
Synchronous circuits, Boolean Automata and
their Synchronous Parallel Commposition

Marc Pouzet

École normale supérieure
Marc.Pouzet@ens.fr

M1, Calcul parallèle et réactif
Novembre 2018

Marc.Pouzet@ens.fr

In this course

I A minimal model to describe a reactive system with
inputs/outputs.

I Understand what is the parallel composition of two reactive
systems.

I Under what circonstances/constraint, the composition of two
deterministic reactive systems is still a deterministic system.

I Equivalence between an explicit and implicit representation of
a reactive system: synchronous circuit vs boolean automata.

I One-hot coding.

I Synchronous parallel and hierarchical composition of boolean
automata.

I Application: translation of pure Esterel into synchronous
circuits.

Automata with inputs/outputs

A reactive system is a system that continuously reads inputs and
produce outputs.

A minimal model is an automaton 1 with inputs and outputs.

It can encode the control structure of a sequential program that
run in bounded time and space and cyclically read inputs and
produce outputs.

Two classical models of automata with input/output has been
considered.

1In the field of circuits and embedded system design, the name “Finite
State Machines” is used more often.

Moore Machines

An automaton with inputs and outputs. In a Moore machine, the
output depends on the state only.

Definition
A Moore automaton is a tuple (Q,Σ,∆, δ, λ, q0)

I Q is a finite set of states, q0 is the initial state.

I Σ is the finite input alphabet, ∆ the output alphabet.

I δ is an application from Q × Σ to Q.

I λ is an application from Q to ∆, that gives the output
associated to every state.

The answer of M to input a1a2...an, n ≥ 0 is λ(q0)λ(q1)...λ(qn)
where q0, ..., qn is the sequence of states such that δ(qi−1, ai) = qi
for 1 ≤ i ≤ n.

Remark: A Moore automaton returns the output λ(q0) for input ε.

Example

Counter modulo 3 from a binary word.

0

q0 q1 q2

1

1

0

0 1 2

10

On input 1010, the sequence of states is q0, q1, q2, q2, q1 producing
output 01221. For ε, returns 0; for 1, returns 1; for 2 returns 2; for
5 returns 2 and for 10, returns 1.

Mealy Machines
Conversely, in a Mealy machine, the output depends on the current
state and current input.

Definition
A Mealy automaton is a tuple M = (Q,Σ,∆, δ, λ, q0)

I Q is a finite set of stages, q0 the initial state.

I Σ is a input alphabet, ∆ the output alphabet.

I δ is an application from Q × Σ to Q

I λ is an application from Q × Σ to ∆

λ(q, a) returns the output associated to a transition from state q
with input a.
The output of M for input sequence a1...an is
λ(q0, a1)λ(q1, a2)...λ(qn−1, an) where q0, q1, ..., qn is the sequence
of states such that δ(qi−1, ai) = qi for 1 ≤ i ≤ n.

Remark: This sequence is of length n whereas it was of length
n + 1 for a Moore automaton. On input ε, a Mealy automaton
returns the output ε.

Example

Recognize words from {0, 1} which terminate either with 00 or 11.
A Mealy automaton with 3 states which returns o (for ok), when
the input is valid and n (for not ok) otherwise.

p1

1/n

1/o

1/n

0/n

0/o

0/n

q0

p0

The answer of M to input 01100 is nnono.

Equivalence

TM(w) is the output produced by M on input w .

Definition (Equivalence between automata)

A Moore automaton M ′ is equivalent to a Mealy automaton M if
for any input w , bTM(w) = TM′(w) where b is the output of M ′

in the initial state.

Theorem (Equivalence)

I If M1 is a Moore atomaton it exists a Mealy automaton M2

equivalent to M1.

I If M1 is a Mealy automaton it exists a Moore automaton M2

equivalent to M1.

Remark: Mealy automata are more concise than Moore automata.
Encoding a Mealy automaton into an equivalent Moore automaton
may need an number of states at worst equal to |Q ′| × |∆|

From Moore to Mealy

Let M1 a Moore automaton. Build a Mealy automaton
M2 = (Q,Σ,∆, δ, λ′, q0) such that λ′(q, a) = λ(δ(q, a))
From Mealy to Moore
Let M1 a Mealy automaton. Build M2 = (Q ′,Σ,∆, δ′, λ′, [q0, b0])
where b0 is any element from ∆. States in M2 are pairs [q, b]
made of a state from M1 and an output symbol (Q ′ = Q ×∆).
We define:

δ′([q, b], a) = [δ(q, a), λ(q, a)]

and:
λ′([q, b]) = b.

