
Génération de code séquentiel pour Lustre

Marc Pouzet

Marc.Pouzet@ens.fr

Calcul parallèle et réactif
M1

Octobre 2020

1 / 68

Marc.Pouzet@ens.fr

The problem

• Input: a parallel data-flow network made of synchronous operators.
E.g., Lustre, Scade, Simulink

• Output: a sequential procedure (e.g., C, Java) to compute one step
of the network: static scheduling

Examples: Scade and Simulink

2 / 68

This is part of a more general question

How to “compile the parallelism”, i.e., generate seq. code which:

• preserves the parallel semantics,

• treats all programs with no ad-hoc restriction.

Why sequentializing a parallel program?

• Often far more efficient that the parallel version.

• Get a time predictable implementation (real-time system).

• At the moment, tools for analysing the Worst Case Execution Time
(WCET) work well for sequential code only.

This is not contradictory with the question of generating parallel code.

Both questions are interesting.

3 / 68

The basic intuition

Implement f : Stream(T)→ Stream(T ′) as a pair (s0, ft):

• an initial state s0 : S ;
• a sequential step function: 〈ft : S × T → T ′ × S〉

An equation y = f (x) can be computed sequentially such that:

∀n ∈ N, yn, sn+1 = ft(sn, xn)

In practice, the internal state is modified in place.

Equivalently, decompose the step function in two:

• an initial state: s0 : S
• a value function: fv : S × T → T ′

• a transition function (“commit”): fc : S × T → S ′

∀n ∈ N, yn = fv (sn, xn) ∧ sn+1 = fc(sn, xn)

The problem is more complex when f has several inputs/outputs.
4 / 68

Two classical implementations
• Periodic sampling

s := s0;

every clock tick

read_input e;

let o, s’ = ft s e in

s := s’;

write_output o

end

• Event driven

s := s0;

everytime e is present

let o, s’ = ft s e in

s := s’;

write_output o

end

Check that the inter-arrival time between events or clock ticks in greater
than the WCET of the read/compute/write.

5 / 68

Modular Static Scheduling

Sequentializing parallel code cannot be done once for all, independently
from the context.

Example 1

f

node copy(a, b:bool) returns (c, d:bool);

let

c = a; (* 1 *)

d = b; (* 2 *)

tel;

node loop(t:bool) returns (z:bool);

var y: bool;

let (y, z) = copy(t, y);

tel;

loop(t) whould run perfectly in a parallel implementation.

1The example is due to Georges Gonthier.
6 / 68

Modular Static Scheduling

void step_copy_one(int *a, int *b, int *c, int *d) {

*c = *a;

*d = *b;}

void step_copy_two(int *a, int *b, int *c, int *d) {

*d = *b;

*c = *a;}

void loop_step(int *t, int *z) {

int y;

step_copy_one(t, &y, &y, z);}

Only the first implementation of copy can be used.

Generating a single transition function is not sufficient.

Two main approaches has been followed in synchronous compilers.

7 / 68

The two main approaches to code generation

Maximal Static Expansion (“white boxing”)

• Function calls are statically (inlined).

• The way it is done in the Lustre compiler (VERIMAG).

• Efficient enumeration techniques can be applied to generate finite
state automata [Raymond PhD. Thesis[11], Halbwachs et al. [7]].

• But code size can be prohibitive.

Single Loop Code Generation (“black boxing”)

• A single code repeated infinitely.

• Modular: one node produces one step function.

• Makes tracability of the compiler simpler.

• Imposes stronger causality constraints: every loop must cross a delay.

• The approach of Scade KCG.

8 / 68

An intermediate solution (“grey boxing”)

• Instead of producing a single step function per node, produce several
together with a partial order.

• They must be called in an order compatible with this partial order.

• E.g., for copy, produces two, one that computes c := a, one that
computes d := b. 2

• This is called the Modular Static Scheduling problem.

• Identified in 1988 by Pascal Raymond who proposed a first
algorithm. [10]

• The Optimal Modular Static Scheduling problem is when the number
of step functions is minimal.

• Several solutions has been proposed. See extra course.

In this class, we focus on the simpler single loop code generation problem.

2Surely, for such a small function, inlining is preferable!
9 / 68

Single loop code generation

10 / 68

A reference compiler for a synchronous data-flow kernel 3

MiniLS: a minimalistic clocked data-flow language as input.

• used as some sort of “typed assembly language”.

• General enough to be used as a target language for Lustre.

• and a target for control structures like hierarchial automata.

Objective

• Single loop code generation.

• Compilation into an intermediate “object based” language that
represent transition functions.

