SMT-based Model Checking of Transition Systems

Timothy.BourkeQinria.fr

11 October 2022

1/50



Specifying Properties

2/50



Two types of properties

Safety property: “Something bad never happens’
l.e., a property is invariant and true in any accessible state. E.g.:
® “The variable temp is always less than 101."

® “The variable temp never increases by more than 5 in a single step.”

Liveness property: “Something good eventually happens.”
l.e., every execution will reach a state where the property holds.

® “If heat is on, temp eventually exceeds 10."

Remark:
“If heat is on, temp exceeds 10 within 5 minutes.” is a safety property.

And remember that liveness properties are likely to be the least important part of

your specification. You will probably not lose much if you simply omit them.
Lamport (2002): Specifying Systems:
The TLA+ Language and Tools for
Hardware and Software Engineers 3/50


https://lamport.azurewebsites.net/tla/book-02-08-08.pdf
https://lamport.azurewebsites.net/tla/book-02-08-08.pdf
https://lamport.azurewebsites.net/tla/book-02-08-08.pdf

Model Checking: Temporal Logics

Typical formulation of model checking problem: M = ¢
where M is a transition system and ¢ is a formula in temporal logic.

Temporal Logic

® Characterize either

» sets of traces; LTL = Linear-Time Logic
» sets of trees; CTL = Computation-Tree Logic

® The idea is not to write complicated specifications in temporal logic.
(too hard to write and understand—use synchronous observers.)

e Nor is it to study the properties of such logics.
(we want to write and verify programs.)

e Rather use temporal logic to precisely formulate verification problems and the
corresponding algorithms and proof patterns.

. 3 Lamport (2002): Specifying Systems:
¢ (Also to reason algebraically about liveness |The TLA+ Language and Tools for |.)

Hardware and Software Engineers 4 /50


https://lamport.azurewebsites.net/tla/book-02-08-08.pdf
https://lamport.azurewebsites.net/tla/book-02-08-08.pdf
https://lamport.azurewebsites.net/tla/book-02-08-08.pdf

LTL Basics (from

Usually presented in terms of (finite) Kripke structures: (S,/, T,/)

S is a finite set of states
| C S are the initial states
T C S x S is the transition relation

IS — P(A) labels each state with atomic propositions from a set A.

Require that every state has a successor, i.e., that T is total.

Abstraction of transition system over states mapping variables to values.

5/50


http://dx.doi.org/10.1007/3-540-49059-0_14
http://dx.doi.org/10.1007/3-540-49059-0_14

LTL Basics (from

Usually presented in terms of (finite) Kripke structures: (S,/, T,/)

where I CSand TCSxS,1:S5—P(A).

nl=p iff p e (n(0)) nE-p i pdn(0))
nlEfAg iff mEfandnlEg  wEfVg iff mnEfornkg
nkEGf iff Vingf nlE=Ff iff Jin=f

nEXf i A
nEfUg iff Ji[nEg and Vj, j<ia/ = f]
nl fRg iff Vi[nilEg or 3j, j<in/l=f]
® T = s,51,...Iis an infinite sequence of states
called a path if (s;,si+1) € T for all i.
® Basic safety: Gf

® Basic liveness: F f 5/50


http://dx.doi.org/10.1007/3-540-49059-0_14
http://dx.doi.org/10.1007/3-540-49059-0_14

LTL Basics (from

Usually presented in terms of (finite) Kripke structures: (S,/, T,/)

where I CSand TCSxS,1:S5—P(A).

nl=p iff p e (n(0)) nE-p i pdn(0))
nlEfAg iff mEfandnlEg  wEfVg iff mnEfornkg
nkEGf iff Vingf nlE=Ff iff Jin=f

n | Xf iff «'=f
nEfUg iff Ji[nEg and Vj, j<ia/ = f]
nlfRg iff Vilo'kg or 3j,j<inll=f]

e Write M = Af iff for all paths m of M where w(0) € I, 7 = f.
(‘universal model checking problem’)

® Write M |= Ef iff there exists a path m of M with 7(0) €  and 7 = f.