Representing an automaton by a synchronous circuit

An automaton can be represented by a synchronous circuit.

A sequential synchronous circuit is a set of logical operators (e.g.,
and, or, not gates) and synchronous registers.

Definition

I A finite set of input variables I , outputs variables O, memories
(state variables or registers) S .

I An initial state: ~init ∈ IB |S | defines the initial value of the
registers.

I Output functions: oj = fj(~s,~i) ∈ IB

I Transition functions: s ′k = gk(~s,~i) ∈ IB

A synchronous observer is a circuit with a single boolean output.

From an implicit to an explicit automaton

A synchronous circuit is an implicit representation of a Mealy
machine.

I Set of inputs I , outputs O, states S (finite)

I Initial state ~init ∈ IB |S|.

I Output function (fj)j∈[1..|O|], transition function (gk)k∈[1..|S |]

Mealy machine:

I The input alphabet is the set of all possible tuple values for
inputs.

I The output alphabet is the set of all possible tuple values for
outputs.

From implicit to explicit

By enumeration of boolean values.

I Input alphabet IB |I |, output alphabet IB |O|

I Let Q = IB |S |, qinit = ~init

I q
~i/~o→ q′ iff ~o = (f1(q,~i), . . . , f|O|(q,~i))

q′ = (g1(q,~i), . . . , g|S|(q,~i))

Exponential gain in size between an implicit and explicit
automaton.
(n input variables encode up to 2n inputs; m state variables encode
up to 2m states).

From explicit to implicit

Various solutions, more or less efficient. The simplest is one-hot
coding.

I Input alphabet Σ = {a1, . . . , an}
I Output alphabet ∆ = {b1, . . . , bm}
I Finite set of states Q and initial state Init

I Transition function T : Q × Σ→ ∆× Q
I For any state q, write:

I Prec(q) = {(p, i) / p i/o→ q}
I Succ(q) = {(i , r) / q

i/o→ r}

I Write Output(o) = {(p, q, i) / p i/o→ q}

One hot-coding:

I A boolean state variable sqj per explicit state;

I a boolean variable ik per element of Σ;

I a boolean variable ok per element of ∆.
I Every state variable sq and output variable o is defined by:

I Let i1, . . . , in and p1, . . . , pn such that (pk , ik) ∈ Prec(q),
k ∈ {1, . . . , n}

I Let j1, . . . , jm when there exists r such that (jk , r) ∈ Succ(q),
k ∈ {1, . . . ,m}

s ′q = if sq then not(j1) ∧ · · · ∧ not(jm)
else sp1 ∧ i1 ∨ · · · ∨ spn ∧ in

o =
∨

(p,q,i)∈Output(o) (p ∧ i)

I Initial state Init = (Init1, . . . , Init|Q|) such that Initk = 1 and
Initj = 0 for all j 6= k if qk is the initial state.

Remarks:

I n boolean variables to encode n states whereas log n is
enough.

I Same thing for the input and output alphabet.

I Other encoding exist.

Recognising regular expressions
A synchronous circuit is an efficient way to implement a recogniser
of regular expressions or a non determinitic automaton without
making it deterministic first.

Read the (wonderful) paper by P. Raymond (ICALP’96). 2

It explains how to build a synchronous circuit from a regular
expression, with a size that is proportional.

Example: consider the non deterministic automaton which describe
words over the alphabet {a, b, c} that contain the sequence abc.
The corresponding regular expression is
(a + b + c)∗ abc (a + b + c)∗

q1

a,b,c

a b c

q2 q3 q4

2P. Raymond, “Recognizing Regular Expressions by means of Dataflow
Networks”, ICALP’96. Paper available on the web page of the course.

Build a one-hot coding.

I Three inputs a, b and c which must be exclusive with always
one true. E.g., a = 1 when the current input is ’a’.

I Represent every state by a boolean variable. E.g., q = 1
means that the active state is q.

I Output ok = 1 at instant n ∈ N when the input prefix of
length n belongs to the language.

Remark:
Several state variable can be true at the same time.

Transition

∀n ∈ N∗. q1n = q1n−1

q2n = q1n−1 ∧ a
q3n = (q2n−1 ∧ b)
q4n = (q3n−1 ∧ c) ∨ q4n−1

okn = q4n

q10 = 1 q20 = q30 = q40 = 0

Implementation as a Lustre program
This set of data-flow equations can be written in Lustre.
pre . is the synchronous register. . -> . is the initialization.

