
Master Parisien de Recherche en Informatique Systèmes Synchrones

2019–2020 T. Bourke & M. Pouzet

TP 1 : A Compiler for mini-Lustre

The purpose of this exercice is to write a code generator for mini-Lustre, a small
language similar to Lustre (the syntax and primitives of mini-Lustre are given in the
appendix). The compilation scheme is decomposed into a series of elementary transfor-
mations until the generation of sequential code.

1 Code Generation

1.1 Normalisation

Normalisation is the transformation of a mini-Lustre program into a new mini-Lustre
program in which expressions 〈expr〉 on the right of equations have the following form :

〈atom〉 := 〈ident〉 | 〈const〉
〈bexpr〉 := 〈atom〉 | (〈bexpr〉) | 〈bexpr〉 〈op〉 〈bexpr〉 | 〈unop〉 〈bexpr〉 |

if 〈bexpr〉 then 〈bexpr〉 else 〈bexpr〉 | (〈bexpr〉 , 〈bexpr〉+,)

〈expr〉 := 〈bexpr〉 | 〈ident〉(〈bexpr〉?,) |
〈atom〉 fby 〈atom〉 | (〈atom〉,〈atom〉+,) fby (〈atom〉,〈atom〉+,)

This program transformation may introduce new equations. For example, the norma-
lisation of the following program :

node f(x:int) returns (o:int);

let

o = 1 fby 2 fby x;

tel

node g() returns (o:int);

let

o = f(f(1));

tel

results in :

node f(x:int) returns (o:int);

var aux1, aux2 : int;

let

aux1 = 2 fby x;

aux2 = 1 fby aux1;

o = aux2;

tel

1

node g() returns (o:int);

var aux: int;

let

aux = f(1);

o = f(aux);

tel

1.2 Static Scheduling

The second transformation is static scheduling. This transformation orders equations
from a node so that they can be executed sequentially. The order between equations
should respect the causality relation between variables. Precisely, an equation x = e

must be scheduled after all the variables read in e have been scheduled. An equation
x = v fby e must be scheduled before all equations that read x.

1.3 Generating Sequential OCaml Code

Important. In the following, we suppose that both normalisation and scheduling have
been done.

Remark. To help you understand what is required in this exercise, we provide a com-
plete version of the minilustre compiler. It is available with the other files on the website.

1.3.1 General Principals

A particular point to take care of in the compilation of mini-Lustre is the translation
of equations containing the fby operator.

Consider the example of an equation x = e1 fby e2. A the initial instant t0, the
data-flow x equals e1 then, at the later instant ti, x has the value e2 had at instant ti−1.
The compilation of such an expression needs a way to “remember” the value e2 had at
instant ti−1 in order to compute the value of x at instant ti. This is achieved by allocating
a memory cell to store the current value of e2.

Memory cells for fby expressions must be allocated for every call to a node. Indeed,
consider :

node f(x:int) returns (o:int);

let

o = 2 fby (o+x);

tel

node g() returns (o1,o2:int);

let

o1 = f(5);

o2 = f(10);

tel

The evaluation of equations o1 = f(5) and o2 = f(10) in the node g requires the
allocation of two different memory cells for the equation o = 2 fby (o+x) in node f

(since the data-flow o returned by node f is different for every value of argument x).

2

These memory cells being different for different calls to node f, they become supple-
mentary arguments to every call to f. These node memories are called internal memories
in the following. All the memories associated to fby expressions from the same node will
be gathered in a single data-structure to minimize the number of extra arguments of a
node.

The remaining describes this compilation principle into OCaml more precisely.

Important. To simplify the compilation process, we suppose that the left argument of
fby is a constant expression (constants or tuples of constants).

1.3.2 Compilation of a node

The compilation of a node from mini-Lustre into OCaml produces the three following
definitions :

— un record type to represent the internal memory of the node ;
— a function to allocate and initialize this memory ;
— and a transition function to compute a reaction (this function is parameterized by

the memory of the node and its current inputs).

Let us illustrate the compilation process on the following example :

node minmax (x:int) returns (min,max:int);

var pmin,pmax:int; first:bool;

aux1, aux2: int;

let

first = true fby false;

(aux1, aux2) = (0,0) fby (min, max);

(pmin, pmax) = if first then (x, x) else (aux1, aux2);

(min, max) = if x < pmin then (x, pmax)

else if x > pmax then (pmin, x)

else (pmin, pmax);

tel

The record type produced for this node is :

type minmax_mem =

{ mutable next_first: bool;

mutable next_aux1: int;

mutable next_aux2: int; }

It contains three mutables fields next_first, next_aux1 and next_aux2. The first
corresponds to the memory used to compile the equation first = true fby false.
The following two fields are used to store the state of equation (aux1,aux2) = (0,0)

fby (min,max). These fields will contain at every instant the value of the data-flow for
the next step. The record structure is allocated by the initialization function for node
(minmax_init dans la suite), which initializes every field with the left hand side of an
expression fby. The record is updated by the transition function minmax_step.

