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Plan of the talk

1. What is hybrid systems programming?

2. Some issues with existing hybrid systems modelers.

3. Hybrid systems practicalities (the numeric solver).

4. A proposal for improvement.

5. The Zélus prototype.

6. Some solutions and open questions.
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Programming languages for hybrid systems

Mix discrete and continuous-time behaviours in a single program source. Use it to

simulate, test, and generate embedded code.

Avoid some implementation choices of existing hybrid modelers.

• Discrete Time is when the solver decides to stop.

• Avoid VHDL-like run-to-completion to decide weither a fix-point has been

reached or not.

Objective

• A synch. language that mix data-flow equations, automata and ODEs.

• Be conservative w.r.t the synchronous subset (same semantics, compiler).

Divide & Recycle

• Typing and analysis to divide discrete-time from continuous-time signals.

• Recycle an existing synchronous compiler; run with an off-the-shelf solver.
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The current practice

Embedded software interacts with physical devices for which continuous-time

models are effective. A model (program) has to mix:

• a discrete/continuous controller and a discrete/continuous environment;

• a continuous environment with several modes (clutch-control, etc.).

The classical use A controller in closed loop with its environment.

E.g.,: A continuous or discrete PID controller; A continuous or discrete model of

the Physical environment.
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Controllers are not necessarilly discrete (for CS people)

E.g., A PID controller can be either continuous or discrete. A first model made

with a continuous controller, than sampled, than turned into discrete.

Simulate with a variable-step solver (for efficiency); then fixed-step (for timing);

then turn integral and derivative into difference equations (for embedded code).
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Current Tools

A lot of industrial tools exist and are widely used:

• Simulink/Stateflow (≥ 106 licences), LabVIEW: ODEs+discrete;

• Modelica, VHDL-AMS, VERILOG-AMS: DAEs+discrete;

• Dedicated tools to one continuous physics (e.g., mechanics, electro-magnetics,

fluid). Some do multi-physics (ANSYS). Possibly paired with other tools.

• Dedicated tools for discrete-time only: SCADE.

Mathematical objects are:

• Difference equations; hierarchical automata.

• Differential equations (ODEs, DAEs, semi-explicit).

From a programming language perspective:

• Deterministic parallelism at every level (block diagrams).

• Time is logical and global (computation times are neglected).

A numeric solver to find a compromise between precision and efficiency.
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Yet...

There is a gap between the mathematical models and their implementation. No

comprehensive semantics of hybrid modelers exist at the moment.

• A semantics exists for discrete subsets only (e.g., [Caspi et al., Hamon and

Rushby, Hamon] for Simulink/Stateflow).

• Mosterman et al., Lee et al., made important clarifications on the behaviour of

hybrid modelers continuous/discrete interactions.

Some problems are unavoidable and due to numerical approximation and the use of

floatting-point numbers. What we focus on is the interaction between continuous

and discrete, not the way continuous trajectories are approximated.

One problem is that time is not logical:

Time is that of the simulation engine which exposes its internal steps. This may

cause strange behaviours.

Let us see what it mean to have two systems in parallel.
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Parallel composition: homogeneous case

Two equations with discrete time:

f = 0.0 → pre f + s and s = 0.2 * (x - pre f)

and the initial value problem (IVP):

der(y’) = -9.81 init 0.0 and der(y) = y’ init 10.0

The first program can be written in any synchronous language, e.g. Lustre.

∀n ∈ IN∗, fn = fn−1 + sn and f0 = 0 ∀n ∈ IN, sn = 0.2 ∗ (xn − fn−1)

The second program can be written in any hybrid modeler, e.g. Simulink.

∀t ∈ IR+, y
′(t) = 0.0 +

∫ t

0
−9.81 dt = −9.81 t

∀t ∈ IR+, y(t) = 10.0 +
∫ t

0
y′(t) dt = 10.0− 9.81

∫ t

0
t dt

Parallel composition is clear since equations share the same time scale. Given

the IVP, the numeric solver computes a sequences of approximated values for y and

y′ at instants t ∈ I, with I ⊆ IR and order isomorphic to IN .
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Parallel composition: heterogeneous case

Two equations: a signal defined at discrete instants, the other continuously.

der(time) = 1.0 init 0.0 and x = 0.0 fby x + time

or:

x = 0.0 fby x +. 1.0 and der(y) = x init 0.0

One might consider that the first means: ∀n ∈ IN, xn = xn−1 + time(n)

And the second:

∀n ∈ IN∗, xn = xn−1 + 1.0 and x0 = 1.0

∀t ∈ IR+, y(t) = 0.0 +
∫ t

0
x(t) dt

i.e., x(t) as a piecewise constant function from IR+ to IR+ with

∀t ∈ IR+, x(t) = x⌊t⌋.

In both cases, this would be a mistake. x is defined on a discrete, logical time. The

index of the sequence (x)i∈IN has no relation with absolute time IR.
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Equations with reset

Two independent groups of equations. A sawtooth signal p:

der(p) = 1.0 init 0.0 reset up(p - 1.0) → 0.0

and

x = 0.0 fby x + p

and

der(time) = 1.0 init 0.0

and

z = up(sin (freq * time))

Properly translated in Simulink, changing freq changes the output of x!
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What does Simulink on that example?