• Then, translated into imperative code (e.g., structured C, OCaml,
Java).

3The notes are adapted from [1]
11 / 68

Organization of the Compiler

EmitC

Structured COBCMiniLS Annotated MiniLS

TranslationStatic checking

12 / 68

The source language

Expressions:

a ::= v | x | v fby a
| op (a, ..., a)
| a when C (x)
| merge x (C → a) ... (C → a)

Equations:

D ::= x = a | (x , ..., x) = f (a, ..., a) every a | D andD

Function definitions, constants:

d ::= node f (p) = p with var p in D

p ::= x : bt; ...; x : bt

v ::= C | i

13 / 68

When/Merge

h true false true false ...

x x0 x1 x2 x3 ...

y y0 y1 y2 y3 ...

v fby x v x0 x1 x2 ...

x + y x0 + y0 x1 + y1 x2 + y2 x3 + y3 ...

z = x when true(h) x0 x2 ...

t = y when false(h) y1 y3 ...

merge h
(true→ z)
(false→ t)

x0 y1 x2 y3 ...

• v fby x is the unit delay initialized with v .

• the merge constructs combines two complementary sequences

14 / 68

Example (counter)

“Counts the number of ocurrences of tick”.

node counting (tick:bool) = (o:int) with

var v: int in

o = (0 fby o) + v

and v = if tick then 1 else 0

tick true true true false false true true ...

o 1 2 3 3 3 4 5 ...

v 1 1 1 0 0 1 1 ...

15 / 68

The n-ary merge operator

• The merge c x y operator combines two complementary flows
(flows on complementary clocks) to produce a faster one

Merge

.. b1b2b3b4b5b6b7

.. a2 a1

.. b1b2b3b4b5b6b7 a1a2a3

a3

Example: merge c (a when c) (b whenot c)

Generalization:

• generalized to n inputs of an enumerated type t with:

t = C1 | ... | Cn

• the sampling e when c is now written e when true(c), i.e.,

bool = true | false

16 / 68

Reseting a behavior
How to make the node counting “resetable”, that is, whenever r is true,
all its internal registers are reset to an initial value?

One has to reprogram counting into:

node counting_r (r:bool; tick:bool) = (o:int) with

var v: int in

o = (if r then 0 else 0 fby o) + v

and v = if tick then 1 else 0

• There is no modular reset in Lustre. Making a component “resetable”
is painful and error prone.

• The above encoding would lead to very bad sequential code.

• Two good reasons to make it a primitive in the language.

Specific notation:
f (a1, ..., an) every c

all the registers used in the definition of node f are reset when the boolean
condition c is true

17 / 68

Derived Operators

Mux/conditional:

if x then e2 else e3 = merge x
(true→ e2 when true(x))
(false→ e3 when false(x))

Initialization and un-initialized delay:

y = e1 -> e2 = y = if init then e1else e2

and init = true fby false

pre (e) = nil fby e
where nil is a value of the type of e

Either add them to the language kernel or express them into it.

18 / 68

Static Checking

MiniLS

Clock checkingType checking

Causality Check

Initialization Check

MiniLS+Types+Clocks

MiniLS+Types+Clocks

MiniLS+Types+Clocks

MiniLS+Types

19 / 68

Type and Clock checking
An intermediate language where every expression is annotated with a type
expression (bt) and a clock expression (ck).

a ::= eckbt
e ::= v | x | v fby a | a when C (x) | op (a, ..., a)

| merge x (C → a) ... (C → a)
D ::= x = a | f (a, ..., a) every a | D andD
d ::= node f (p) = p with var p in D

Clock expression:
• The clock clock(s) of a sequence s is a boolean sequence such that
clock(s) = true iff s is present

• An expression e is annotated a boolean formula ck

ck ::= base | ck on C (x)

• base is the “base” clock of the node; it is always true.

• ck on C (x) is true when ck is true and x = C .
20 / 68

Clock Verification
Type and clock checking are performed in order.

• Clock environment: H ::= [ck1/x1; ...; ckn/xn]

• H ` a : ck means that a is well annotated in H with clock type ck .

