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Code Generation for Synchronous Block-diagram

The problem

• Input: a parallel data-flow network made of synchronous operators. E.g.,

LUSTRE, SCADE, SIMULINK

• Output: a sequential procedure (e.g., C, Java) to compute one step of the

network: static scheduling

Examples: (SCADE and SIMULINK)
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This is part of a more general question

How to “compile the parallelism”, i.e., generate seq. code which:

• preserves the parallel semantics,

• treats all programs with no ad-hoc restriction.

Why sequentializing a parallel program?

• Often far more efficient that the parallel version.

• Get a time predictable implementation (real-time system).

• At the moment, tools for analysing the Worst Case Execution Time (WCET) work

well for sequential code only.

This is not contradictory with the question of generating parallel code. Both

questions are interesting.
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Short recap: “single loop code generation”

• “Single loop” code generation [6].

• A stream function f : Stream(A) → Stream(B) is implemented as a pair

(s, step) made of:

↪→ an initial state s : S;

↪→ a transition function step : S → A → B × S called repeatidly.

• At every call, the state is modified in place.

• Simple to specify formally and to implement.

• This technique is used routinely, e.g., Scade, Simulink.

• Enumeration techniques to generate an automaton [7].
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Abstract Data-flow Network and Scheduling

Whatever be the language, a data-flow network is made of:

• instantaneous nodes which need their current input to produce their current

output. E.g., combinatorial operators.

↪→ atomic actions, (partially) ordered by data-dependency

• delay nodes whose output depend on the previous value of their input. E.g.,

pre of SCADE, 1/z and integrators in SIMULINK, etc.

↪→ state variables + 2 side-effect actions read (set) and update (get)

↪→ reverse dependency (and allow feed back)

D

implemented by

i

o o

i

get

set
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A simple example with a feedback loop

Consider the following Lustre function.

node fnode(a, b: ty) returns (x, y: ty);

let

y = f(x, z);

z = D(y);

tel;

• f is an instantaneous node;

• D is a delay node: it can produce its output before it reads its input.
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x z

f

y

get

set
D

Possible sequential code:

z = D.get()

y = f(x, z)

D.set(y)
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Consider the following Lustre function.

node fnode(a, b:ty) returns (x, y:ty);

let

x = j(a, f(D(a), b);

y = h(b)

tel;

• i, j and h are instantaneous nodes; D is a delay node.
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Sequential Code Generation

Build a static schedule from a partial ordered set of actions
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Sequential Code Generation

Build a static schedule from a partial ordered set of actions

a

j

x y

get b

h

f

set

(partially) ordered set of actions
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Sequential Code Generation

Build a static schedule from a partial ordered set of actions

y ;
h ;
x ;
j ;
set ;
f ;
get ;
b ;
a ;

proc Step () {

}

(one of the) correct sequential code

a

j

x y

get b

h

f

set

(partially) ordered set of actions
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Modularity and Feedback

Modularity: a user defined node can be reused in another network

The problem with feedback loops

• this feedback is correct in a parallel implementation

• no sequential single step procedure can be used

b
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f

j h

k
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Modularity and Feedback: classical approaches

• Black-boxing: user-defined nodes are considered as instantaneous, whatever be

their actual input/output dependencies

↪→ compilation is modular

↪→ rejects causally correct feed-back;

↪→ E.g., Lucid Synchrone, SCADE, Simulink

• White-boxing: nodes are recursively inlined in order to schedule only atomic

nodes

↪→ Any correct feed-back is allowed but modular compilation is lost

↪→ E.g., Academic Lustre compiler; on user demand in SCADE via inline

directives.

