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Stored Program, von Neumann Architecture

IAS Architecture, John von Neumann

SSEM “Baby”, 1948: Tom Kilburn, Victoria U. of Manchester
First implementation of the stored program concept in a real machine

EDVAC, 1949: John Eckert, J. Presper Mauchly and John von Neumann

Followed by 60 years of exponential growth of processor complexity, driven by
Moore’s Law
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Evolutions of the von Neumann Architecture

What Can We Do With All These Transistors?

Registers

Cache (local memory, memory hierarchy)

Instruction pipeline

Branch predictor, prefetch, speculative execution

Superscalar execution, out-of-order execution

Multi-thread processor

Multi-processors, multi-core, many-core

Specialization (hardware accelerators)

Is it the end of the road for the von Neumann architecture?
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Algorithms, Programming Languages, and Multicore Processors?

1 Discrete Mathematics, Computing Science,
Computer Science, Computer Engineering?

“Computer science is no more about computers
than astronomy is about telescopes”

Edsger Dijkstra (1930–2002), Turing Award 1972

2 Let’s talk about telescopes and astronomy: telescope builders and astromomers
interact a lot, there must be a reason
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Moore’s Law Is Not Enough: Walls Everywhere
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The “Memory Wall”

DDR3-2133 SDRAM

Latency: 10.3 ns

Memory bandwidth: 17.6 GB/s

4-core 2GHz ARM Cortex A15

Compute bandwidth: 2 × 4 threads × 1 NEON unit × 16 bytes × 2 GHz = 1024 GB/s

4-core 3GHz Intel Haswell

Compute bandwidth: 2 × 4 threads × 2 AVX units × 32 bytes × 3 GHz = 1536 GB/s

256-core 400MHz Kalray MPPA

Compute bandwidth: 2 × 256 threads × 2 words × 4 bytes × 400 MHz = 1638.4 GB/s

1536-core 1.006GHz NVIDIA Kepler

Compute bandwidth: 2 × 1536 threads × 1 float × 4 bytes × 1.006 GHz = 12361.6 GB/s
Memory bandwidth: 288 GB/s
PCIe bandwidth: 16 GB/s

Similar walls in the design of data-center and supercomputer networks
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Impact on (Parallel) Program Performance

The memory and power walls are here to stay

No performance gains outside parallelism or specialization

Parallel programming: to scale strongly or weakly?

Hardware and software design: to scale-up or to scale-out?
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Example: Discrete Fourier Transform on 2 Dual-Core Processors
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Example: Discrete Fourier Transform on 2 Dual-Core Processors
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About Algorithms, Programming Languages

What are the essential semantic requirements for source programs?

Which programmers should really care about multicores, the memory wall?

What role for the software stack (compilers, runtime libraries)?
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Shared-Memory Concurrency is Not for the Faint of Heart
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Correct and Efficient Parallel Programs?

Between the hammer of programmability
and the anvil of performance

Productivity: a single source for all purposes
I an abstract model for verification, formal reasoning
I a concrete model for testing, simulation
I the source from which sequential and parallel code can be generated, released,

embedded...
I guarantee strong properties of safety and efficiency at compile-time

Safety and efficiency: rely on efficient, proven runtime execution primitives
I safe and efficient memory management
I lightweight scheduling
I deterministic concurrency for dependent tasks, concurrent data structures,

asynchronous I/O
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Lessons for Parallel Programming

The need for parallelism in the machine code does not require the normal
programmers to surrender decades of progress in the principles of
programming languages and tools!

Runtime systems and compilers are responsible to translate portable,
deterministic programming constructs into target-specific, high
performance implementations

1st part Rust programming, data parallelism

2nd part Deterministic task-parallel programming

3nd part Well-behaved concurrency (race freedom, deadlock freedom,
compositionality)

4nd part Beyond functions: I/O, distribution, hardware acceleration
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Online Material: Reference Course on Rust Programming

Excellent course at U. Pennsylvania by David Mally, Terry Sun, Kai Ninomiya

http://cis198-2016s.github.io

http://cis198-2016s.github.io/schedule
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Online Material: Documentation