(Annot)

H ` e : ck

H ` eckbt : ck

(Op)

H ` a1 : ck ... H ` an : ck

H ` op (a1, ..., an) : ck

(Const)

H ` v : base

(Var)

H, x : ck ` x : ck

(Fby)

H ` a : ck

H ` v fby a : ck

(When)

H ` a : ck H ` x : ck

H ` a when C (x) : ck on C (x)

(Merge)

H ` x : ck H ` a1 : ck on C1(x) ... H ` an : ck on Cn(x)

H ` merge x (C1 → a1) ... (Cn → an) : ck

21 / 68

Clock Checking
We consider the simple case where all input/outputs of a node have the
same clock 4

(Call)

∀i ∈ [1..k] H ` xi : ck ∀i ∈ [1..n] H ` ai : ck H ` c : ck

H ` (x1, ..., xk) = f (a1, ..., an) every c : ck

(Node)

`base p : Hp `base q : Hq ` r : Hr Hp,Hq,Hr ` D

` node f (p)(q) = var r in D

(Pat)

` x1 : bt1, ..., xn : btn : [x1 : ck1; ...; xn : ckn]

(Param)

`base x1 : t1, ..., xn : tn : [x1 : base; ...; xn : base]
4Lustre is more powerful as it allows for input/outputs to be on different clocks

provided the first input is on the base clock. 22 / 68

Clock checking

(Eq)

H ` x : ck H ` a : ck

H ` x = a

(And)

H ` D1 H ` D2

H ` D1 andD2

This system is very limited.

The language kernel has no data-structures, no type polymorphism.

All inputs and outputs must be on the same clock.

23 / 68

Extensions
Some examples of equations and functions that can be defined in Scade 6.

x = (1, 2)

x = {a = 1; b = 2}

x = if c then (1,2) else (3, 4)

node hold(i: ’t; clock h: bool; a: ’t when h) returns (o:’t)

o = merge(h; a; (i -> pre o) when not h);

• Enrich the type language and clock type language with tuples and
polymorphism.

• The clock calculus of Lustre can be defined as a dependent type
system [4, 2]

• A simpler one reminiscent of the ML-type system [5].

• Programs from the enrichied language can be translated into the
basic language.

• Yet, it is sufficient to illustrate how clocks are used to generate code.

24 / 68

Translation into sequential code

(naive to clever) scheduling
data−flow transformations

(CSE, Constant Prop.)

Inlining

Annotated MiniLS Annotated MiniLS

Normalization

(normalized)

Annotated MiniLS

(normalized)

Structured C

Obc

Translate

(scheduled)

EmitC

25 / 68

Putting Equations in Normal Form
• Prepare equations before the translation.

• Identify state variables vs temporaries.

• Rewrite equations such that delays and function applications do not
appear in nested expressions.

Normal Form:

a ::= eckbt

e ::= a when C (x) | op (a, ..., a) | x | v
ce ::= merge x (C → ca) ... (C → ca) | e
ca ::= ceckbt

eq ::= x = ca | x = v fby a
| (x , ..., x) = f (a, ..., a) every a

D ::= eq | eq andD

Notation: [eq1; ...; eqn] or (eqi)i∈[1...n] for eq1 and ...eqn. eq1.eq2 for the
concatenation.

26 / 68

Checking the correctness of the normalization
The normalization is a simple rewritting. Its correctness can be validated
independently, a posteriori.

• Given a list of equations, a (non trusted) normalization function
returns a list of normalized equations and a substitution:

normalize([eq1; ...; eqn])
def
= [eq′1; ...; eq′m], [e1/x1, ..., ek/xk]

• Check that:

sub([eq′1; ...; eq′m])[e1/x1, ..., el/xk] = [eq1; ...; eqn] = eqs

with:

sub(eqs ′)[e1/x1, ..., el/xk] = sub(sub(eqs ′)[e1/x1])[e2/x2, ..., ek/xk]

• prove that the substitution preserves the semantics, that is, if ej : btj ,
j ∈ [1..k], eqs and var (xj : btj)j∈[1..k] in (xj = ej)j∈[1..k].eqs

′ are
semantically equivalent.

• If the substitution succeeds, then the translation preserves the
semantics.

27 / 68

Data-structures (tuples, records)

Typing/clocking constraints and normalisation can be extended.

Types and clocks

ty ::= ty × ...× ty | bt ct ::= ct × ...× ct | ck

For records, consider that the component must be on the same clock ck .

Normalisation
Rewrites equations into more elementary ones.

E.g.,: rewrite (x1, x2) = (1, 2) into x1 = 1 and x2 = 2

(x1, x2) = if c then (1, 2) else (3, 4) into
x1 = if c then 1 else 3 and x2 = if c then 2 else 4.

The same approach that separates the rewriting from its validation can be
followed.

28 / 68

Syntactic Dependences and Scheduling

After the normalization, equations are scheduled according to
data-dependences.