I ∀n ∈ N∗, (pre x)n = xn−1 and pre x0 = nil

I ∀n ∈ N∗, (x -> y)n = yn and (x -> y)0 = x0

node grep_abc(a, b, c: bool) returns (ok: bool);

var q1, q2, q3, q4: bool;

let

q1 = true -> pre q1;

q2 = false -> pre q1 and a;

q3 = false -> pre q2 and b;

q4 = false -> (pre q3 and c) or pre q4;

ok = q4;

tel;

The program is deterministic and linear in size whereas
determinising an non deterministic automata may result in an
exponential blow up. The program can be compiled into sequential
code (of proportional size).

Boolean automata

I Transitions can be made with boolean expressions.

I Equivalence with an implicit automaton is trivial, e.g., using
one-hot coding.

I Transitions are of the form:

p
f /o1,...,on→ q

where f is a boolean formula on input variables and oi are
output variables.

f ::= x | f ∨ f | f ∧ f | f où x ∈ I

factorizes transitions (exponential gain on the number of

transitions w.r.t using an alphabet). E.g., transitions p
f1/o→ q

and p
f2/o→ q are represented by p

(f1∨f2)/o→ q.

From implicit to explicit

Compilers manage both representations (explicit and implicit).

Implicit

I Reasonnable size thus good model for code generation:
corresponds to the compilation in “single loop code” for
Lustre.

I More compact; boolean simplification algorithms.

Explicit

I (potentially) exponential size.

I Simple model for analysis and verification: an infinite number
of equivalent automata but a unique minimal one.

I In practice, it is impossible to build an explicit automaton
from an implicit one.

Synchronous Composition of Boolean Automata

The composition of synchronous circuits is the composition of
functions. Take two synchronous circuits
C c = (I c ,Oc , Sc , initc , f c , g c) with c ∈ {0, 1}.
I Set of inputs I c , outputs Oc , states Sc (finite)

I Initial state initc ∈ IB |S
c |

I Output function (f cj)j∈[1..|Oc |]
I Transition function (g c

k)k∈[1..|Sc |]

Compose them in parallel, with some inputs of C 1 be outputs of
C 2 and some inputs of C 2 be outputs of C 1. Let L = L1 ∪ L2 be
the set of local variables such that:

O1 = OO1 ∪ L2 O2 = OO2 ∪ L1

I 1 = L1 ∪ II 1 I 2 = L2 ∪ II 2

L1 are the inputs of C 1 which are outputs of C 2. L2 are the inputs
of C 2 which are outputs of C 1.

The parallel composition is a circuit C = (II ,OO,S , init, f , g)
where:

I S = S1 ∪ S2

I Init = (Init1, Init2)

I OO = OO1 ∪OO2 is the set of outputs with ~oo = (~oo1, ~oo2).

I II = II 1 ∪ II 2 is the set of inputs with ~ii = (~ii
1
, ~ii

2
).

Let ~o1 = (~oo1, ~l2), ~o2 = (~oo2, ~l1), ~i1 = (~ii1, ~l1), ~i2 = (~ii2, ~l2).

If ~s1 ∈ BS1
and ~s2 ∈ BS2

, the parallel composition of C 1 and C 2

must verify:

oo1
j = f 1

j (~s1, ~i1) for all j ∈ OO1 ∧ ll1j = f 1
j (~s1, ~i1) for all j ∈ LL1

o2
j = f 2

j (~s2, ~i2) for all j ∈ OO2 ∧ ll2j = f 2
j (~s2, ~i2) for all j ∈ LL2

s ′1k = gk(~s1, ~i1) for all k ∈ S1 ∧ s ′2k = gk(~s2, ~i2) for all k ∈ S2

Parallel composition: be careful of cycles!

By connecting some of the output of C 2 to inputs of C 1 and
conversely, it is possible to get a cyclic circuit that contain a
combinatorial loop.

This means that the set of boolean equations has no solution or
several. The result is no more a synchronous circuit.

Examples

1. Compose a synchronous circuit Indentity(x , y) with input x
and output y such that y = x , with Identity(y , x), and add in
parallel the equation z = x , with z an output, the result must
verify:

x = y ∧ y = x ∧ z = x

which has two solutions for z (z = 0 or z = 1 are two valid
solutions).