Cargo : http://doc.crates.io/guide.html

Crates : https://crates.io

Docs : http://docs.rs

RustBook : https://doc.rust-lang.org/book/second-edition

RustByExample : https://doc.rust-lang.org/stable/rust-by-example

RustLang : https://www.rust-lang.org

StdDocs : http://docs.rs/std
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Online Material: Videos and Documentation

Aaron Turon, Mozilla, overview of Rust (2015)
https://www.youtube.com/watch?v=O5vzLKg7y-k

Nicholas Matsakis, Mozilla, overview of Rayon (2017)
https://www.youtube.com/watch?v=gof_OEv71Aw

Rayon library
https://docs.rs/crate/rayon/1.0.2

and more on his slide deck
https://speakerdeck.com/nikomatsakis

Emily Dunham, Mozilla, Rust for developers, the community, environment (2017)
https://www.youtube.com/watch?v=FMqydRampuo
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Concurrency vs. Parallelism

Vocabulary
Parallelism refers to the simultaneous or overlapping execution of concurrent operations

Data parallelism: concurrency between (or parallel execution of) multiple instances
of a single operation (on multiple inputs)

Task parallelism: concurrency between (or parallel execution of) instances of
different operations
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Concurrency vs. Parallelism

Hardware Point of View

Hardware Multi-Threading: interleaved or simultaneous, for latency hiding

Flynn taxonomy: SIMD (vector), MISD (pipelining), MIMD

NVidia’s SIMT (CUDA)

Levels of parallelism

Grain of parallelism

Programming Style

SPMD work distribution (OpenMP, only possible style with MPI)

Task parallelism (Cilk, OpenMP)

Offloading (CUDA, OpenCL)

Distributed/actors (Erlang)

Skeletons (MapReduce)
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Multi-Threaded Architectures

Simultaneous Multi-Threaded (SMT)

A.k.a. hyper-threaded (Intel)

L1

L2
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Cache-Coherent Multiprocessor Architectures

Chip Multi-Processor (CMP)

A.k.a. multicore (Intel)

Multiple cores interconnected one or more buses

Snoopy caches: e.g., MESI protocol

L1 L1

L2
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Cache-Coherent Multiprocessor Architectures

Symmetric Multi-Processor (SMP)

Multiple chips interconnected one or more buses

Snoopy caches

L1 L1

L2

L1 L1

L2
Bus
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Cache-Coherent Multiprocessor Architectures

Non-Uniform Memory Architecture (NUMA)

Multiple chips interconnected by a network

Directory-based cache protocol

L1 L1

L2

L1 L1

L2

L1 L1

L2

L1 L1

L2

L1 L1

L2

L1 L1

L2

L1 L1

L2

L1 L1

L2

Bus

Bus

Bus

Bus

Network Interconnect
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Logical Threads vs. Hardware Threads

Logical Thread Abstraction
Multiple concurrent execution contexts of the same program, cooperating over a single
memory space, called shared address space (i.e., shared data, consistent memory
addresses across all threads)
Among the different forms of logical thread abstrations, user-level threads do not need a
processor/kernel context-switch to be scheduled

Mapping Logical to Hardware Threads
The hardware threads are generally exposed directly as operating system kernel threads
(POSIX threads); these can serve as worker threads on which user-level threads can be
mapped
Mapping strategies: one-to-one, many-to-one, many-to-many
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Logical Threads vs. Hardware Threads

Thread “Weight”

1 Lightest: run-to-completion coroutines
→ indirect function call

2 Light: coroutines, fibers, protothreads, cooperative user-level threads
→ register checkpointing, garbage collector, cactus stacks with generalized
activation records

3 Heavy: preemptive kernel threads (POSIX threads)
→ context switch

4 Heavier: kernel processes
→ heavier context switch with page table operations (TLB flush)
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Task Pool

General approach to schedule user-level threads

Single task queue

Split task queue for scalability and dynamic load balancing

More than one pool may be needed to separate ready threads from waiting/blocked
threads
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Task Pool: Single Task Queue

Simple and effective for small number of threads

Caveats:

The single shared queue becomes the point of contention

The time spent to access the queue may be significant as compared to the
computation itself