• A (non trusted) scheduling function:

schedule: eq list → eq list
• Define what is a well scheduled sequence of equations:

• An equation x = ca must appear before any read of x
(data-dependence)

• An equation x = v fby a must appear after any read of x
(anti-dependence)

• Prove that the semantics of a set of equations does not depend on
the relative order between them.

• Check that the set of equations is well scheduled.

By separating the scheduling function from the verification that the result
is well scheduled, it is easier to implement a clever scheduling function.

29 / 68

Well Scheduled Equations
Notation [] is an empty sequence of equations; L = [eq1; ...; eqn] is a set
of n equations; eq.L is a shortcut for [eq; eq1; ...; eqn].

Left (ca) returns the list of variables that are read in ca.

The predicate SCH([eq1; ...; eqn]) : r ,w ,mem means:
• the sequence [eq1; ...; eqn] is well scheduled;
• it reads variables in r , write variables in w and memories in mem.

x 6∈ Left (ca)

SCH(x = ca) : Left (ca), {x}, ∅ SCH(x = (v fby a)ckbt) : Left (a), ∅, {x}

r = ∪0≤i≤nLeft (ai) ∪ Left (c) {y1, ..., ym} ∩ r = ∅
SCH(~y = f (~a) every c) : r , {y1, ..., ym}, ∅

SCH(eq) : r ,w ,mem SCH(L) : r ′,w ′,mem′ w ′ ∩ r = ∅ mem ∩ r ′ = ∅
SCH(eq.L) : r ∪ r ′,w ∪ w ′,mem ∪mem′

SCH([]) : ∅, ∅, ∅
30 / 68

Example (the counting node)

Once the type and clock checking and annotation are done, we get:

node counting (tick : bool , top : bool) with (o : int) in (v : int)
o = (merge top (true→ (vb when true(top))ck1)

(false→ (((0 fby ob)b + vb)b when false(top))ck2))b

and v = (merge tick (true→ (1b when true(tick))ck3)
(false→ (0b when false(tick))ck4))b

ck1 = b on true(top)
ck2 = b on false(top)
ck3 = b on true(tick)
ck4 = b on false(tick)

We write b as a short-cut for base.

31 / 68

Example (the counting node)

After the normalization, it becomes:

node counting (tick : bool , top : bool) with (o : int) in (v : int)
o = (merge top (true→ (vb when true(top))ck1)

(false→ ((tb + vb)b when false(top))ck2))b

and t = (0 fby ob)b

and v = (merge tick (true→ (1b when true(tick))ck3)
(false→ (0b when false(tick))ck4))b

where :
ck1 = b on true(top)
ck2 = b on false(top)
ck3 = b on true(tick)
ck4 = b on false(tick)

32 / 68

Example (the counting node)

After the scheduling, it becomes:

node counting (tick : bool , top : bool) with (o : int) in (v : int)
v = (merge tick (true→ (1b when true(tick))ck3)

(false→ (0b when false(tick))ck4))b

and o = (merge top (true→ (vb when true(top))ck1)
(false→ ((tb + vb)b when false(top))ck2))b

and t = (0 fby ob)b

ck1 = b on true(top)
ck2 = b on false(top)
ck3 = b on true(tick)
ck4 = b on false(tick)

33 / 68

Static scheduling and copy variables
The normalisation process may have to introduce extra copy variables;
otherwise, equations may not be statically schedulable. E.g.,:

x = 0 fby y
and y = 1 fby x

cx = x
and x = 0 fby y
and y = 1 fby cx

• Both are in normal form but the left sequence is not schedulable.

• Either do a clever normalisation a priori;

• or systematically add a copy for the registers to get an equation of
the form: m = v fby x

Property: if the equation defining x is scheduled after any read of m, then
x and m can be stored in the same location.

By characterising well scheduled equations only, we give the liberty to the
compiler to consider several possible implementations of the
scheduling/normalization functions.

34 / 68

Translation to Sequential Code

We introduce an intermediate target imperative language in which
annotated normalized data-flow programs are compiled.

What do we need?
• represent transition functions in an imperative style

• a simple memory model: static allocation of memory; no aliasing.

• such that the translation into C code is simple.

Intuition
A synchronous function f defines a “class” with

• a set of state variables and a set of instance variables;

• a set of methods that read/write these state variables.

The memory model is a tree and there is no aliasing between states. The
method of a class can only modify its own states (“instance variables”).

35 / 68

A Simplification

For MiniLS, we only need to produce a class with two methods step and
reset:

• Given the current inputs, the method step produces the current
outputs and modifies in place its internal state.

• A method reset initialize/reset its internal state.