Select solver ode45 (the default one); Amp = 1; Freq = 1 (sinusoid)
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What does Simulink on that example?

Select solver ode45 (the default one); Amp = 1; Freq = 5 (sinusoid)

Yet, Simulink complains about this model: it finds an unproper mix of

discrete/continuous-time.
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Strange behaviours of Hybrid modelers

E.g., Simulink/Stateflow. What is a discrete step? How long is it?

Select solver ode23s (stiff/Mod. Rosenbrock); Amp = 1; Freq = 1 (sinusoid).
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Strange behaviours of Hybrid modelers

E.g., Simulink/Stateflow.

Select solver ode45 (Dormand-Prince): we get Amp = 1; Freq = 1 (sinusoid).
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Strange behaviours of Hybrid modelers

E.g., Simulink/Stateflow.

Select solver ode45 (Dormand-Prince): we get Amp = 1; Freq = 5 (sinusoid).

Changing the frequency/solver changes the semantics. Only one transition is taken

during a step and it takes some amount of time.
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Strange behaviours of Hybrid modelers

Adding delay/memory blocks or shared variables is sometimes mandatory to break

algebraic loops.

E.g., use the state port when resetting an integrator.

The stateport cannot be outputed. Yet, it is possible to store it into a memory

block. The signal is shifted in a variable manner.
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Strange behaviours of Hybrid modelers

Use a goto/from port or a write/read block. The main system reads from A. The

subsystems outputs the value of the stateport into A.
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Strange behaviours of Hybrid modelers

Two teams, each of them in charge of a block (Up and Down). Merge them. A

memory block is necessary to break the algebraic loop.

page 18/86



Strange behaviours of Hybrid modelers

Use the from/goto port to pass states between enabled subsystems. This work for

two subsystems only. Yet, a memory block is necessary.
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Strange behaviours of Hybrid modelers

Alternatively, directly write the hybrid automaton.

But we have abandonned modular design (two different teams developing different

parts of a model).

• The only solution is to use read/write to global shared variables for every

mode. They must be used carefully because of possible critical races.

• Concurrent writes are treated according to lexical order between block names.
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What went wrong?

The partition between discrete time and continuous time is not strong enough.

Discrete time is the one of the global simulation. Those models should be statically

detected to be wrong and rejected

We propose the following discipline [LCTES’12, EMSOFT’12]:

A signal is discrete if it is activated on a discrete clock, that is so defined:

A clock is termed discrete if it has been declared so or if it is the result of a

zero-crossing or a sub-sampling of a discrete clock. Otherwise, it is termed

continuous.

Impose a type discipline for that such that signals are proved to be left continuous

during integration with all discontinuities announced to the solver. This is not

enough. Algebraic loops must be broken.

Provide a construct lastx that returns the previous value of x. In

Non-standard semantics [CDC’10,JCSS’12], it coincides with the left-limit

of x when x is left-continuous; the previous one otherwise.

Ensure the two disciplines above with static typing and a causality analysis.

Strange Simulink examples would all be statically rejected.
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The Practicalities of Hybrid Simulation

The interface of a numeric solver (e.g. SUNDIALS CVODE) is:

• a function fy(t, x) that maps simulation time and state vector x to a vector of

intantaneous derivatives; it can be parameterized by y.

• a function gy(t, x) that returns a vector z of zero-crossing expressions values.

Given horizon h, approximates x(ti + h) from ti to ti + h, observing the current

time ti, while monitoring the elements of z for change of sign.

C phase: ẋ = fy(t, x) z = gy(t, x)

Between continuous phases, discrete changes are allowed:

D phase: y′, goagain ′, x′ = next(y, x) if up(z1) ∨ · · · ∨ up(zn) ∨ goagain

It defines a new value for y, goagain and x. Loop while goagain is true.

Initialisation:

x = x0
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The simulation cycles between discrete and continuous phases.

D C

reaction

[reinitialize]

event
approximate
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The Practicalities of Hybrid Simulation

In Modelica, these two functions are represented by a single one (called a FMUa.)

ẋ, x′, y′, go′, z′ = fmu(y, t, x, z)

Finally, fy, gy and next can be programmed by hand (e.g., in C). For the

simulation to be faithful, it is important that:

• fy and gy are free of side effects and continuous during integration.

• all discrete changes are done outside, typically at a zero-crossing instant or the

end of an horizon.

Programmed by hand, these invariants are difficult to ensure.

Moreover, the semantics of the simulation engine can be defined formally [BCP+15].

Objective: Define a high-level language that compiles to f, g,next(·) (or fmu(·))
with the above invariants ensured by construction.

aSee Functional Mock-up Interface https://www.fmi-standard.org.
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The Practicalities of Synchronous Programming

In a synchronous language (e.g., SCADE), one write difference equations and

hierarchical automata. Programs are compiled into pairs of:

A state s : S; a transition function step: S × I → O × S

Then, the execution is cyclic, either periodically sampled or event-triggered.

Example (in Zélus syntax):

let node filter(x) = f where

rec f = 0.0 → pre f +. s and s = 0.2 *. (x -. pre f)

is translated into the straight-line imperative code:

type filter = { mutable pre16 : float; mutable init17 : bool }

let filter_alloc () = { pre16 = 0.0; init17 = true }

let filter_step self x12 =

let pf13 = self.pre16 in

let s14 = ( *. ) (0.2) ((-.) (x12) (pf13)) in

let f15 = if self.init17 then 0. else (+.) (pf13) (s14) in

self.init17 <- false; self.pre16 <- f15; f15
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Zélus
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A prototype of a new Scade-like language with ODEs

Before showing a bit of theory, let’s see a few examples with:

• Difference equations; hierarchical automata; ODEs.