Limits the scalability of the parallel application

Locality is missing all together

31 / 62



Task Pool: Split Task Queue

Work Sharing
Threads with more work push work to threads with less work A centralized scheduler
balances the work between the threads

Work Stealing

A thread that runs out of work tries to steal work from some other thread
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The Cilk Project

Language for dynamic multithreaded applications

Nested parallelism

C dialect

Developed since 1994 at MIT in the group of Charles Leiserson

http://supertech.csail.mit.edu/cilk

Now part of Intel Parallel Studio (and TBB, ArBB)
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Fibonacci in Cilk

Tasks are coroutines

Nested, fork-join parallelism

Two keywords to implement “parallel pairs”
I spawn function () to indicate that the function call may be executed as a coroutine
I sync to implement a join synchronization, waiting for all child tasks of the current task

cilk int fib (int n) {
if (n < 2)
return n;

else {
int x, y;
x = spawn fib (n-1);
y = spawn fib (n-2);
sync;
return (x+y);

}
}
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Cilk Properties

Cilk programs are canonically sequentialized with the elision of the special keywords
→ Depth-first execution of the task tree by a single-thread

→ As a corollary, all inputs to a task are available at the task creation point
→ A property called strictness (some relation to strictness in functional languages)
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Fork-Join Task Parallelism in Rust

https://docs.rs/rayon/1.0.2/rayon

https://github.com/nikomatsakis/rayon/blob/master/README.md
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Cilk Performance Properties

Strictness simplifies the runtime support: no need to wait for data availability, it is in
the activation record of the task already

I Implementation as a coroutine
I spawn 3 to 4 times more expensive than an average function call
I Scheduling can be more expensive: needs a concurrent deque (double-ended queue)

and cactus stacks
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Fibonacci in Cilk: Generated Code

cilk int fib (int n) {
if (n < 2)
return n;

else {
int x, y;
x = spawn fib (n-1);
y = spawn fib (n-2);
sync;
return (x+y);

}
}

Fast/sequential clone

From Frigo et al. 1998

Optimizations: fast/sequential clone vs. slow/concurrent clone, tail-call elimination,
specialized memory management for activation frames, concurrency throttling...
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Cilk DAG Revisited

Slightly complicated by the optimized fast/slow clone policy
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Back to Work-Stealing

Early implementations are by
I Burton and Sleep 1981
I Halstead 1984 (Multi-Lisp)

Leiserson and Blumofe 1994, randomization and theoretical bounds
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Randomized Work-Stealing

Each processor has a ready-task deque

For itself, this is operated as a stack

Others can “steal” from top

A spawns B

Push A to bottom, start working on B

(like an eager function call)

A stalls (sync) or terminates
Check own “stack” for ready tasks, else “steal” topmost from other random
processor

Initially, one processor starts with the “root” task, all other work queues are empty
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Work-Stealing Implementation With a Lock-Free Deque

State-of-the-art method: David Chase and Yossi Lev 2005:

Uses an array (automatic, asynchronous growth)

One compare-and-swap per take/steal only when the deque has one single element

Memory consistency: on x86, one store-load fence for each task

Sophisticated concurrent algorithm and correctness proof

int take () {
long b = bottom - 1;
item_t *q = deque;
bottom = b;
long t = top;
if (b < t) {
bottom = t;
return EMPTY;

}
int task = q->buf[b%q->size];
if (b > t)
return task;

if (!atomic_cas (&top, t, t+1))
return EMPTY;

bottom = t + 1;
return task;

}

void push (int task) {
long b = bottom;
long t = top;
item_t *q = deque;
if (b - t > q->size - 1)
expand ();

q->buf[b%q->size] = task;
bottom = b + 1;

}

int steal (item_t *remote_deque) {
long t = top;
long b = bottom;
item_t *q = remote_deque;
if (t >= b)
return EMPTY;

int task = q->buf[t%q->size];
if (!atomic_cas (&top, t, t+1))
return ABORT;

return task;
}
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Generalized, Distributed Work-Stealing Implementations