Yet, the general case with several methods is useful. E.g.,:

• provides set/get methods to have direct access to inputs and output
in order to reduce the number of copies;

• to implement the modular static scheduling problem;

• to do program specialisation, e.g., implement a special faster method
for particular values of the inputs.

• to implement the language extended with ODEs (see related course).

36 / 68

The Obc Intermediate Language

md ::= let x = c | md ;md
let f = class〈M, I , (method i (pi) = qi where Si)i∈[1..n]〉

p, q ::= x : bt, ..., x : bt

M ::= [x : bt[= v]; . . . ; x : bt[= v]]

I ::= [o : f ; . . . ; o : f]

c ::= v | lv | | op(c , . . . , c) | o.method(c, . . . , c)

S ::= () | lv ← e | S ; S | var x : bt in S | if c thenS elseS
| case (x) {C : S ; ...;C : S}

R, L ::= S ; . . . ;S

lv ::= x | state (x)

method ::= step | reset | ...

37 / 68

Principles of the translation

• Hierarchical memory model which corresponds to the call graph: one
instance variable per function call;

• Control-structure (invariant): an equation annotated with clock ck is
executed when ck is true.

• A guarded equations x = eck translates into a control-structure. E.g.,
the equation:

x = (y + 2)base on C1(x1) on C2(x2)

is translated into a piece of control-structure:

case (x1) {C1 : case (x2) {C2 : x = y + 2}}

• The translation is made by a linear traversal of the sequence of
normalized/scheduled equations.

38 / 68

• local generation of a control-structure from a clock:

Control(base,S) = S
Control(ck on C (x), S) = Control(ck , case (x) {C : S})

• merge them locally

Join(case (x) {C1 : S1; ...;Cn : Sn}, case (x) {C1 : S ′
1; ...;Cn : S ′

n})
= case (x) {C1 : Join(S1, S

′
1); ...;Cn : Join(Sn,S

′
n)}

Join(S1,S2) = S1;S2

Control-optimization:

• The scheduling function must put equations with the same clock or
one that is a sub-clock of the other close to each others

• ck on C (x) is a subclock of ck ′ if ck is a subclock of ck ′ or ck = ck ′.

39 / 68

Example

class counting =

memory t1 : int = 0;

reset () = state(t1) := 0;

step(tick:bool,top:bool) returns (o:int) =

v:int, t2:int in

case (tick) {

| True: v := 1;

| False: v := 0; };

case(top) {

| True: o := v;

| False: o := state(t1) + v; };

t2 := o;

state(t1) := t2;

40 / 68

Example (modularity)

• A node definition is compiled separately, once for all.

• A node that calls an other node need a memory to store its internal
state.

Example:

node sum(x:int) returns (o:int) with

o = 0 fby o + x;

node condact(c:bool;input:int) returns (o:int) with

var o’:int in

o = merge c (true -> o’)

(false -> (0 fby o) when false(c)) and

o’ = sum(input when true(c))

41 / 68

Target code:

class condact =

memory x_2 : int = 0

instances x_4 : sum

reset() =

x_4.reset();

state x_2 := 0;

step(c : bool; input : int) returns (o : int)

var o’ : int in

case (c) {

case true :

o’ := x_4.step(input);

o := o’;

case false :

o := state(x_2);

};

state x_2 := o; }

42 / 68

Demo
Velus, Heptagon 5 and Scade 6

5Available at http://heptagon.gforge.inria.fr, with source code in OCaml.
43 / 68

http://heptagon.gforge.inria.fr

Notations

• If p = [x1 : bt1; ...; xn : btn] and p2 = [x ′1 : bt ′1; ...; x ′k : bt ′k] then
p1 + p2 = [x1 : bt1; ...; xn : btn; x ′1 : bt ′1; ...; x ′k : bt ′k] provided xi 6= x ′j
for all i , j such that 1 ≤ i ≤ n, 1 ≤ j ≤ k .

• [] denotes the empty list of variable declarations.

• m1 and m2 denotes environments for memories.

• j1 and j2 denotes environments for instances.

• m1 + m2 for the composition of two substitutions on memory names
and j1 + j2 on object instances.

• S · L is a list of instructions whose head is S and tail is L. [] is the
empty list and [S1; ...;Sn] = S1 · (... · Sn · []).

44 / 68

Translation functions

Applied on normalised/scheduled expressions and equations.

• TEm (a) translates an expression a.

• TCAm (y , ca) translates an expression ca with result stored in y .

• TEq〈m,S ,j ,L〉 (eq) defines the translation of an equation:
• m is a memory environment;
• S is executed when reset;
• j is the instance environment;
• L is a sequence of instructions

• TEListm [a1; ...; an] translates a list of expressions.