Examples

1. Compose Identity(x , y) with the logical inverter Not(x , y)
such that y = not(x) and z = x , the result is:

y = x ∧ x = not(y) ∧ z = x

which has no solution (it is not possible to give either 0 or 1
to the output z and get a logically correct set of equations).

2. Some boolean equations with a combinatorial loop may have
a unique solution. E.g.,

tobe = tobe ∨ not(tobe)

3. Some boolean equations may have a unique solution. E.g.,

x = mux(c , a, y) ∧ y = mux(c , x , b)

Sufficient condition for f and g : no combinatorial loop, that is, an
output does not depend instantaneously on itself.

Boolean Mealy machine

M = (S , so , I ,O,T) where:

I I : input variables, O: output variables with I ,O ⊆ A

I T ⊆ S × f (I)× 2O × S

I f (I) is a boolean formula over I

Determinism: For all state s and for all pair of transitions

s
bi/...→ s ′ and s

bj/...→ s ′′, bi ∧ bj = false

Reactivity: For all state s, the set of transitions s
bi/...→ si ,

0 ≤ i ≤ k from s verifies ∨0≤i≤kbi = true
We say that an automaton is causal when it is reactive and
deterministic.

Summary

The composition of Boolean Mealy machines (or synchronous
circuits) may not define a Boolean Meany machine because of
cycles.

On the contrary:

The composition of Boolean Moore machines, that is, where the
output is a function of the state variables only, always result in a
Boolean Moore machine: all cycles cross a synchronous register.
E.g.:

x = x0 -> pre(f(y));

y = y0 -> pre(g(x))

Synchronous Parallel Composition

What is the meaning of P||Q where P and Q are two transition
systems? If both P and Q are causal, is P||Q causal?
Synchronous Product:

(p, q)
c1∧c2/e1,e2→ (p′, q′) if (p

c1/e1→ p′) ∧ (q
c2/e2→ q′)

I Cartesian product of states with conjunction of gards and
union of outputs.

I Synchronous broadcast: a signal is broadcast to all other
signals:

I sending is non blocking;

I an arbitrary number of processes can receive a signal
(broadcast)

I reaction to a broadcast is instantanous (same instant).

Some conditions on transitions are unsound

I A/A→ : if A is absent, is A emitted? (all reaction must be
logically sound)

I A/A→ when A is a local signal? (non determinacy)

I A/...→ where A is local and not emitted? (a signal is present if it
is emitted)

Examples

No communication/synchronisation

p

c/o1 c/o2 c/o1,o2

not c not c not c

r

s qs

pr

q

The states qr and ps are unreachable. They would mean that if is
possible to have the transitions:

pr
c∧not(c)→ qr pr

not(c)∧c→ ps

which are logically unsound.

Communication and hiding

Suppose that b is a local signal.

I Reaction to a broadcast is instantaneous: when b is emitted,
it is immediately seen present.

I Add a hiding operation to eliminate certain transitions from
the cartesian product.

qs

not(b)

a/b b/c

not(a)

a/c

p r

sq

not(a)

pr

In the composition of the two, the other transitions to consider are:

pr
not(a)∧b/c→ ps pr

a∧not(b)/b→ qr qr
b/c→ qs ps

a/b→ qs

Hiding

hide b P (b is a local signal in P)

I Makes b local;

I synchronous product of the two automata:

(p, q)
c1∧c2/e1,e2→ (p′, q′) if (p

c1/e1→ p′) ∧ (q
c2/e2→ q′)

I some transition are logically unsound: keep transition
c/e→ iff:

(b ∈ e ⇒ c ∧ b 6= false) ∧ (b 6∈ e ⇒ c ∧ not(b) 6= false)

I no logical contradiction during a reaction;

I then remove b from transitions.

As a result, only the transitions:

pr
not(a)→ pr pr

a/c→ qs

are kept.

Causality

I If P and Q are causal, P||Q is not necessarily causal.

I A static analysis, called causality analysis is used to ensure
that the overall program is causal.

I This analysis should be modular, i.e., compute the causality
from P and from Q, then compose the two causalities.