• Grey-boxing?
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Grey-boxing

Some actions can be gathered without forbidding correct feedback loops:

• find such a (minimal) set of blocks together with their inter-dependencies:

this is called the (Optimal) Static Scheduling Problem

• only need to inline the blocks dependency graph within the caller
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Grey-boxing

Some actions can be gathered without forbidding correct feedback loops:

• find such a (minimal) set of blocks together with their inter-dependencies:

this is called the (Optimal) Static Scheduling Problem

• only need to inline the blocks dependency graph within the caller

sequential code

proc P1 () {

}
P1 before P2

j ;
x ;

f ;
h ;
y ;

}
proc P2 () {

a ;

b ;
get ;

set ;

+
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Modularity

c ;

d ;

P1 ;

P2 ;

l ;

m ;
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u ;
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State of the Art

• Separate compilation of LUSTRE [Raymond, 1988]: non optimal

• Compilation/code distribution of SIGNAL [Benveniste et al, 90’s]: more general:

conditional scheduling, not optimal

• More recently, [Lublinerman, Szegedy and Tripakis, POPL’09]:

optimal, proof of NP-hardness, iterative search of the optimal solution through

3-SAT encoding.
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State of the Art

• Separate compilation of LUSTRE [Raymond, 1988]: non optimal

• Compilation/code distribution of SIGNAL [Benveniste et al, 90’s]: more general:

conditional scheduling, not optimal

• More recently, [Lublinerman, Szegedy and Tripakis, POPL’09]:

optimal, proof of NP-hardness, iterative search of the optimal solution through

3-SAT encoding.

This work addresses the Optimal Static Scheduling Problem (OSS):

• proposes an encoding of the problem based on input/output analysis which

gives:

↪→ in (most) cases, an optimal solution in polynomial time

↪→ or a 3-sat simplified encoding.

• practical experiments show that the 3-sat solving is almost never necessary
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Formalization of the Problem
Definition: Abstract Data-flow Networks

A system (A, I,O,⪯):

1. a finite set of actions A,

2. a subset of inputs I ⊆ A,

3. a subset of output O ⊆ A (not necessarily disjoint from I)

4. and a partial order ⪯ to represent precedence relation between actions.

Definition: Compatibility

Two actions x, y ∈ A are said to be (static scheduling) compatible and this is

written xχ y when the following holds:

xχ y
def
= ∀i ∈ I, ∀o ∈ O, ((i⪯x∧y⪯o)⇒(i⪯o)) ∧ ((i⪯y∧x⪯o)⇒(i⪯o))

If two nodes are incompatible, gathering them into the same block creates an extra

input/output dependency, and then forbids a possible feedback loop
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Formalization of the goal

The goal is to find an equivalence relation (the set of blocks) implying compatibility

plus a dependence order between blocks, that is, a preorder relation
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Formalization of the goal

The goal is to find an equivalence relation (the set of blocks) implying compatibility

plus a dependence order between blocks, that is, a preorder relation

Definition: (Optimal) Static Scheduling

A static scheduling over (A,⪯, I, O) is a relation ≾ satisfying:

(SS-0) ≾ is a pre-order (reflexive, transitive)

(SS-1) x⪯y ⇒ x≾y

(SS-2) ∀i ∈ I, ∀o ∈ O, i≾o ⇔ i⪯o

Corrolary: let ≾ be a S.S. and (x ≃ y)⇔(x≾y ∧ y≾x) the associated

equivalence, then ≃ implies χ .

Moreover, a Static Scheduling is optimal iff:

(SS-3) ≃ has a minimal number of classes.
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Theoretical Complexity

• Lublinerman, Szegedy and Tripakis proved OSS to be NP-hard through a

reduction to the Minimal Clique Cover (MCC) problem

• Since the OSS problem is an optimization problem whose associated decision

problem is — does it exist a solution with k classes? —, they solve it iteratively

by searching for a solution with k = 1, 2, ... such as:

↪→ for each k, encode the decision problem as a Boolean formula;

↪→ solve it using a SAT solver

However, real programs do not reveal such complexity

• this complexity seems to happen for programs with a large number of inputs and

outputs with complex and unusual dependences between them

• can we identify simple cases by analyzing input/output dependences?
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Theoretical Complexity

The OSS problem encodes the Minimal Clique Cover (MCC) problem and is thus

NP-hard, i.e., an OSS solver solves MCC.