The initialization function for node minmax is defined in the following way :

3

let minmax_init () =

{ next_first = true;

next_aux1 = 0;

next_aux2 = 0; }

Finally, the transition function is given below :

let minmax_step mem x =

let first = mem.next_first in

let (aux1, aux2) = (mem.next_aux1, mem.next_aux2) in

let (pmin, pmax) = if first then (x, x) else (aux1, aux2) in

let (min, max) = if x < pmin then (x, pmax)

else if x > pmax then (pmin, x)

else (pmin, pmax) in

mem.next_first <- false;

mem.next_aux1 <- min;

mem.next_aux2 <- max;

(min, max)

This function takes the internal memory of the node and its current inputs. The body
of the function can be decomposed into three parts :

— the computation of the current value of every data-flow : first, aux1, aux2, pmin,
pmax, min and max

— the update of memories for the right hand side of fby expressions : mem.next_first,
mem.next_aux1 and mem.next_aux2

— the return of output data-flows computed by the node : (min,max)

Calling a node. Consider the code generated for the call of a node on the exemple
below :

node minmax2(x,y: int) returns (min,max: int);

var min_x, max_x, min_y, max_y: int;

let

(min_x, max_x) = minmax(x);

(min_y, max_y) = minmax(y);

min = if min_x < min_y then min_x else min_y;

max = if max_x > max_y then max_x else max_y;

tel

The record type that is produced for this node is :

type minmax2_mem =

{ mem1: minmax_mem;

mem2: minmax_mem; }

It contains two fields mem1 and mem2 of type minmax_mem which correspond to the
memory state of the two calls to minmax. These fields are given as arguments to the
function minmax_step. The initialization function of the node is defined in the following
way :

let minmax2_init () =

{ mem1 = minmax_init();

mem2 = minmax_init(); }

4

Every call to this function creates a value of type minmax2_mem which corresponds to
the memory necessary to execute the minmax2 node. This memory contains the memory
fields mem1 and mem2 that are necessary to execute the two calls to minmax. These two
fields are initialized by calling the function minmax_init.

The transition function minmax2_step is defined by :

let minmax2_step mem (x, y) =

let (min_x, max_x) = minmax_step mem.mem1 x in

let (min_y, max_y) = minmax_step mem.mem2 y in

let min = if min_x < min_y then min_x else min_y in

let max = if max_x > max_y then max_x else max_y in

(min, max)

mem.mem1 and mem.mem2 are the two local memories.

Remark. The compilation of function calls to primitives does not need extra memories.

1.3.3 The Main Program

The execution of a program from mini-Lustre never ends. It is an infinite sequence
of calls to the transition function of the main node. If the node main is the main node
of the program (its type signature must be unit→unit), the corresponding driver code
resembles :

let _ =

let mem = main_init () in

Graphics.open_graph "";

Graphics.auto_synchronize false;

while true do

Graphics.clear_graph ();

main_step mem ();

Graphics.synchronize();

wait()

done

2 The compiler

You can download the compiler of mini-Lustre with “holes” at http://www.di.ens.
fr/~pouzet/cours/mpri/tp1/mini-lustre.tgz. This archive contains two directories.
The directory examples contains programs written in mini-Lustre and the directory
compiler contains the following files :

— Makefile : to compile the compiler by entering make ;
— asttypes.mli : the definition of types used in the abstract syntax tree ;
— ast.mli : the definition of types for the abstract syntax tree for mini-Lustre ob-

tained after the syntactic analysis ;
— typed_ast.mli : the definition of types to represent the abstract syntax tree

annotated with type annotations ;
— imp_ast.mli : the definition of types to represent abstract syntax tree from the

target imperative language ;

5

— lexer.mll : lexical analysis ;
— parser.mly : syntax analysis ;
— typing.ml : functions to typecheck a program ;
— normalization.ml : functions that implement the normalization step ;
— scheduling.ml : functions to schedule typed syntax trees ;
— imp.ml : functions to translate the typed abstract syntax into the abstract syntax

of the target imperative language ;
— ocaml_printer.ml : printer for the imperative target language into OCaml code ;
— typed_ast_printer.ml : functions to print a typed abstract syntax tree ;
— typed_ast_utils.ml : functions to browse the typed abstract syntax tree ;
— checks.ml : a verification procedure to check that transformations are correct ;
— minilustre.ml : main entry of the compiler.
The compiler takes a file mini-Lustre (extension .mls) and generates OCaml code.