(‘existential model checking problem’) 5 /50


http://dx.doi.org/10.1007/3-540-49059-0_14
http://dx.doi.org/10.1007/3-540-49059-0_14

Synchronous Observers

e if y = F(x), we write ok = P(x, y) for the property relating x and y
¢ and assert(H(x,y)) to states an hypothesis on the environment.

node check(x:t) returns (ok:bool); sssert
let

assert H(x,y);

y = F(x);

ok = P(x,y); p
tel;

ok

If assert remains indefinitely true then ok remains indefinitely true
always(assert) = always(ok).

Any safety property can be expressed as a Lustre program. No need to introduce a

temporal logic in the language

Halbwachs, Lagnier, and Raymond (1993): Halbwachs, Lagnier, and Ratel (1992): Programming
Synchronous observers and the verification of and verifying real-time systems by means of the syn-
reactive systems chronous data-flow language LUSTRE

Temporal properties are regular Lustre programs 6/50


http://www-verimag.imag.fr/~raymond/publis/amast93.html
http://www-verimag.imag.fr/~raymond/publis/amast93.html
http://www-verimag.imag.fr/~raymond/publis/amast93.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.7333
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.7333
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.7333

Example of Temporal Properties

® “A is never true twice in a row': never_twice(A) where:

node never twice(A : bool) returns (OK : bool);
let
OK = true —> not(A and pre A);
tel:
® “Any event A is followed by an event B before C happens™
followed by(A, B) and followed by(B, C)

where:
node implies(A, B : bool) returns (OK : bool);
let
OK = not(A) or B; node followed by(A, B : bool)
tel; returns (OK : bool);
let
node once(A : bool) returns (OK : bool); OK = implies(B, once(A));
let tel:

OK = A —> A or pre OK;
tel:
7/50



Example of Temporal Properties (cont.)

Note: Several properties have a sequential nature, e.g., “The temperature should
increase for at most 1 min or until the event stop occurs then it must decrease for
2 min’.

They can be expressed as regular expressions and then translated into Lustre

Raymond (1996): Recognizing regular expressions by means ]
of dataflow networks

This is the basis of the language Lutin |

Raymond, Roux, and Jahier (2008): Lutin: A Language for
Specifying and Executing Reactive Scenarios

For an encoding of past-time Linear Temporal Logic (LTL) see:
Halbwachs, Fernandez, and Bouajjani (1993): An executable
temporal logic to express safety properties and its connection
with the language Lustre

8/50


https://hal.archives-ouvertes.fr/hal-00384443/document
https://hal.archives-ouvertes.fr/hal-00384443/document
https://jes-eurasipjournals.springeropen.com/track/pdf/10.1155/2008/753821
https://jes-eurasipjournals.springeropen.com/track/pdf/10.1155/2008/753821
http://www-verimag.imag.fr/~halbwach/islip93.html
http://www-verimag.imag.fr/~halbwach/islip93.html
http://www-verimag.imag.fr/~halbwach/islip93.html

Exercise: implementing temporal properties

1. Returns false until A occurs, then returns true from the subsequent instant
onward
node after(a : bool) returns (o : bool);
—— make clean; make MAIN=after TRACE=tracel .txt

2. Returns true if and only if its first input has been continuously true since the
last time its second input was true
node always_since(b, a : bool) returns (o : bool);
—— make clean; make MAIN=always since TRACE=trace2.txt

3. Returns true if and only if its first input has been true at least once since the
last time its second input was true.
node once_since(c, a : bool) returns (o : bool);
—— make clean; make MAIN=once since TRACE=trace3.txt

4. Any time A has occurred in the past, either B has been continuously true, or C
has occurred at least once, since the last occurrence of A

node always from to(b, a, c : bool) returns (x : bool);
—— make clean; make MAIN=always from_to TRACE=trace4.txt 9/50



SMT Solver Basics

10/50



SAT solvers

Given a boolean formula b with free variables x, ..., x, from propositional logic,
find a valuation V' : {xy,...,xn} — {0, 1} such that V(b) = 1.