Remark:

OSS is an optimization problem [see Garey and Johnson, 79] where the

corresponding decision problem is: does-it exist a solution with k classes? Thus, a

solution can be searched iteratively by trying k = 1, 2, ....

Minimal clique cover (MCC), in terms of relations

let L be a a finite set, ↔ a symmetric relation (i.e. given a non oriented graph),

find a maximal equivalence relation ≃ included in ↔.
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From MCC to OSS

Let (L,↔) be the data of a MCC problem, we build an instance

(A = L ⊎X,⪯, I = X,O = X), by introducing a set of new input/output

edges (X), and dependencies (⪯) as follow:

• for each x in L, we have 4 extra variables io1x, io2x, oi1x and oi2x, with the

following dependencies:

oi1x

io1x

x

io2x

oi2x

• N.B. it enforces any extra variable to be incompatible with any other variable
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From MCC to OSS (cont’d)

• for each x↔y, we add 8 dependencies:

y

io1y io2y

x

io1x io2x

oi1x oi2x oi1y oi2y

χ

• N.B. it enforces local variables to be compatible iff x↔y)

We call this OSS instance the X-encoding of the MCC problem.
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From MCC to OSS (cont’d)

It is easily proven that:

• whatever be ≃ an (optimal) solution of the MCC problem, then ≾ = ≃ ∪ ⪯ is

an optimal solution of X-encoded problem,

• whatever be ≾ an (optimal) solution of the X-encoded problem, then the

associated equivalence ≃ is an optimal solution of the clique cover problem.

Conclusion:

• compatibility relations are as general as symmetric relations, thus NP-hardness.

• however, OSS instances that meet the general case have a large number of

input and outputs with unusual input/output dependences

Analyse these input/output dependences to build a more efficient algorithm
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Input/output Analysis

Input (resp. output) pre-orders

Let I (resp. O) be the input (resp. output) function:

y

x

I(y)

x

y

O(x)

⪯I ⪯O

I(x)

O(y)

It is never the case that x should be computed after y if either:

• I(x) ⊆ I(y), noted x≾Iy, which is a valid of SS, (inclusion of inputs),

• O(y) ⊆ O(x), noted x≾Oy, which is a valid SS. (reverse inclusion of outputs),
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Input/output preorder

An even more precise preorder can be build by considering input preorder over

output preorder:

• IO(x) = {i ∈ I | i≾Ox}

• x≾IOy ⇔ IO(x) ⊆ IO(y),

• x≃IOy ⇔ IO(x) = IO(y)

N.B. a similar reasoning leads to the output/input preorder.

Properties

• ≾IO is a valid SS,

• moreover, it is optimal for the inputs/outputs:

∀x, y ∈ I ∪ O x≃IOy ⇔ xχ y

• it follows that, in any optimal solution, input/output that are compatible are

necessarily in the same class (see proof in the paper)
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Input-Set Encoding

• In any solution, the class of a node can be characterized by a subset of inputs or

key: intuitivelly this key is the set of inputs that are computed before or with the

node.

• As shown before, the only possible key for an input or output node x is IO(x)

How to formalize what can be the key of an internal node?

Input-Set Encoding 23/36



Input-Set Encoding

• In any solution, the class of a node can be characterized by a subset of inputs or

key: intuitivelly this key is the set of inputs that are computed before or with the

node.

• As shown before, the only possible key for an input or output node x is IO(x)

How to formalize what can be the key of an internal node?

Definition: KI-encoding

A KI-enc. is function K : A 7→ 2I which associate a key to every node such that:

(KI-1) ∀x ∈ I ∪O;K(x) = IO(x)

(KI-2) ∀x, y x⪯ y ⇒ K(x) ⊆ K(y)

Moreover:

(KI-opt) it is optimal if the image set is minimal.
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Solving the KI-encoding

A system of (in)equations with a variable Kx for each x ∈ A:

• Kx = IO(x) for x ∈ I ∪O

•
⋃

y→x
Ky ⊆ Kx ⊆

⋂
x→z

Kz otherwise

where → is the dependency graph relation (a concise representation of ⪯)
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KI-encoding vs Static Scheduling

• a solution of KI ”is” a solution of SS (modulo key inclusion)

• any solution of SS is not a solution of KI (e.g, ⪯ itself, in general)

• but, any optimal solution of SS is also an optimal solution of KI (to the absurd, via

Input/output preorder).