Main features:

• A type system that reject some bad behaviour are the one showed previously.

• An initialization analysis to check that state variables (discrete or continuous)

are properly initialised.

• A causality analysis to ensure that fix-points can be computed sequentially.

• A translation into synchronous code which is in turn compiled into sequential

code by an existing compiler.

• The continuous part is approximated by an off-the-shelf solver (here

SUNDIALS CVODE).
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Combinatorial and sequential functions

Time is logical as in Lustre. A signal is a sequence of values and nothing is said

about the actual time to go from one instant to the other.

let add (x,y) = x + y

let min_max (x, y) = if x < y then x, y else y, x

let node after (n, t) = (c = n) where

rec c = 0 → pre(min(tick, n))

and tick = if t then c + 1 else c

When feed into the compiler, we get:

val add : int × int → int

val mix_max : α × α → α × α

val after : int × int ⇒ bool

Here x, y, etc. are sequences.
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The counter can be instantiated in a two state automaton,

let node blink (n, m, t) = x where

automaton

| On → do x = true until (after(n, t)) then Off

| Off → do x = false until (after(m, t)) then On

which returns a value for x that alternates between true for n occurrences of t and

false for m occurrences of t.

let node blink_reset (r, n, m, t) = x where

reset

automaton

| On → do x = true until (after(n, t)) then Off

| Off → do x = false until (after(m, t)) then On

every r

The type signatures inferred by the compiler are:

val blink : int × int × int ⇒ bool

val blink_reset : int × int × int × int ⇒ bool
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Examples

Up to syntactic details, these programs could have been written as is in Scade 6

or Lucid Synchrone. Now, a simple heat controller with ODEs. a

(* an hysteresis controller for a heater *)

let hybrid heater(active) = temp where

rec der temp = if active then c -. temp else -. temp init temp0

let hybrid hysteresis_controller(temp) = active where

rec automaton

| Idle → do active = false until up(t_min -. temp) then Active

| Active → do active = true until up(temp -. t_max) then Idle

let hybrid main() = temp where

rec active = hysteresis_controller(temp)

and temp = heater(active)

aThis simple example is the hybrid version of the one of Nicolas Halbwachs, used to present

Lustre, during his seminar at Collège de France, in January 2010.
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The Bouncing ball

let hybrid bouncing(x0,y0,x’0,y’0) = (x,y) where

der(x) = x’ init x0

and

der(x’) = 0.0 init x’0

and

der(y) = y’ init y0

and

der(y’) = -. g init y’0 reset up(-. y) → -. 0.9 *. last y’

Its type signature is: float× float× float
C→ float× float

When -. y crosses zero, re-initilize the speed y’ with -. 0.9 * last y’.

last y’ stands for the previous value of y’. As y’ is immediately reseted, writting

last y’ is mandatory; otherwise, y’ would instantaneously depend on itself.
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ODEs and Zero-crossings

E.g., the sawtooth signal, the two-state automaton.

let hybrid sawtooth() = t where

rec der t = 1.0 init -1.0 reset up(last t -. 1.0) → -1.0

let hybrid fm() = t where

rec init t = 0.0

and automaton

| Up → do der t = 1.0 until up(t -. 10.0) then Down

| Down → do der t = -1.0 until up(-10 -. t) then Up

let hybrid fm’() = t where

rec init t = 0.0

and automaton

| Up → do der t = 1.0

until up(t -. 10.0) then do t = last t -. 1.0 in Down

| Down → do der t = -1.0 until up(-10.0 -. t) then Up
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Other examples

Bang-bang controller, bouncing balls, stickysprings, backhoe, etc.
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Synchronous zero-crossings

• up(e) tests the zero-crossing of expression e (from negative to positive).

• If x = up(e), all handlers using x are governed by the same zero-crossing.

• Handlers have priorities.

z = present up(x) → 1 | up(y) → 2 init 0

• lastx is the “previous” value of x. It coincides with the left-limit of x.

– During integration, lastx = x.

– During a discrete step, lastx is the previous value of x.

z = present up(x) → last z + 1 | up(y) → last z - 1 init 0
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Priorities

What if two zero-crossings happen at the same time?

rec der x = 1.0 init -1.0

and z1 = up(x) and z2 = up(x+0)

and z = present z1 → 1 | z2 → 2 init 0

and z’ = present z2 → 1 | z1 → 2 init 0

and ok = (z = z’)

The Illinois method (e.g., that of SUNDIALS CVODE) for zero-crossing detections

finds that both z1 and z2 are true.

rec der one_every_second = 1.0 init -1.0 reset z1 → -1.0

and der one_every_ten_second = 1.0 init -1.0 reset z2 → -10.0

and z1 = up(one_every_second)

and z2 = up(one_every_ten_second)

At time t = 10.0, the Illinois method does not detect that both z1 and z2 are true.

One is slightly before the other.
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What should we do with such programs?