• TEqList([eq1; ...; eqn]) translates a list of equations.

45 / 68

Expressions

TEm (eckbt) = TEm (e)

TEm (v) = v

TEm+[x :bt=v] (x) = state (x)

TEm (x) = x otherwise

TEm (a when C (x)) = TEm (a)

TEm (op(a1, ..., an)) = let [c1; ...; cn] = TEListm [a1; ...; an] in

op(c1, ..., cn)

Controled expressions

TCAm (y , merge x ~(C → ca)
ck

bt) = case (x) { ~C : TCAm (y , ca)}

TCAm (y , a) = y := TEm (a) otherwise
46 / 68

Equations

TEListm [a1; ...; an] = [TEm (a1); ...;TEm (an)]

TEqList(eq) = TEq〈[],skip,[],[]〉 (eq)

TEqList([eq1; ...; eqn]) = TEqTEqList([eq2;...;eqn]) (eq1)

Instantaneous equations, synchronous register

TEq〈m,S,j ,L〉 (x = eckbt) = 〈m, j ,S , (Control(ck ,TCAm (x , eckbt))) · L〉

TEq〈m,S,j ,L〉 (y = (v fby a)ckbt) =

let m′ = m + [y : bt = v] in

let c = TEm′ (a) in

〈m′, state (y) := v ; S , j , (Control(ck , state (y) := c)) · L〉

47 / 68

Application of a node

TEq〈m,S ,j ,L〉 ((x1, ..., xk) = f (a1, ..., an) every e0
ck
bt) =

let c0 = TEm (e0
ck
bt) in

let [c1, ..., cn] = TEListm [a1; ...; an] in

〈m, o.reset; S , [o : f] + j

(Control(ck , case (c0) {(true : o.reset)}))·
(Control(ck , (x1, ..., xk) = o.step (c1, ..., cn))) · L〉 where o 6∈ Dom(j)

48 / 68

Translation of a node definition

TP (node f (p) returns (q) var r in eq1 and ...eqn) =

let 〈m, S , j , L〉 = TEqList([eq1; ...; eqn]) in

class f = 〈memory = m;
instances = j ;
reset = S ;
step(p) returns(q) var r in JoinList(L)〉

where SCH([eq1; ...; eqn])

We write SCH([eq1; ...; eqn]) when there exists r ,w ,m such that
SCH([eq1; ...; eqn]) : r ,w ,m.

49 / 68

From Obc to a target language

The translation from Obc to C is straightforward. Yet, the proof of
correctness is not [3].

Principle

• For a class f , define a C structure that stores the internal state of f .

• Every method m of f becomes a function fm with an extra input self
that point to its internal state.

• When the “step” method has several outputs, returns a C structure
on the stack or, better:

• define a C structure to store the output; the method takes an extra
pointer to it.

• or add extra methods, with no output, to get the value of each
output. They are implemented in C by direct access to the state of
the callee.

50 / 68

Demo
Velus, Heptagon and Scade 6

51 / 68

Optimizations

• Some optimizations can be done by the compiler of the target
language. E.g., it is useless to optimize reuse between local (stack)
variables.

• But this depends on the quality of the compiler of the target language.

• Some classical optimizations (CSE, copy and const. prop., inlining)
can be applied directly on the data-flow representation.

• It is always useful to reduce the number of state variables and the
liveness between reads and writes.

• Optimize the control structure. E.g., gather if/then/else.

• These two optimizations depend on the scheduling heuristic.

52 / 68

Optimization that a C compiler cannot do easily

• Avoid copies: x and pre x can be shared when all equations reading
pre x can be scheduled before the equation x = ... E.g.:
x = pre x + 1 can be compiled into x := x + 1

• Automata minimization (generalization of CSE). E.g.,
y = 0 fby y + 1 and z = 0 fby z + 1 as
y = 0 fby y + 1 and z = y.

• share memories between two pieces of code never active in parallel
and when going from one to the other is reset on entry.

• for array iterators, perform loop fusion and generate in place
modification for functional updates. [6]

Those optimisations are implemented in the Heptagon compiler.

53 / 68

Control Optimization

Share/reduce the number of control-structures
• some piece of code is only executed at the very first instant or only

when some condition is true. E.g.,

if state(i) then x = 0; /* initialization code */

...

if state(i) { y = 1;} /* initialization code */

...

if c then x = m -> pre_1 + 1;

/* step when clock c_1 is true */

...

if c then m -> pre_1 = x;

/* set the memory when clock c_1 is true */

• minimize the number of if/then/else to open. For that, define a
scheduling function which gather equations activated on the same
clock (cf. Join(., .)).