Hierarchical, heterogeneous, distributed workstealing, accelerators

KAAPI project in Grenoble, by Thierry Gautier, Jean-Louis Roch et al.
http://moais.imag.fr/membres/thierry.gautier/TG/home_page.html

StarPU project in Bordeaux, by Cedric Augonnet (now at NVidia), Samuel Thibault,
Raymond Namyst et al., now running the MAGMA and PLASMA linear algebra libraries
http://runtime.bordeaux.inria.fr/StarPU

43 / 62

http://moais.imag.fr/membres/thierry.gautier/TG/home_page.html
http://runtime.bordeaux.inria.fr/StarPU


Advanced Course in Shared-Memory Parallel Programming

CMU 15-210 course: “Parallel Computing: Theory and Practice”
Umut A. Acar, with Arthur Chargueraud and Mike Rainey

http://www.cs.cmu.edu/~15210/pasl.html

http://www.cs.cmu.edu/afs/cs/academic/class/15210-f15/www/tapp.html
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Foundations: Scott Topology

Domain Theory
Dana Scott (1932–), Turing Award 1976

Denotational semantics of a system of recursive equations, defined as the least fixpoint of
a system of equations over continuous functions

→ General recursion
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Foundations: Kahn Process Networks

Kahn networks, 1974
Gilles Kahn (1946–2006)

Denotational: least fixpoint of a system of equations over continuous functions, for the Scott
topology lifted to unbounded streams

s stream prefix of s′ =⇒ f(s) stream prefix of f(s′)

Operational: communicating processes over FIFO channels with blocking reads

→ Deterministic by design

→ Dynamic process creation, parallel composition, reactive systems

→ Effective means to distribute computations

Languages: Lucid, SISAL
(a KPN can be simulated by a lazy functional language)

See the course’s second part and MPRI 2.23.1. Synchronous Systems

47 / 62



Foundations: Kahn Process Networks

Kahn networks, 1974
Gilles Kahn (1946–2006)

Denotational: least fixpoint of a system of equations over continuous functions, for the Scott
topology lifted to unbounded streams

s stream prefix of s′ =⇒ f(s) stream prefix of f(s′)

Operational: communicating processes over FIFO channels with blocking reads

→ Deterministic by design

→ Dynamic process creation, parallel composition, reactive systems

→ Effective means to distribute computations

Languages: Lucid, SISAL
(a KPN can be simulated by a lazy functional language)

See the course’s second part and MPRI 2.23.1. Synchronous Systems
47 / 62



Functional Determinism and Dependences

Back to Kahn Networks

How to build a task graph? At run time?

How to describe dependences between tasks?

How to extend a scheduling algorithm to deal with dependent tasks?

Programming Model for Kahn Networks

Cilk only has join synchronization, and spawned tasks are immediately ready
(strictness)
The schedule is over-constrained, which is detrimental to scalability and load
balancing

Point-to-point dependences allow for more expressive patterns of parallelism
1 Explicit dependences: futures, channels, tag matching, etc.
2 Implicit dependences: inferred from the dynamic instrumentation of annotated data

accesses: StarSs, dependent tasks in OpenMP 4
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Scheduling Dependent Tasks

Three Complementary Strategies

1 Rely on the control sequence only:
map A and B to the same worker thread and run A; B; if B depends on A!

2 Partition the task pool into waiting and ready tasks, and check for dependence
resolution in the scheduler:

I control-flow execution model: futures
I data-driven, or data-flow execution model

3 Use low-level thread synchronization methods:

I Condition variables with locks
I FIFO buffers
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Futures

Intuition
I Lazy evaluation

(note: can be simulated in an eager, a.k.a. strict language
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Lazy.html)

I Concurrent execution
instead of sequential, demand-driven suspension

Terminology: to fulfill, resolve or bind a future
wait(), get(), bind()
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Futures in C++11

#include <future>
#include <iostream>

int calculate_the_answer_to_LtUaE();
void do_stuff();

int main()
{

std::future<int> the_answer = std::async(calculate_the_answer_to_LtUaE);
do_stuff();
std::cout << "The answer to life, the universe and everything is "

<< the_answer.get() << std::endl;
}
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Digging into the Semantics: Futures in C++11

Implemented as a library based on the C++11 memory model and thread library
I Promise (communication and synchronization only): promise<T>, set value(),

set exception(), get future()
I Future (promise + thread creation): std::async, get()
I Function returning a future value: packaged task<T>

Memory management: unique vs. shared futures

Concurrent execution or lazy suspension?
std::launch::sync vs. std::launch::async launch policies

Data-flow or non-deterministic select?