• Writting up(x) twice (or the first example) is certainly not a good idea. If one

wants to synchronize several parts on the same zero-crossing, distribute z1.

• Writting a timer this way (in the second example) is neither a good idea.

• The two programs have a potential critical race. Should we warm the user or

raise an error a run-time?

• Should we statically (or dynamically) reject a program which combines two

signals modified by two independent zero-crossing?

• Would-it be meaningful to consider z1 & z2 (conjunction), and z1 | z2

(union) as an event?

z = present z1 & z2 → 1 | z1 | z2 → 2 init 0

as a short-cut for:

z = present z1 & z2 → 1 | z1 → 2 | z2 → 2 init 0
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Synchronous events

rec z = present z1 → 1 | z2 → 2 init 0

and z’ = present z2 → 2 | z1 → 1 init 0

Several options are possible:

• Forbid them: if two events happen at the same time or are too close to each

others, stop the simulation.

• Treat them sequentially, one after the other: do one discrete step with

z1 = true, t2 = false, and the next step with z1 = false, z2 = true (or

conversely). This introduces non determinacy.

• Allow it. E.g., if z1 and z2 can be true at the same time.

• Set a flag or parameter and specify the composition of events that must not

appear during the simulation (e.g., write assert z1#z2 to indicate that they

must be exclusive). The simulation is stopped at run-time, in that case.

Currently, the choice made in Zélus is that the disjunction and unions of two

events is an event.
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Is z1 & z2 an event?

By considering that z1 & z2 is a possible event, it is possible to take decisions.

E.g.,:

let compute_when_not_synchronous(x, default, z1, z2) = o where

rec o = present z1 & z2 → default else f(x)

let check_non_synchronous(z1, z2) =

present z1 & z2 → true else false
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Open questions

• Is-it reasonnable? Shouldn’t we stop the simulation when two zero-crossings

happen at the same time?

• During a sequence of discrete transitions, if z1 is false and z2 is true, is-it then

possible to have z1 true?

• Should we statically analyse pattern matching on events so that if a branch has

been taken during a discrete transition because z1 was false and z2 is true, it is

then not possible to have z1 true while time does not progress (monotony)?

• Should we raise a run-time error in that case?

• Would it be possible to statically ensure properties like z1 # z2 (exclusive)?
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Somes hints about the semantics, typing

and compilation
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A language kernel

First-order (two distinct name spaces). Data-flow equations.

d ::= let k f(p) = e where E | d; d

e ::= x | v | op(e) | e fby e | lastx | f(e) | (e, e)

p ::= (p, p) | x

E ::= x = e | E and E | local x in E

| if e thenE elseE

| present h init e

| derx = e init e reset h

h ::= e→ e || ... || e→ e

k ::= node | hybrid | ϵ
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A sketch of the semantics [CDC’10, JCSS’12]

The sets ⋆R and ⋆N as the non-standard extensions of R and N.

• ⋆N contains elements that are infinitely large (⋆n > n for any n ∈ N).

• ⋆R contains elements that are infinitesimal, 0 < ∂ < t for any t ∈ R+.

The base clock: ∂ infinitesimal, the set

BaseClock(∂) = {n∂ | n ∈ ⋆N}

is isomorphic to ⋆N as a total order. For every t ∈ R+ and any ϵ > 0, there exists

t′ ∈ BaseClock(∂) such that |t′− t| < ϵ expressing that BaseClock(∂) is dense in R+.

BaseClock(∂) is a natural candidate for a time index set and ∂ is the corresponding

time basis.

For t = tn = n∂ ∈ BaseClock(∂), •t = tn−1 and t• = tn+1.
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A sketch of the semantics

Reason “as if” the time was discrete and global. We borrowed the idea of using non

standard analysis for the semantics of hybrid systems from Bliudze et Krob.

Its use for a hybrid synchronous language is novel.

Clock and signals A clock T is a subset of BaseClock(∂). A signal s is a total

function s : T 7→ V .

If T is a clock and b a signal b : T 7→ B, then T on b defines a subset of T

comprising those instants where b(t) is true:

T on b = {t | (t ∈ T ) ∧ (b(t) = true)}

If s : T 7→ ⋆R, we write T on up(s) for the instants when s crosses zero, that is:

T on up(s) = {t | (t ∈ T ) ∧ (s(•t) ≤ 0) ∧ (s(t) > 0)}

The effect of up(e) could also be delayed by one cycle.

T on up(s) = {t• | (t ∈ T ) ∧ (s(•t) ≤ 0) ∧ (s(t) > 0)}
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Ideal semantics of ODEs with resets

Write x(n), with n ∈ N, for the value of x at time n∂.

