
Systèmes Synchrones
MPRI – cours 2.23-1 2016-2017

Final Exam
November 29, 2016

This text has 4 pages. The time limit is 3h. Courses notes are allowed.

Exercice 1

Let x = (xn)n∈IN and y = (yn)n∈IN two sequences. x =n y means that they are equal up to
instant n ∈ IN , that is, for all 0 ≤ i ≤ n, xi = yi. A function f is one-to-one synchronous if for
all n ∈ IN , x =n y ⇒ f(x) =n f(y).

Let boolIN the set of sequences of boolean values. Give an example of a function f : boolIN →
boolIN that is one-to-one synchronous but whose output at instant nmay depend on an unbounded
past of its input. Advice: Give a precisely defined function.

Exercice 2

Write (in Lustre or Esterel) a function with two boolean input signals a and b which returns true
when a and b alternate, i.e., it is not possible to have two occurrences of a without having one of
b (and reciprocally).

Two inputs a and b are said to be quasi-synchronous if there is at most 2 occurrences of one
between two occurrences of the second. Write a Lustre function which returns true whenever its
two inputs are quasi-synchronous.

Problem: Sequential operators

In this problem, you will extend a language kernel similar to Lustre with control structures and
study their translation into the kernel. The syntax of the language is given below.

d ::= node f(p) returns (q)D

p, q, r ::= x | x, ..., x
D ::= D and D | x = e | var r doD done

e ::= v | x | true | false | e+ e | e = e | e and e | e or e | not e
| pre v e | init v | if e then e else e

d is the definition of a node with formal parameters p, result q and body D. p, q and r denote
patterns; here lists of variables. D stands for equations of the form x = e, with e an expression,
parallel compositions of equations, D and D and hiding a local variable r (var r doD done). v
denotes a value (either integer i or boolean, true, false). + stands for integer addition; and for
logical conjunction; or for logical disjunction, and; not for negation. pre v x is the previous value
of a signal initialized with value v. init v is initially v then false, forever.

We write preb e as a shortcut for pre false e. We will also simply write pre(e) for pre −1 e.

Reaction semantics: The reaction semantics for this kernel has been given in the course. We
remind the main predicates.

1

Values: v ::= i | true | false
Environnement: R ::= [v1/x1, ..., vn/xn] (∀k, l, k 6= l⇒ xk 6= xl)

Composition: R1, R2 tq Dom(R1) ∩Dom(R2) = ∅

Reaction: R ` e1
v→ e2 R ` D R′

→ D′ with R′ ⊆ R
Run: R.h ` D : R′.h′

History: h ::= ε | R.h

• R ` e1
v→ e′1 means that, under the local environment R, the expression e1 produces the

value v and rewrites to e′1.

• R ` D R′

→ D′ means that, equation D produces R′ and rewrites to D′. For that, we maintain
the invariant that D sees the signals that are produced, that is, R′ ⊆ R.

Question 1 Define the following operations in terms of the kernel language:

1. until(x) returns a sequence ok that is initially false and that only becomes true as soon as
x is true in the strict past. Once ok becomes true, it stays true.

2. unless(x) returns a sequence ok with current value true as soon as x is true. The current
value of ok is false otherwise. Once ok is true, it stays true.

3. Express the initialization operation x -> y in term of the constructs of the language.

The following questions involve extending the kernel language with new programming con-
structs by defining the cases of a translation function Tr(.) where Tr(D) takes an equation D and
returns another equation D′.

Advice: For this translation, you can program it in OCaml provided that you have properly
defined the data type for representing abstract syntax trees.

Activation Condition

The kernel language is now extended with an “activation condition” mechanism. The syntax is
given below:

D ::= activate if e then D done | ...

Intuitively, in activate if e then D done, the equation D is active only at the instants when e is
true. Otherwise, variables from D keep their previous values. For example, the following program
defines the sequence: cpt = -1 -1 42 43 43 43 44 45 45 45 46 47 ...

activate if cond then cpt = 42 -> pre cpt + 1 done

and

cond = false -> (preb (false -> not (preb cond)))

Question 2 Is the previous program equivalent to the following one? Explain why.

cpt = if cond then 42 -> pre cpt + 1 else pre cpt

and cond = false -> (preb (false -> not (preb cond)))

Question 3 Propose an equivalent version that does not use the “activation condition” control
structure.

Question 4 Define a translation function Tr(D) which translates D from the extended language
into a semantically equivalent equation D′ from the kernel language.