Automata and circuits:

This definition of parallel composition coincides with that of
synchronous circuits.
Indeed, what happens if we build the one-hot encoding of every
automaton?

node left(a: bool) returns (b: bool);

var p: bool;

let b = a and (true -> pre p);

p = (not(a)) and (true -> pre p);

tel;

node right(b: bool) returns (c: bool);

var r: bool;

let c = b and (true -> pre r);

r = (not b) and (true -> pre r);

tel;

node product(a: bool) returns (c: bool);

var b: bool;

let b = left(a); c = right(b);

tel;

node simple(a: bool) returns (c: bool);

var pr: bool;

let c = a and (true -> pre pr);

pr = (not a) and (true -> pre pr);

tel;

node observe(a: bool) returns (ok: bool);

let ok = simple(a) = produit(a);

tel;

% lesar auto.lus observe

--Pollux Version 2.3

TRUE PROPERTY

The tool lesar proves that ok is always true.

A final remark on causality

If the system has a instantaneous loop (a variable depends
instantaneously on itself), the Lustre compiler rejects it.
Yet, some programs do have such loops but make sense as
synchronous circuits, they are constructively causal. Feed with a
constant input, their output stabilizes in bounded time. An
example is:

x = mux(c, a, y) ∧ y = mux(c, x , b)

It is not valid as a Lustre program but constructively correct.
Constructive causality is a very interesting question (and would
deserve a full extra course!).

Read
Michael Mendler, Tom Shiple, Gérard Berry. Constructive Boolean
circuits and the exactness of timed ternary simulation Formal
Methods in System Design, 2012; 40(3).

Hierarchical automata

I Introduced by David Harel in StateCharts.

I A state is itself an automaton.

not(b)

 /o

on/oon/

/not(on)

reset/

q

p

o1&o2/ok

p

q

p

q

 /o

a/o

not(a)

a/o2

 /o2

But the semantics of StateCharts is difficult (more than 40
different).
We give here a synchronous interpretation to the hierarchical
composition of boolean automata

Hierachical synchronous composition of boolean automata

I Weak preemption: the current reaction terminates.

I Synchronous semantics following the one proposed by
Florence Maraninchi [?]

Hierarchical composition

Weak preemption = “la dernière cigarette du condamné”.

If the source state sk makes an internal transition sk1

fk/ ~ok→ sk2 at

the same time with an external transition sk
f (i)/~o→ sk ′ , then signals

~ok are emitted when fk ∧ f (i) is true.

Let two hierarchical states M1 = (S1, so , I ,O,T1) and

M2 = (S2, s
′
o , I ,O,T2) and a transition sk

f (i)/~o→ sk ′ .
Build an automaton M = (S1 + S2, so , I ,O,T) such that:

I sk1

fk∧not(f (i))/ ~ok→ sk2 (if the transition is logically sound)

I sk1

fk∧f (i)/ ~ok ,~o→ s ′o (if the transition is logically sound)

This ‘flattened’ semantics gives a precise meaning to parallel and
hierarchical composition. Yet, it does not mean the composition
must be computed explictly, e.g., for generating code.

Programs with non boolean values: interpreted automata

Equationnal model.

I O = To1 × · · · × To|O|

I I = Ti1 × · · · × Ti|I |

I S = Ts1 × · · · × Ts|S| with Tx = IB, IN, . . .

I Initial state Init = (v1, ..., v|S |)

I A transition function T : S × I → O × S

I Essentially Lustre.

I Explicit automaton: impossible to build (infinite set of states
and transitions)

Interpreted automaton

I Finite control structure (boolean);

I transitions are labelled by conditions;

I equationnal model for the rest (integers, reals).

Example:

node compter(top, click: bool) returns (cpt: int);

let

cpt = if top then i else i + 0 -> pre cpt;

i = if click then 1 else 0;

tel;

cpt:=if top then i else cpt

i:=if click then 1 else 0;
cpt:=if top then i else i

i:=if click then 1 else 0;initinit

Application: compilation of Esterel into boolean circuits

Consider the following specification:

ABRO

1. “every time A and B has been emitted, emit instantaneously
O”

2. “reset the above behavior every time R is emitted”

This specification can be written in the following way, in the
language Esterel.

every R do

[await A || await B];

emit O;

end every

After simplification (i.e., translation into a kernel language), we
get:

await R;

loop

abort

[await A || await B];

emit O; halt

when R

end

The Kernel Language

p ::= emit s | p; p | P||P | loop p
| abort p when s | present s then p else p
| suspendP when s | nothing | signal s in p | halt

I pause ≡ await tick

I await S ≡ abort half when S

I halt ≡ loop pause end

An other minimal kernel only need suspend and trap (exception).
Cf. [G. Berry, Preemption in Concurrent Systems, FSTTCS’96].
We consider here only preemption which corresponds to a simple
form of exception, together with suspension.