The semantics of derx = e init e0 reset z1 → e1 || ...zk → ek is:

x(0) = e0(0)

x(n) = if z1(n) then e1(n) else ...if zk(n) then ek(n) elsex(n− 1) + ∂.e(n− 1)

The semantics of a zero-crossing up(e) and delay are:

up(e)(0) = false

up(e)(n) = (e(n) > 0)&(e(n) ≤ 0)

(lastx)(n) = x(n− 1)

e0 fby e(0) = e0(0)

e0 fby e(n) = e(n− 1)

Note that, from the causality point-of-view, an integrator acts as a delay: it breaks

cycles. E.g., the following program is causal:

der x = 1.0 -. x init 10.0
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Example 1: reset an integrator on a zero-crossing event

let hybrid main () = (x, y) where

rec der x = 1.0 init -1.0

and der y = 0.0 init -1.0 reset up(x) → 1.0

5∂y

x

+1

−1

+∂

−∂

1+ ∂ 2∂ 3∂ 4∂
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Example 2: Unbounded cascades of zero-crossing

let hybrid main () = (x,y,z) where

rec der x = 0.0 init -1.0

reset up(y) → -. 1.0 | up(-. y) → 1.0 | up(z) → 1.0

and der y = 0.0 init -1.0

reset up(x) → 1.0 | up(-. x) → -1.0

and der z = 1.0 init -1.0

y

x

+1

−1
1+ ∂ 2∂ 3∂ 4∂ 5∂ 6∂

• ∂ represent a “very small” step size in that finitely many ∂’s sum up to ≈ 0.

• At t = 1, x and y starts an infinite cascade of zero-crossing while time remains

blocked. This is certainly pathological.

Currently, the Zélus compiler rejects it as there is an instantaneous loop between x

and y because up(x) depends on x.
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It could be made causal by considering the alternative choice for up(x): its effect is

delayed by one cycle.
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Example 3: Sliding mode control

let hybrid main() = y where

rec x = present up(y) → -1.0 | up(-. y) → 1.0 init 1.0

and der y = x init -. y0

let hybrid main2() = y where

rec automaton

| Up → do x = 1.0 until up(y) then Down

| Down → do x = -1.0 until up(-. y) then Up

and der y = x init -. y0

∂ 2∂ 3∂ 4∂ 5∂ 6∂

−∂

+∂

−1

+1

|y0|+

x

y
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• y increases at constant speed until its first zero-crossing, just after t = |y0|.

• Then, y chatters infinitesimally around 0 as its speed alternate between −1 and

+1 with infinitesimal step ∂.

Is-this program pathological?

• It is not Zeno because time progresses strictly but by extremely small steps

(with SUNDIALS CVODE).

• In [JCSS’12] we have said it to be equivalent to:

let hybrid main(y0) = y where

rec der y = x init -. y0

and x = present up(y) → 0.0 init 1.0

We do not intend to obtain it automatically (or to prove the two to be

equivalent).

• The causality analysis of Zélus does not complain as there is no cycle.
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Cascade of zero-crossings

The following program shatters but is perfectly valid: it is never possible to fire

twice in a row the zero-crossing up(y -. 1.0) without simulation time progressing.

let hybrid main2() = y where

rec automaton

| Up → do x = 1.0 until up(y -. 1.0) then Down

| Down → do x = -1.0 until up(-1.0 -. y) then Up

and der y = x init -. y0

But what to say if y-.1.0 is replaced by y and -1.0-.y by -.y? It is not Zeno:

time progresses by a very small step.

Avoid unbounded cascades of zero-crossing: A sufficient condition, checked

at runtime: the very same zero-crossing cannot be fired more than once in a row

during a sequence of zero-crossing transitions.

Open question: Can a static analysis identify those cases?
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Causality analysis of instantaneous zero-crossings

Unbounded cascades of zero-crossings are pathological phenomena. They are a

particular case of zeno.

Intuition: the very same zero-crossing must not be taken twice during a sequence

of discrete reactions.

If S is a system, denote by ZS the set of all its variables of zero-crossings. Write ψi

for expressions up(ei).

[Cascaded zero-crossings] Let ZS be the directed graph collecting all relations

of the form ψ −→ ψ′. If ZS contains no circuit, then all cascades of successive

zero-crossings of S are provably finite.

Examples (1) and (3) are accepted. Example (2) is rejected.

Example (2): Let z1 = up(y), z2 = up(−y), z3 = up(z), z4 = up(x) and

z5 = up(−x). The causality relation is:

• y → z1, y → z2, z → z3, x→ z4. Then, z1 → x, z2 → x, z3 → x, z4 → y,

z4 → y.

• Causality cycle: z1 → x→ z4 → y → z1
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Compilation

The non-standard semantics is not operational. It serves as a reference to establish

the correctness of the compilation. Two problems to address:

1. The compilation of the discrete part, that is, the synchronous subset of the

language.

2. The compilation of the continuous part which is to be linked to a black-box

numerical solver.

Principle

Translate the program into an only discrete one. Compile the result with an

existing synchronous compiler such that it verifies the following invariant:

The discrete state, i.e., the values of delays, does not change

when all of the zero-crossing conditions are false.

Said differently: when those conditions are false, the function is combinatorial.
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Zero-crossings

Does up(e) only detects zero-crossing during integration? We provide several basic

operations.

• up(x) is the disjunction of two basic operations:

1. upc(x) detects a change in sign of x between negative to positive value and

it is the responsability of the solver to implement it. When the detection is

performed if abstract.

2. upd(x) is a discrete zero-crossing. It is an instant in BaseClock(∂) such that:

(x(n−1) ≤ 0)∧(x(n) > 0)∨(x(n−1) < 0)∧(x(n) ≥ 0)∧(time(n−1)+∂ = time(n))

This is not implemented by the solver but directly as synchronous code. It

is activated during a discrete step only:

false → ((last(x) <= 0.0) & (x > 0.0)

or (last(x) < 0) & (x >= 0.0))

& (last(time) = time)
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Some other constructions are provided:

• e1 on e2 is present when e1 is present and e2 is true.