2

Question 5 Propose a sufficient condition on activate if e then D done so that its translation
is causally correct, in the Lustre sense.

Question 6 [*] Extend the reaction semantics to deal with this new construct. Prove that your
translation is correct.

We now extend the syntax and semantics of activation conditions to allow a default handler
to be executed when the boolean condition is false.

D ::= activate if e then D else D | ...

For example, the following program:

activate if cond then cpt = 42 -> pre cpt - 1

else cpt = 45 -> pre cpt + 1 done

and cond = false -> (preb (false -> preb (false -> not (preb cond))))

defines the sequence cpt = 45 46 47 42 41 40 48 49 50 39 38 37 ... (pre cpt denotes a
local memory updated only when the code in which it appears is active. The two occurrences of
pre cpt denote different memories).

Question 7 Give an equivalent definition without using the binary activation condition.

Question 8 Extend the translation function Tr(.) accordingly. You may assume that the sets of
non-local variables defined in D1 and D2 in activate if e then D1 else D2 are the same.

Question 9 Extend the translation function Tr(.) to handle the general situation where the two
branches do not necessarily define the same variables.

Question 10 [*] Extend the reaction semantics for this new construct activate if e then D1 else D2.
Prove that your translation preserves the semantics.

Sequencing Operations

We now introduce sequencing constructs.

D ::= · · · | do D until e then D | do D unless e then D

do D1 until e then D2 gives weak preemption: D1 is activated up to and including the first
instant that the boolean condition e becomes true. The execution of E2 then starts in the following
instant. do D1 unless e then D2 gives strong preemption: D1 is executed up to but not including
the first instant that e is true. D2 starts at the first instant when e is true. Thus, the program:

do x = 0 -> pre x + 1 until (x = 5) then x = 10 done

defines the sequence x = 0 1 2 3 4 5 10 10 10 10 ... The following program:

do x = 0 -> pre x + 1 unless cond then x = 10 done

and

cond = false -> preb (false -> true)

defines the sequence x = 0 1 10 10 10 ...

Question 11 Extend the translation function Tr(.) with the two sequencing constructs.

Question 12 Define a causality constraint that ensures the translated code is causally correct in
the Lustre sense.

Question 13 Can one of the constructs (weak versus strong) be expressed in terms of the other?

Question 14 [*] Extend the reaction semantics for this new construct. Prove that your transla-
tion preserves the semantics.

3

Exceptions

The kernel language is now extended with a programming construct to raise and trap exceptions.

D ::= exit T | try D with | T then D ... | T then D done

exit T raises the exception with name T (we suppose that exception names are declared globally).
The construct try D with | T1 then D1 ... | Tn then Dn done, where T1, . . . , Tn are supposed
to be pairwise distinct, executes D and at the instant Ti is raised, the corresponding block Di

becomes active for the rest of the execution.

An exception T can be raised several times in a single instant (e.g., exit T and exit T) with
the same effect as a single raise. Two different exceptions can also be raised simultaneously (e.g.,
exit T2 and exit T1): the first matching handler in the list of handlers is activated (here D1).

Exceptions are an essential feature to deal with partially defined functions, e.g.:

node safe_div(x, y) returns o

if y = 0 then exit Div_by_zero else o = x / y done

The specification is voluntarily left informal so that you have full freedom to interpret the
exception mechanism on you own, to propose a semantics, a translation and/or a compilation
mechanism.

Question 15 What behavior would you propose for the following two programs, in term of in-
put/output values?

if y = 0 then exit Div_by_zero else o = x / y done

and

k = o + 1

and m = 0 -> pre m + 1

and:

trap

if y = 0 then exit Div_by_zero else o = x / y done

and

k = o + 1

and m = 0 -> pre m + 1

with

Div_by_zero -> o = 42 done

and

po = 0 -> pre(o)

The reaction semantics for equations can be extended by adding the set of exceptions that are
raised.

R ` D R′ | S−→ D′ with R′ ⊆ R

where S = {T1, ..., Tn} is a set of exception names. Its intuitive meaning is that the set of equations
D defines the reaction environment R and raises the set of exceptions S. When no exception is
raised, this set is empty.

Question 16 What would you suggest for the reaction semantics for the construction trap/with

and exit T? Illustrate you choice on the three previous examples.

Propose a formal definition for the predicate R ` D R′ | S−→ D′ for the two programming con-
structs.

Question 17 Propose an encoding of exit T and the trap/with construct by mean of the
programming constructs considered in the previous sections. Extend Tr(.) accordingly.

4

