing Systems, 2005. Special Issue
on Embedded Software.

[8] Grégoire Hamon. A denotational semantics for stateflow. In EMSOFT, pages 164–172, 2005.

[9] Pieter J. Mosterman, Justyna Zander, Grégoire Hamon, and Ben Denckla. Towards computa-
tional hybrid system semantics for time-based block diagrams. In A. Giua, C. Mahulea, and
M. Silva, editors, 3rd IFAC Conference on Analysis and Design of Hybrid Systems (ADHS’09),
pages 376–385, Zaragoza, Spain, September 16-18 2009.

2


	Project Description