Still, the generation is not that efficient.

54 / 68

Compilation into Automata

Generating a single step functions means that some conditions that are
surely false will be executed at every step. E.g., consider the way an
initialization o = x -> y is compiled. In Obc.

if state(init_1) then o := x else o := y;

...;

state(init_1) := false;

Generates an “optimal” control structure which only execute the necessary
code at every instant.

This is the idea of compilation into automata introduced by Halbwachs
and Plaice (Lustre V2).

It was improved to generate a minimal automaton (Lustre V3) by Ratel et
Raymond in 1991 [7].

It is implemented in the academic Lustre compiler.

55 / 68

An example (in Lustre syntax)
node counter(tick,top:bool) returns (cpt:int)

var i:int;

let cpt = 0 -> if pre top then i

else if tick then pre cpt + 1

else pre cpt;

i = if tick then 1 else 0;

tel;

After normalization and scheduling, we get:

node counter(tick,top:bool) returns (cpt:int)

var i:int;

let i = if tick then 1 else 0;

cpt = if init then 0

else if ptop then i

else if tick then pcpt + 1

else ptop;

ptop = pre top;

pcpt = pre cpt;

init = true fby false

tel;
56 / 68

Single loop code

if tick then i := 1 else i := 0;

if state(init) = 0 then cpt := 0

else if state(ptop) then cpt := i

else if tick then cpt := state(pcpt) + 1

else cpt := state(pcpt)

state(init) := false;

state(ptop) := top;

state(pcpt) := cpt

top and state(ptop) can be stored at the same location; the same with
cpt and state(pcpt). Then, the last two assignment can be removed
(see remark on slide 34).

57 / 68

Example

Initial state: S1 = [true/init]
The code that computes the output is:

if tick then i := 1 else i := 0;

cpt := 0;

state(pcpt) := cpt

• It can be simplified into state(pcpt) := 0;

• The code that computes the next state is:

if top then state(ns) := S2 else state(ns) := S3;

58 / 68

State S2: S2 = [false/init, true/ptop]

if tick then i := 1 else i := 0;

state(pcpt) := i;

if top then state(ns) := S2; else state(ns) := S3;

State S3: S3 = [false/init, false/ptop]

if tick then

{ i := 1;

state(pcpt) := state(pcpt) + 1; }

else

i := 0;

if top then state(ns) := S2

else state(ns) := S3;

59 / 68

The final automaton

case state(ns){

S1: state(pcpt) := 0;

if top state(ns) := S2; else state(ns) := S3;

S2: if tick then i := 1 else i := 0;

state(pcpt) := i;

if top then state(ns) := S2 else state(ns) := S3;

S3: if tick then state(pcpt) := state(pcpt) + 1;

if top state(ns) := S2 else state(ns) := S3;

}

60 / 68

Conclusion

• far better code but the size has increased

• assertions (i.e., assert P in Lustre) can be taken into account
during the enumeration

Problems

• combinatorial explosion

• in Lustre, the control-structure is hidden and encoded with booleans
(think of a one-hot encoding of an automaton)

• which boolean variables should we consider? There is no good
programming rules to avoid this explosion

• limit to a predefined set of boolean variables (e.g., clocks).

Solutions?

• automata minimization done a posteriori.

• direct generation of a minimal automaton (called “compilation on
demand”, [Halbwachs, Ratel, Raymond, PLILP 91])

61 / 68

An example (Halbwachs et al [7])

node Example(i: bool) return (n: int);

var x,y,z : bool;

let

n = 0 -> if (pre x) then 0 else (pre n) + 1;

x = false -> not (pre x) and z;

y = i -> if (pre x) then (pre y) and i

else (pre z) or i;

z = true -> if (pre x) then (pre z)

else ((pre y) and (pre z)) or i);

tel

4 state variables (->, pre x, pre y and pre z)

62 / 68

Example
Example:
• q0 : (init, pre x , pre y , pre z) = (1, nil , nil , nil)

Action: n:=0

nextinit(q0, i) = 0
nextpre x(q0, i) = 0
nextpre y (q0, i) = i
nextpre z(q0, i) = 0
if (i) { state = q1;} else { state = q2;}
with q1 = (0, 0, 1, 1) et q2 = (0, 0, 0, 1)
• q1 = (0, 0, 1, 1)

Action: n:=n+1

nextinit(q1, i) = 0
nextpre x(q1, i) = 1
nextpre y (q1, i) = 1
nextpre z(q1, i) = 1
state = q3