ABRO

The principle of the translation into a synchronous circuit is to
represent the active control point in the program with a
synchronous register.

await R; -- 1

loop

abort

[await A -- 2

|| await B -- 3

];

emit O;

halt -- 4

when R

end

R

1

23

4

23

R

AB~R/O

~AB~RA~B~R

B~R/O A~R/O

R R

Two different compilation methods for Esterel

I Explicit automaton obtained by symbolic evaluation of the
operational semantics. Code size may be too big.
Read: [G. Gonthier et G. Berry. The Esterel Synchronous
Programming Language: Design, Semantics, Implementation,
1992]

I Implicit automaton, i.e., translation into boolean equations
(circuits).
Read: [F. Mignard. Compilation du langage Esterel en
systèmes d’équations booléennes. Thèse de doctorat, 1994].

Compilation into circuits

Principe Every construct is translated into a system of boolean
equations, i.e., a Lustre program.

I inputs S1, ...,Sn; outputs S ′1, ...,S
′
k .

I control inputs: go and enable

I control outputs: term and halt

Corresponds to a Lustre signature:

node f(go, enable: bool; S1,...,Sn:bool)

returns (term, halt: bool; S’1,...,S’k: bool)

Translation rules
emit S

term = go;
halt = false;
S = go

pause

term = false -> pre go and enable;
halt = go;

await S
term = enable and pwait and S ;
halt = enable and wait and not(S);
pwait = false -> pre (go and halt)

p1 || p2

(term1, halt1,S
′
1, ...) = p1(go, enable, ...);

(term2, halt2,S
′
2, ...) = p2(go, enable, ...);

halt = halt1 or halt2;
term = term1 and term2;
S ′ = S ′1 or S ′2...

Translation rules
p1;p2

(term1, halt1,S
′
1, ...) = p1(go, enable,S1, ...);

(term2, halt2,S
′
2, ...) = p2(term2, enable and not(halt1), ...);

halt = halt1 or halt2;
term = term2;
S ′ = S ′1 or S ′2

abort p whenS

(term1, halt1, S
′
1, ...) = p1(go, enable and (not(S) or go), ...);

halt = halt1 and not(S);
term = term1 or halt1 and S

loop p

(term1, halt1, S
′
1) = p1(go or term1, enable, ...);

term = false;
halt = halt1

Translation rules

suspend p whenS

(term1, halt1, S
′
1, ...) = p1(go, enable and (not(S) or go), S1, ...);

halt = halt1 or (S and not(go));
term = term1

Reincarnation:

loop

signal S in

[await T; emit S

||

present S then emit O]

end

end

Two different instances of S at the same time.

Reincarnation

Three solutions:

Solution 1

I Code duplication:

loop

signal S1 in [await T; emit S1 || present S1 then emit O] end;

signal S2 in [await T; emit S2 || present S2 then emit O] end;

end

Expensive in size and efficiency.

Solution 2

I Do better by distinguishing “surface” and “depth”.
I The surface of a programme is the part to be executed at the

very first instant.
I The depth is the complementary part.

surface(awaitT) = pause

profondeur(awaitT) = await immediateT
surface(presentS then emitO) = presentS then emitO
profondeur(presentS then emitO) = nothing

loop

signal S1 in [pause || present S1 then emit O] end;

signal S2 in [await immediate T; emit S2 || nothing] end;

end

To go further, read “Constructive semantics of Esterel” of G. Berry
or (better), the book “Compiling Esterel, by Berry et al.”.

Solution 3

Introduce an intermediate language with gotopause constructs.
Read “De la sémantique opérationnelle à la spécification formelle
de compilateurs: l’exemple des boucles en Esterel”. Thèse de
doctorat, 2004. Olivier Tardieu.

The reincarnation problem is specific to Esterel.
It does not exists with mode automata and the solution adopted in
SCADE 6 to mix data-flow and hierarchical automata.

Some PL Questions

In practice, real systems are mixed:

I some parts are purely data-flow: regulation systems, filters,
etc.

I some are control-oriented: drivers, protocols, systems with
modes, etc.

Whereas one can be encoded into the other, the result is not
necessarily efficient. It is also necessary to be able to mix the two
so that programs are easy to understand, read, modify.

The industrial language SCADE 6 mix the two. To go further, you
can read:
“JL. Colaco, B. Pagano, M. Pouzet. Scade 6: A Formal Language
for Embedded Critical Software Development. In TASE, 2017”