The option -main defines the name of the main node and causes the driver loop to
be generated. The option -verbose causes the source code to be printed after every
transformation.

Question 1
Download the compiler then compile and execute the corresponding code for program
simple.mls.

Question 2
Carefully read the files typed_ast.mli and imp_ast.mli that represent abstract syntax
trees that you have to manipulate.

Question 3
Complete places with holes in the files normalization.ml, scheduling.ml and imp.ml.
These places are indicated with a (* TODO *).

A Syntax of the language

We use the following notation in the grammar :

〈rule〉? repetition of the rule 〈rule〉 an arbitrary number of times (possibly zero)
〈rule〉?t repetition of the rule 〈rule〉 an arbitrary number of time (possibly zero),

every occurrence being separated by the terminal t
〈rule〉+ repetition of the rule 〈rule〉 at least once
〈rule〉+t repetition of the rule 〈rule〉 at least once, occurrences being separated

by the terminal t
〈rule〉 ? optional use of the rule 〈rule〉 (i.e. zero or once)
(〈rule〉) parenthesis ; be careful not to mix them with terminals (and)

Spaces, tagulation and new lines are blanks. Comments start with /* and ends at
*/, and they must not be nested. Identifiers follow the regular expression syntax 〈ident〉
defined below :

〈digit〉 ::= 0–9
〈alpha〉 ::= a–z | A–Z
〈ident〉 ::= 〈alpha〉 (〈alpha〉 | | 〈digit〉)?

6

The following identifiers are keywords :

and bool const else false fby float

if int let node not or returns

string tel then true unit var

Integer constants are defined by the following regular expression for 〈integer〉 :

〈integer〉 ::= 〈digit〉+

and floating point values by 〈float〉 :

〈exponent〉 ::= (e | E) (- | +) ? 〈digit〉+
〈float〉 ::= 〈digit〉+ . 〈digit〉? 〈exponent〉 ?

| 〈digit〉? . 〈digit〉+ 〈exponent〉 ?
| 〈digit〉+ 〈exponent〉

Charater strings are delimited by the character ". They can contain any character, ex-
cepted ", \ and new line. These three special characters must be encoded (inside a string)
by the sequences \", \\ and \n, respectively.

The grammar for source files is given below. The input entry is the non terminal
〈fichier〉.

〈fichier〉 ::= 〈noeud〉? EOF
〈noeud〉 ::= node 〈ident〉 (〈decl〉?;) returns (〈decl〉+;) ; 〈local〉 ? let 〈eq〉+ tel

〈decl〉 ::= 〈ident〉+, : 〈type〉
〈local〉 ::= var 〈decl〉+; ;

〈eq〉 ::= 〈motif 〉 = 〈expr〉 ;
〈motif 〉 ::= 〈ident〉 | (〈ident〉 , 〈ident〉+,)

〈expr〉 := 〈ident〉 | 〈const〉 | 〈expr〉 〈op〉 〈expr〉 | 〈unop〉 〈expr〉 |
〈ident〉(〈expr〉?,) | if 〈expr〉 then 〈expr〉 else 〈expr〉
| (〈expr〉 , 〈expr〉+,) | 〈expr〉 fby 〈expr〉 | (〈expr〉)

〈op〉 := + | - | * | / | +. | -. | *. | /. |
<= | >= | > | < | <> | = | and | or

〈unop〉 := - | -. | not
〈const〉 ::= true | false | 〈integer〉 | 〈float〉 | 〈string〉 | ()

〈type〉 ::= bool | int | float | string | unit

The language mini-Lustre contains a set of primitives gathered into four groups. The
first gathers primitives to convert base types.

float_of_int : int → float

int_of_float : float → int

float_of_string : string → float

int_of_string : string → int

bool_of_string : string → bool

The second set contains two random number generators and two trigonometric func-
tions :

7

random_int : int → int

random_float : float → float

cos : float → float

sin : float → float

The third set contains primitives for graphics :

draw_point : (int, int) → unit

draw_line : (int, int, int, int) → unit

draw_circle : (int, int, int) → unit

draw_rect : (int, int, int, int) → unit

fill_rect : (int, int, int, int) → unit

get_mouse : unit → (int,int)

Finally, the last set contains two input/output primitives : the function read, with
signature unit → string, reads characters on the standard input until a new line, and
it returns the input string, and the primitive print takes an n-tuple of arguments with
arbitrary size and has a returned value of type unit.

8