• q2 = (0, 0, 0, 1)
Action: n:=n+1, if (i) { state = q3;} else { state = q4;}63 / 68

• q3 = (0, 1, 1, 1)
Action: n:=0, if (i) {state = q1;} else { state = q2;}
• q4 = (0, 0, 1, 0)

Action: n:=n+1, if (i) { state = q3;} else { state = q5;}
• q5 = (0, 0, 0, 0)

Action: n:=n+1, if (i) { state = q3;} else { state = q5;}

not(i)

q2

q3 q4 q5

q1 q0

n:=0
n:=n+1

n:=n+1

n:=0 n:=n+1
n:=n+1

i
not(i)

not(i)

i not(i)

i

not(i)

i

64 / 68

Compilation into automata “on demand”

• the automaton is not minimal: q0 and q3 are equivalent; q4, q5 and
q2 are equivalent

• we can minimize a posteriori (Lustre V2) but still an explosion of the
number of states in the intermediate automaton

Solution: directly generate a minimal automaton. In practice, the code is
still too big, but:

• this technique say something very interesting when the main node has
a single boolean variable

• what is the minimal automaton for a node with a single boolean
variable which is always true? The trivial automaton true!

• this corresponds exactly to proving a safety (invariant) property by a
Model Checking technique.

65 / 68

Conclusion

• The compilation into automata is possible but it is not modular and
tend to generate enormous code.

• The compiler of Scade generate single-loop code.

• The clock-directed translation method is a good compromise (simple
et reasonnably efficient code).

• If the input language has automata, like Scade 6, the result of
compilation into automata could be expressed as a source-to-source
transformation.

• Would-it simplify the proof of its correctness?

66 / 68

References I

Darek Biernacki, Jean-Louis Colaco, Grégoire Hamon, and Marc Pouzet.

Clock-directed Modular Code Generation of Synchronous Data-flow Languages.
In ACM International Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES), Tucson,
Arizona, June 2008.

Sylvain Boulmé and Grégoire Hamon.

Certifying Synchrony for Free.
In International Conference on Logic for Programming, Artificial Intelligence and Reasoning (LPAR), volume 2250, La
Havana, Cuba, December 2001. Lecture Notes in Artificial Intelligence, Springer-Verlag.
Short version of A clocked denotational semantics for Lucid-Synchrone in Coq, available as a Technical Report (LIP6), at
www.di.ens.fr/∼pouzet/bib/bib.html.

Timothy Bourke, Lélio Brun, Pierre-Évariste Dagand, Xavier Leroy, Marc Pouzet, and Lionel Rieg.

A Formally Verified Compiler for Lustre.
In International Conference on Programming Language, Design and Implementation (PLDI), Barcelona, Spain, June
19-21 2017. ACM.

Paul Caspi and Marc Pouzet.

Synchronous Kahn Networks.
In ACM SIGPLAN International Conference on Functional Programming (ICFP), Philadelphia, Pensylvania, May 1996.

Jean-Louis Colaço and Marc Pouzet.

Clocks as First Class Abstract Types.
In Third International Conference on Embedded Software (EMSOFT’03), Philadelphia, Pennsylvania, USA, october 2003.

Léonard Gérard, Adrien Guatto, Cédric Pasteur, and Marc Pouzet.

A Modular Memory Optimization for Synchronous Data-Flow Languages. Application to Arrays in a Lustre Compiler.
In Languages, Compilers and Tools for Embedded Systems (LCTES’12), Beijing, June 12-13 2012. ACM.
Best paper award.

67 / 68

References II

N. Halbwachs, P. Raymond, and C. Ratel.

Generating efficient code from data-flow programs.
In Third International Symposium on Programming Language Implementation and Logic Programming, Passau
(Germany), August 1991.

R. Lublinerman, C. Szegedy, and S. Tripakis.

Modular Code Generation from Synchronous Block Diagrams — Modularity vs. Code Size.
In ACM Principles of Programming Languages (POPL), 2009.

Marc Pouzet and Pascal Raymond.

Modular Static Scheduling of Synchronous Data-flow Networks: An efficient symbolic representation.
In ACM International Conference on Embedded Software (EMSOFT’09), Grenoble, France, October 2009.

Pascal Raymond.

Compilation séparée de programmes Lustre.
Technical report, Projet SPECTRE, IMAG, July 1988.

Pascal Raymond.

Compilation efficace d’un langage déclaratif synchrone: le générateur de code Lustre-v3.
PhD thesis, Institut National Polytechnique de Grenoble, 1991.

68 / 68