In other terms: the KI formulation is better than the SS one: it has less solutions,

but does not miss any optimal one.
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KI-encoding vs Static Scheduling

• a solution of KI ”is” a solution of SS (modulo key inclusion)

• any solution of SS is not a solution of KI (e.g, ⪯ itself, in general)

• but, any optimal solution of SS is also an optimal solution of KI (to the absurd, via

Input/output preorder).

In other terms: the KI formulation is better than the SS one: it has less solutions,

but does not miss any optimal one.

Complexity of the encoding

• O(n ·m2 · (logm2)) where n is the number of actions, m the maximum

number of input/outputs.

• That is, O(n ·m ·B(m) ·A(m)), where B is the cost of union/intersection

between sets and A, the cost of insertion in a set.
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Solving the KI-encoding: Example

Ka = {a, b} Kb = {b} Kx = {a, b} Ky = {b}
∅ ⊆ Kget ⊆ Kset ∩Kf

Ka ∪Kget ⊆ Kset ⊆ {a, b}

Kb ∪Kget ⊆ Kf ⊆ Kj

Ka ∪Kf ⊆ Kj ⊆ Kx

Kb ⊆ Kh ⊆ Ky

• The system to solve:

↪→ a variable Kx for each key

↪→ input/output keys are mandatory

↪→ set intervals for others

Input-Set Encoding 26/36



Solving the KI-encoding: Example

Ka = {a, b} Kb = {b} Kx = {a, b} Ky = {b}
∅ ⊆ Kget ⊆ {a, b} ∩Kset ∩Kf

Ka ∪Kget ∪ {a, b} ⊆ Kset ⊆ {a, b}

Kb ∪Kget ∪ {b} ⊆ Kf ⊆ {a, b} ∩Kj

Ka ∪Kf ∪ {a, b} ⊆ Kj ⊆ {a, b} ∩Kx

Kb ∪ {b} ⊆ Kh ⊆ {b} ∩Ky

• Compute lower and upper bounds:

↪→ k⊥x =
⋃

y→x
k⊥y and k⊤x =

⋂
x→z

k⊤z
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Solving the KI-encoding: Example

Ka = {a, b} Kb = {b} Kx = {a, b} Ky = {b}
∅ ⊆ Kget ⊆ {a, b} ∩Kf

{a, b} ⊆ Kset ⊆ {a, b}

{b} ⊆ Kf ⊆ {a, b}

{a, b} ⊆ Kj ⊆ {a, b}

{b} ⊆ Kh ⊆ {b}

• Compute lower and upper bounds:

↪→ k⊥x =
⋃

y→x
k⊥y and k⊤x =

⋂
x→z

k⊤z

• Propagate, simplify: new equations, constant intervals, others
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Solving the KI-encoding: Example

Ka = {a, b} Kb = {b} Kx = {a, b} Ky = {b}
∅ = Kget

{a, b} = Kset

{b} = Kf

{a, b} = Kj

{b} = Kh

• Check for ”obvious” solutions:

↪→ K⊥ : x → k⊥x

↪→ strategy: compute as soon as possible

↪→ not ”proven” optimal: ∅ not mandatory
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Solving the KI-encoding: Example

Ka = {a, b} Kb = {b} Kx = {a, b} Ky = {b}
Kget = {a, b}

Kset = {a, b}

Kf = {a, b}

Kj = {a, b}

Kh = {b}

• Check for ”obvious” solutions:

↪→ K⊤ : x → k⊤x

↪→ strategy: compute as late as possible

↪→ optimal: all keys are mandatory
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Dealing with complex systems

Let S be the simplified system, X be the set of actions whose key is still unknown,

κ1, · · · , κc be the c mandatory keys:

• try to find a solution with c+ 0 classes:

↪→ build the formula: S
∧

x∈X
∨j=c

j=1(Kx = κj)

↪→ call a SAT-solver...