• disc(e) is present when e is not left continuous. Is-this construction useful?

• period(p) is present according to the period p.

A period is either of the form: (f2) or f1(f2). The corresponding event is present at

instants: k × f2 + f1, (k ∈ IN).

Example: Running a process every one milisecond with initial delay of one:

present period(1(0.001)) → controller(x)
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Example (counter)

Add extra input and outputs. The compilation produces a new synchronous

program with extra inputs and outputs. Synchronous functions (nodes) stay

unchanged. It is parameterized by a Boolean flag d, true in a discrete step, false

otherwisea.

1. upc(e) is turned into:

(a) A fresh Boolean input z;

(b) an equation upz = e with upz as an extra output.

2. derx = e init e0 reset h is turned into:

(a) An equation x′ = e that computes the instantaneous derivative;

(b) an equation x = present h else lx containing the current value for x;

(c) the initial value xi = e0 -> lx.

3. The previous value lastx is replaced by if d then pre(x) elsex.

aAn other option is to generate two functions, one used by the solver, the other for the discrete

step.
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Example (counter)

let node counter(top, tick) = o where

rec der time = 1.0 init 0.0 reset z → 0.0

and o = present z → counter(top, tick) init 0

and z = upc(time -. 1.0)

let node counter(d, [z], [ltime], (top, tick)) = (o, [upz], [ntime])

where

rec time’ = 1.0 and time = present z → 0.0 else ltime

and o = present z → counter(top, tick) init 0

and timei = 0.0 → ltime

and ntime = if d then else timei

and timeupz = (if d then pre(time) else time) -. 1.0
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Compilation

For efficiency reason, represent extra inputs and outputs with arrays.

The function counter can be processed by any synchronous compiler, and the

generated transition function verifies the invariant.

Open questions:

• Should we generate a single function parameterized by d or several (one for

d = true, one for d = false)?

• Is the resulting function causal and in which sense?

• Is the resulting function statically schedulable?

The answer of the last two depends on the selected causality analysis.
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Typing

The type language

σ ::= ∀α1, ..., αn.t
k→ t

t ::= t× t | α | bt
k ::= D | C | A
bt ::= real(t) | int | bool | zero | k

Initial conditions

(+) : int× int
A→ int

(+.) : ∀α.real(α)× real(α)
A→ real(α)

(=) : ∀α.α× α
A→ bool

if : ∀α.bool× α× α
A→ α

pre(.) : ∀α.α D→ α

. fby . : ∀α.α× α
D→ α

up(.) : ∀α.real(α) C→ zero
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The Type system

Global and local environment

G ::= [f1 : σ1; ...; fn : σn] H ::= [ ] | H,x : t

Typing predicates

• G,H ⊢k e : t: Expression e has type t and kind k. G,H ⊢k e : t

• H,H ⊢k E : H ′: Equation E produces environment H ′ and has kind k.

Subtyping

An combinatorial function can be passed where a discrete or continuous one is

expected:

∀k, A ≤ k
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Continuous-time signals

Now, we must avoid x ≥ 1.0, x ≤ 1.0, x = 1.0 in a continuous context if x is not

piece-wise constant and, thus, expressions like:

rec der time = 1.0 init 0.0

and x = sin(time)

and der t = if x >= 1.0 then 1.0 else -1.0 init 0.0

Proposition: Because the only signals that may change during integration are of

value float, define real(k) such that:

• – k = A for signals that are constant during integration.

– k = C for continuous signals (during integration).

– k = D for others (that may have discontinuities).

– The type float is a short-cut for real(A).

• Restrict the use of polymorphism in a continuous context. A type variable α

can only be instantiated by a type of piece-wise constant values.
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Kind of a type: A type t is of kind k, written k(t) if the following applies:

(prod)

k(t1) k(t2)

k(t1 × t2)

(int)

k(int)

(bool)

k(bool)

(real)

k(real(k))

(alpha)

k(α)

Instanciation of a polymorphic type:

(Inst)

k ≤ k′ k′ ̸= C

(t
k′

→ t′)[t⃗0/α⃗] ∈ Inst(k′)(∀α⃗.t k→ t′)

(Inst-cont)

k ≤ k′ k′ = C A(t0)

(t
k′

→ t′)[t⃗0/α⃗] ∈ Inst(k′)(∀α⃗.t k→ t′)

In a continuous context, polymorphic variables can only be instanciated by a type

of piece-wise constant signals.

Example: If x : real(C), the expression 1.0 = x in a context C is wrongly typed.

(=) : ∀α.α× α
A→ bool and α cannot be replaced by real(C).
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A sketch of Typing rules

(der)

G,H ⊢C e1 : real(C) G,H ⊢C e2 : real(ki1) G,H ⊢ h : real(ki2)

G,H ⊢C derx = e1 init e2 reset h : [x : real(C)]

(and)

G,H ⊢k E1 : H1 G,H ⊢k E2 : H2

G,H ⊢k E1 and E2 : H1 +H2

(eq)

G,H ⊢k e : t

G,H ⊢k x = e : [x : t]

(app)

t
k→ t′ ∈ Inst(k)(G(f)) G,H ⊢k e : t

G,H ⊢k f(e) : t
′
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(var)

G,H + [x : t] ⊢k x : t

(var)

G,H + [x : t] ⊢k lastx : t

(eq-discrete)

G,H ⊢ h : t G,H ⊢D e : t

G,H ⊢C x = h init e : [x : t]

(handler)

∀i ∈ {1, .., n} G,H ⊢D ei : t G,H ⊢C zi : zero

G,H ⊢ z1 → e1 || ... || zn → en : t
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Causality analysis
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Causality

Consider first the simplest case (that of Lustre and Lucid Synchrone). Any loop

must cross a delay (possibly hidden).