Optimization for futures:
some uses of =, tuple operations, a few arithmetic operations, futures of constants,
etc.

Trolling on futures in C++11:
http://bartoszmilewski.wordpress.com/2009/03/03/broken-promises-c0x-futures
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Futures in F#

async combinator and let! future-binding keyword

Async module for work distribution and thread pool management

let triple =
let z = 4.0
[ async { z * z };
async { sin z };
async { log z } ]

let reduced_triple =
async { let! vs = Async.Parallel triple

Array.fold_left (fun a b -> a + b) 0.0 vs }

printf "Result = %f\n" (Async.Run reduced_triple)
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Futures in F# With Asynchronous I/O

let TransformImage pixels img =
// Some image processing

let ProcessImage img =
async { use inStream = File.OpenRead (sprintf "source%d.jpg" img)

let! pixels = inStream.ReadAsync (1024*1024)
let pixels’ = TransformImage pixels img
use outStream = File.OpenWrite (sprintf "result%d.jpg" img)
do! outStream.WriteAsync (pixels’)
do Console.WriteLine "done!" }

let ProcessImages () =
Async.Run (Async.Parallel

[ for img in 1 .. numImages -> ProcessImage img ])

Each of the load/process/save steps is taking place in a distinct task mapped to the
thread pool
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Futures: Important Properties

Very expressive
I Dynamic dependence graph

Preserve determinism

When using futures in a purely functional way (async and get()):
I Preserves the strictness property of Cilk, enabling the “compilation of parallelism”

through the sequential execution of asynchronous calls
I No risk of dead-locks

When separating the promise and the coroutine in futures:
I Strictness is lost in general
I Cyclic dependence graphs can be built, leading to deadlocks
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Futures: Performance Problems

Does not interact well with work-stealing

Dynamic memory management (heap object)

Need reference counting or garbage collection in general

Blindness of task scheduler w.r.t. future synchronizations
I The critical path is hidden
I Memory consumption of suspended, waiting tasks

Non-locality of future values w.r.t. their binding (consumer) tasks

Scheduling overhead of task suspension
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Futures in Rust

From Tokio: https://tokio.rs

https://tokio.rs/docs/getting-started/futures

https://docs.rs/futures/0.1.15/futures

Beyond futures: streams and sinks
https://tokio.rs/docs/getting-started/streams-and-sinks

Wrapping futures for reactive (asynchronous) I/O: event loops
https://tokio.rs/docs/getting-started/reactor
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Bulk-Synchronous Parallelism (BSP)

About BSP: http://www.bsp-worldwide.org

PRAM generalization...
with point-to-point network and efficient synchronization barriers

Founded by Leslie Valiant, 2010 Turing Award
“A Bridging Model for Parallel Computation”, CACM, 1990

Successful for complexity studies
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Bulk-Synchronous Parallelism Reloaded

BSP-based CPU+GPU programming with locality optimization
→ The H3LMS experiment, with Jean-Yves Vet and Patrick Carribault at CEA

Data center frameworks:
→ data- and I/O-centric map-(shuffle-)reduce

... with transparent distribution and fault tolerance

... on key-value pairs
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Safe and Efficient Computing

Direction

Reconciling safety and efficiency in parallel programs

State of the Art – Rust and Beyond

Safe memory management, mostly at compilation time, based on lifetimes and move
semantics

Fork/join task parallelism with the Cilk “parallel pair” and work-stealing

Bulk-synchronous CPU+GPU acceleration with hierarchical work-stealing

Dependent tasks with futures

Asynchronous I/O with futures and on-demand streams

Explicit reference counting, lock/mutex and low-level atomic operation to manage
concurrency at runtime, and to locally break out of functional determinism
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