e initial algorithm by Davis-Putnam-Logemann-Loveland (DPLL); various
heuristics. Generalization of SAT to QBF (Quantified Boolean Formula)

® a very active/competitive research/industrial topic (see hetp://www.satlive.org/)

® Now, more interest for SMT (Satisfiability Modulo Theory) for first-order logic
(quantified formula + interpreted/non-interpreted functions)

® Close interaction between a SAT solver and ad-hoc solvers (e.g., simplex.
method for linear arithmetic constraints)

11/50


http://www.satlive.org/

SMT: Satisfiability Modulo Theories

SAT = Satisfiability (of Boolean formulas)
SMT = SAT Modulo Theories

Input: set of constraints (interpreted in a theory)
Output: are the constraints satisfiable?

» sat and a model (an assignment to free variables that satisfies the constraints)
» unsat: no model exists
» unknown: could not determine due to resource limits, incompleteness, etcetera.

e Different solvers:

» z3 (see also: docs and version in browser)
» Alt-Ergo

» CVC5

» Yices

® Today we will use Z3 and SMT-LIB.

12/50


https://github.com/Z3Prover/z3
https://microsoft.github.io/z3guide/docs/logic/intro
https://jfmc.github.io/z3-play/
https://alt-ergo.ocamlpro.com
https://cvc5.github.io
https://yices.csl.sri.com

SMT-LIB 2.6

® SMT-LIB defines a common language for interfacing with SMT solvers

Barrett, Fontaine, and Tinelli (2021): . . .
The SMT-LIB Standard: Version 2.6 ] https://smtlib.cs.uiowa.edu/

® Developed to facilitate research and development in SMT
(in particular, by providing an extensive benchmarking library)

® Lisp-like syntax for
» a many-sorted first-order logic with equality
» solver commands
» declaring theory interfaces

® Solvers like Z3 also provide programmatic interfaces (e.g., Python, OCaml)

13/50


https://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.6-r2021-05-12.pdf
https://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.6-r2021-05-12.pdf
https://smtlib.cs.uiowa.edu/

Satisfiability

A .smt2 file is a sequence of commands. (Fig. 3.6, p. 45 |27, Feopaine, and Tinelli (2021): 1)

(declare-fun a () Bool)
(declare-const b Bool)

(assert (or a b))
(assert (= a false))

(echo "Is (a or b) and (a
(check-sat)
(get-model)

5

>

uninterpreted function with zero arguments
similar effect, easier to read

false) satisfiable?")

Copy this text into test.smt2 and try z3 test.smt2...

z3 looks for a model (an interpretation of the functions) that satisfies all the

constraints.

14/50


https://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.6-r2021-05-12.pdf
https://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.6-r2021-05-12.pdf

What about proving one of De Morgan's laws? (P V Q) < =P A =Q

(declare-const P Bool)
(declare-const Q Bool)

(assert (= (not (or P Q)) (and (mot P) (mot Q))))
(check-sat)

z3 says sat. Have we proved the law?

15/50



What about proving one of De Morgan's laws? (P V Q) < =P A =Q

(declare-const P Bool)
(declare-const Q Bool)

(assert (= (not (or P Q)) (and (mot P) (mot Q))))
(check-sat)

z3 says sat. Have we proved the law?

(declare-const P Bool)
(declare-const Q Bool)

(assert (mot (= (mot (or P Q)) (and (mot P) (mot Q)))))
(check-sat)

Now z3 says unsat. Have we proved the law?

15/50



What about proving one of De Morgan's laws? (P V Q) < =P A =Q

(declare-const P Bool)
(declare-const Q Bool)

(assert (= (not (or P Q)) (and (mot P) (mot Q))))
(check-sat)

z3 says sat. Have we proved the law?

(declare-const P Bool)
(declare-const Q Bool)

(assert (mot (= (mot (or P Q)) (and (mot P) (mot Q)))))
(check-sat)

Now z3 says unsat. Have we proved the law?
Yes. There are no values for P and Q such that the law is not true.