Condition: check that the relation between a set of variables is a partial order.

The typing jugment:

C,H ⊢ e : ct

means that under constraint C, type environment H, e gets type t.

Type language:

σ ::= ∀α1, ..., αn : C.ct→ ct

ct ::= ct× ct | α

Environment and Constraint:

H ::= [x1 : ct1; ...;xn : ctn] C ::= {α1 < α′
1, ..., αn < α′

n}

The global environment is left implicit:

G ::= [σ1/f1, ..., σk/fk]
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Relation between types

C must define a partial order, i.e., it is not possible to deduce C ⊢ ct < ct.

(Taut)

C + α1 < α2 ⊢ α1 < α2

(Trans)

C ⊢ ct1 < ct′ C ⊢ ct′ < ct2

C ⊢ ct1 < ct2

(Pair)

C ⊢ ct1 < ct′1 C ⊢ ct2 < ct′2

C ⊢ ct1 × ct2 < ct′1 × ct′2

(Env)

∀i ∈ {1, .., n}, C ⊢ cti < ct′i

C ⊢ [x1 : ct1; ...;xn : ctn] < [x1 : ct′1; ...;xn : ct′n]
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Basic operations over types:

Initial environment:

(+) : ∀α.α× α→ α

pre(·) : ∀α, α′.α→ α′

· fby · : ∀α, α′.α× α′ → α

Instantiation/Generalisation:

(Inst

C[α⃗′/α⃗], (ct1 → ct2)[α⃗′/α⃗] ∈ Inst(∀α⃗ : C.ct1 → ct2)

(Gen)

Vars(C) = {α1, ..., αn}
Gen(C)(ct1 → ct2) = ∀α1, ..., αn : C.ct1 → ct2
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Typing rules
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(Var)

C,H + x : ct ⊢k x : ct

(Const)

C,H ⊢k i : ct

(App)

C, ct1 → ct2 ∈ Inst(G(f)) C,H ⊢k e : ct1

C,H ⊢k f(e) : ct2

(And)

C,H ⊢k D1 : H1 C,H ⊢k D2 : H2

C,H ⊢k D1 and D2 : H1 +H2

(Eq)

C,H ⊢k e : ct

C,H ⊢k x = e : [ct/x]

(Sub)

C,H ⊢k e : t C ⊢ ct < ct′

C,H ⊢k e : t
′

(Def)

C,H ⊢k D : H ′ C ⊢ H ′ < H C,H ⊢k x : ct1 C,H ⊢k y : ct2

⊢ let k f (x) = y where D : [Gen(C)(ct1 → ct2)/f ]
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Example: The first is accepted; the second is rejected.

let node f x = y where rec y = 0 → pre y + x

let node g x = y where rec y = x + 1 and x = y + 2

since {αx < αy, αy < αx} is not a partial order.

The following two programs are accepted:

let node f x = y where rec y = 0 → pre x + 1

let node g x = y where rec y = f(y) + x

We get: f : ∀αx, αy.αx → αy and g : ∀αx, αy : {αx < αy}.αx → αy.

Note that this causality analysis is such that the code generation of f cannot be

done by generating a single step function.
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Adding ODEs

We need a way to get the “value of a signal x just before changing it”. We write it

lastx. It is the left-limit of x.

Examples of non causal programs:

1. rec x = x +. 1.0 and der z = x init 0.0

2. rec x = last x + 1

3. rec der y’ = -. g init 0.0 reset up(-.y) → -0.9 *. y’

and der y = y’ init y0

Examples of causal programs:

1. rec der x = v -. x init x0

2. rec der y’ = -. g init 0.0 reset up(-.y) → -0.9 *. last y’

and der y = y’ init y0
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Causality of lastx

What would be the causality type for lastx. A first solution:

(Last)

C,H + x : ct ⊢D lastx : ct′

lastx is only possible in a discrete context. Can we do a little better?
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Causality analysis

In non-standard semantics [JCSS’12], derx = e init e0 defines x so that:

x(0) = e0(0) x(n) = x(n− 1) + ∂ × e(n− 1) with n ∈ ⋆IN

x(n) is the value of x at time n× ∂ ∈ ⋆IR.

The left limit lastx of a signal

lastx(n) = x(n− 1)

• When x is left-continuous, it coincides with the left limit since

lastx(n) ≈ x(n);

• Otherwise, it is the previously computed value of x.

So lastx does not always break algebraic loops.

What could be the implementation of lastx?

lastx = if d then pre(x) elsex
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Examples

The integrator plays the role of the unit delay: it breaks cycles in continuous steps.