• if it fails, try to find a solution with c+ 1 classes:

↪→ introduce a new variable B1,

↪→ build the formula: S
∧

x∈X(
∨j=c

j=1(Kx = κj) ∨ (Kx = B1))

↪→ call a SAT-solver...

• if it fails, try to find a solution with c+ 2 classes, etc.
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A few more examples

The “M” shape

node f(a, b: t) returns (x, y: t);

var m: t;

let x = f1(a, pre m);

y = f2(b, pre m);

m = f3(a, b);

tel;

a

x y

b

m

Ka = Kx = {a}
Kb = Ky = {b}
Km = {a, b}

The K encoding gives three mandatory classes; this is enough.

A few more examples 28/36



The “M/W” shape

a b

x
y

m

z

c

t

d

Kb = Kt = {b}
Kc = Kx = {a, b, c}
Kd = Ky = {a, b, d}

∅ ⊆ Km ⊆ {a, b}

Ka = Kz = {a}

An optimal solution is found by taking either Km = {a} or Km = {b}.

The problem is easy because there is a single constraint on Km.
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The Generalised “M/W” shape

∅ ⊆ Km ⊆ {a, b} ∩Kp

∅ ⊆ Kn ⊆ {b, c} ∩Kp

Km ∪Kn ⊆ Kp ⊆ {a, b, c, d, e}

{a} {b}

{a, b} {b, c}

{c}

{a, b, d} {b, c, e}

a cb

m n

u

z t

x y v

e

d

p
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Several optimal choices can be made, that do not require extra classes. E.g.:

• Km = Kn = Kp = {b}

• Km = {a}, Kn = {b}, Kp = {a, b}

These optimal solutions cannot be obtained by considering variables one by one.

• Km = {a} or Kn = {c} are locally a good choice

but once done, there is no solution for p other than Kp = {a, c}.

This adds an extra class.

When several variables are related, they must be considered “all together”. This

illustrates why the problem is computationally hard.
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Experimentation

The prototype

• extract dependency informations from a LUSTRE (or SCADE) program

• build the simplified KI-encoded system (polynomial)

• check for obvious solutions (linear)

• if no obvious solution, iteratively call a Boolean solver.

We have considered three benchmarks made of the components comming from:

• the whole SCADE V4 standard library

↪→ reusable programs, modular compilation is relevant

• two large industrial applications

↪→ not reusable programs, less relevant

↪→ but bigger programs, more likely to be complex
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Results Overview

# prgs # nodes # i/o cpu triv. solved other

(# blocks) (# blocks) (# blocks)

SCADE lib. 223 av. 12 2 to 9 0.14s 65 158

(1) (1 or 2)

Airbus 1 27 av. 25 2 to 19 0.025s 8 19

(1) (1 to 4)

Airbus 2 125 av. 65 2 to 26 0.2s 41 83 1∗

(up to 600) (1 to 3) (1 to 4)

• as expected: programs in SCADE lib. are (small) and then simple

• but also in Airbus, even with ”big” interface

• 1∗: not really ”complex” (solved by a heuristic: intersection of k⊤x )

• the whole test takes 0.35 seconds (CoreDuo 2.8Ghz, MacOS X); 350 LO(Caml).

• Source code in OCaml is given in Appendix of [4].
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Conclusion

• Optimal Static Scheduling is theoretically NP-hard

• thus it could be solved, through a suitable encoding, with a general purpose

Sat-solver

• A polynomial analysis of inputs/outputs can give:

↪→ non trivial lower and upper bounds on the number of classes

↪→ a proved optimal solution in some cases

↪→ a optimized SAT-encoding that emphazises the sources of complexity

• Experiments show that complex instances are hard to find in real examples
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