The following two programs are causally correct:

let hybrid f(x) = o where

der y = x +. y init 0.0 and o = y +. 1.0

let hybrid loop() = y where

rec y = f(y)

y does not depends instantaneously of x.

lastx does not necessarily break causality loops, i.e.:

let hybrid g(v) = o where

rec der y = 1.0 init 0.0

and x = last x +. y and init x = 0.0

The reason is this: if x : αx + α′
x and y : αy + α′

y, then lastx : α′′
x + α′

x. We also

have: lastx +. y : αy + α with α′
y, α

′
x < α. There is a causality cycle since

α′
y, α

′
x < α ̸< α′

x, that is, x instantaneously depends on itself.
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If up(x) instantaneously depends on x during discrete time, we could first give it

the signature:

up(.) : ∀α.α→ α

Taking this, the following program is accepted:

let hybrid h(x) = o where

der y = 1.0 -. x init 0.0 reset up(x) → last x and o = y +. 1.0

let hybrid loop() = y where rec y = f(y) and init y = 0.0

Then: h : ∀α.α→ α is valid.

By decomposing up(.) into the union of the detection of a discrete zero-crossing (a

radical change of x) and the detection of a continuous-one (during integration), we

can be a little more precise:

upc(.) : ∀α1, α2.α1 → α2

That is, upc(x) does not instantaneously depend on x.
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Causality analysis (bis)

Thus, lastx only breaks an algebraic loop during discrete steps (when x is not

left-continuous), that is, d is true.

This reminds conditional dependences of the Signal language. x
c→ y states that y

depends on x when c is true. We take a simpler solution.

Idea: associate a pair ct1 + ct2 to every expression e.

• during discrete steps, e only depends on ct1;

• during integration steps, e only depends on ct2.

Type language:

σ ::= ∀α1, ..., αn : C.ct→ ct

ct ::= ct× ct | ct+ ct | α

Shortcut: Write ct1 + ct2 so that (ct1 × ct′1) + (ct2 × ct′2) stands for

(ct1 × ct2) + (ct′1 × ct′2).
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Intuition:

(Last)

C,H + [x : ct1 + ct2] ⊢ lastx : ct′1 + ct2

During a discrete step, lastx does not depend on x but it does depend on x

during a continuous step.

page 77/86



If up(x) instantaneously depends on x during discrete time, we could first give it

the signature:

up(.) : ∀α1, α2.α1 + α2 → α1 + α4

Taking this, the following program is accepted:

let hybrid h(x) = o where

der y = 1.0 -. x init 0.0 reset up(x) → x and o = y +. 1.0

let hybrid loop() = y where rec y = f(last y) and init y = 0.0

Then: h : ∀α1, α2, α3 : α1 + α2 → α1 + α3

is valid, as last y breaks the cycle on α .
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New typing rules

(Der)

C,H ⊢ e : ct C,H ⊢ e0 : ct′

C,H ⊢ derx = e init e0 : [ct′/x]

(Discrete)

C,H ⊢ e : ct C,H ⊢ E1 : H1 C,H ⊢ E2 : H2

C,H ⊢ present e then E1 else E2 : H1 ∗H2

(Last)

C,H + x : ct1 + ct2 ⊢ lastx : ct′1 + ct2
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Examples:

The following one is rejected:

let hybrid f(z) = y where

der y = 1.0 init -1.0 reset up(z) → -.1.0

let hybrid loop() = y where

rec y = f(y)

If we consider that up(x) instantaneously depends on x.
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Types for zero-crossing detections

If upc(.) only detect zero-crossing during integration, its type signature could be:

upc(.) : ∀α1, α2.α1 → α2

If upd(.) only detect zero-crossing during a discrete step, its type signature could be:

upd(.) : ∀α1, α2, α3.α1 + α2 → α1 + α3

If up(.) do both (union), its type signature would be:

up(.) : ∀α1, α2.α1 + α2 → α1 + α3

Should we try to avoid discrete cascades? Give type signature:

up(.) : ∀α.α+ α→ α+ α
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Conclusion (1)

Zélus is an experimental prototype which mix the expressiveness of synchronous

programming with ODEs.

Many ideas borrowed from Lucid Synchrone.

lexing/

parsing
typing

causality/

initialization
inlining automata

normalize

let/in

periods
discrete

zero-crossing

present/

signals

variable

completion

ODEs

zero-crossings
last/fby/→

optimization

scheduling

code

generation
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Historial note

• Version 1. 2014 (approx).

– First-order functional language with mixed (discrete/continuous) signals;

– An ideal semantics based on non standard analysis;

– A type system to separate discrete-time from continuous-time signals;

– A type-based causality analysis; initialization analysis.

• Version 2. 2016 (approx).

– A new compilation technique [BCP+15];

– Industrial prototype Scade Hybrid [BCP+15] built on Scade KCG

(ANSYS);

– Language novelties: higher-order; static values and parameters; code

specialisation at compile-time;

– Probabilitic constructs (ProbZelus): 2020 [BMA+20]

– First experiment with SISAL array operations; definition of a standard

library of control blocks [BCC+17].

• Version 3. 2021 -. Built on the definition of a reference interpreter and

constructive semantics (zrun). Complete rewriting of the compiler.
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Sources of the compiler, doc, examples and manual

Webpage (doc, examples, papers):

https://zelus.di.ens.fr

Source code, examples:

https://github.com/inria/zelus/tree/main

The (very begining) of version 3:

https://github.com/inria/zelus/tree/work
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