15/50



What about proving one of De Morgan's laws? (P V Q) < =P A =Q

(declare-const P Bool)
(declare-const Q Bool)

(assert (= (not (or P Q)) (and (mot P) (mot Q))))
(check-sat)

z3 says sat. Have we proved the law?

(declare-const P Bool)
(declare-const Q Bool)

(assert (mot (= (mot (or P Q)) (and (mot P) (mot Q)))))
(check-sat)

Now z3 says unsat. Have we proved the law?
Yes. There are no values for P and Q such that the law is not true.

valid(P) < not (satisfiable (not P)) To determine valid(P A Q = R), we ask
satisfiable(P) < not (valid (not P)) satisfiable(P A Q A —R).

15/50



Interacting with the solver

e Typical to run several (check-sat) commands in series.
® Use (push) and (pop) to manage the environment of functions and assertions.

(declare-const P Bool)
(declare-const Q Bool)

(push)

(assert (not (= (not (or P Q)) (and (mnot P) (mot Q)))))
(echo "Checking: !(P or Q) <=> !P and !Q (unsat = valid)")
(check-sat)

(pop)

(push)

(assert (not (= (not (and P Q)) (or (mot P) (mot Q)))))

(echo "Checking: !(P and Q) <=> !P or !Q (umsat = valid)")

(check-sat)

(pop)
e Usually interact with the solver using a programmatic interface.

Query results determine future queries.
® Solvers are designed to work incrementally.
16 /50



Functions

® Functions declared with declare-fun are uninterpreted.

e Functions from theories, like xor, are interpreted.
SEE€ https://smtlib.cs.uiowa.edu/theories- Core.shtml

(declare-fun f (Bool Bool) Bool)

(assert (and (= (f false false) false)
(= (f false true) true)
(= (f true false) true)
(= (f true true) false)))

(declare-const a Bool)
(declare-const b Bool)

(assert (not (= (f a b) (xor a b))))
(check-sat)

17/50


https://smtlib.cs.uiowa.edu/theories-Core.shtml

Functions

® Functions declared with declare-fun are uninterpreted.

e Functions from theories, like xor, are interpreted.
SEE€ https://smtlib.cs.uiowa.edu/theories- Core.shtml

(declare-fun f (Bool Bool) Bool)

(assert (and (= (f false false) false)
(= (f false true) true)
(= (f true false) true)
(= (f true true) false)))

(declare-const a Bool)
(declare-const b Bool)

(assert (not (= (f a b) (xor a b))))
(check-sat)

® Can also define functions:
(define-fun f ((x Bool) (y Bool)) Bool (xor x y))

17/50


https://smtlib.cs.uiowa.edu/theories-Core.shtml

Terms and Formulas

(qual_identifier) == (identifier) | (as (identifier) (sort) )
(var_binding) u= ( (symbol) (term) )

(sorted _var) u= ( (symbol) (sort) )

(pattern) u= (symbol) | ( (symbol) (symbol)™ )
(match_ case) u= ( (pattern) (term) )

(term) (spec_ constant)

| (qual identifier)

| ((qual_identifier) (term)™ )

| (let ((var_binding)™ ) (term))

| (forall ( (sorted_var)® ) (term) )
| (exists ( (sorted var)® ) (term) )
| (match (term) ( (match case)™ ) )
|t (term) (attribute)™ )

( 27 [Barrett, Fontaine, and Tinelli (2021): ])
p' ' LThe SMT-LIB Standard: Version 2.6

Satisfiability without quantifiers is NP-Complete

With quantifiers it is undecidable.

The effectiveness of quantifier elimination depends on the shape of formulas.
Take care with your encodings!

18/50


https://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.6-r2021-05-12.pdf
https://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.6-r2021-05-12.pdf

Exercise: model checking 1-bit adders

How to be sure that full_add and full_add_h are equivalent?
Va, b,c : bool.full add(a,b,c)=full add h(a,b,c)

Implement the following interface so that it returns true exactly when two full
adder implementations return the same value for the same inputs.

—— file fulladder.lus
node equivalence(a,b,c:bool) returns (ok:bool);
var ol, cl, 02, c2: bool;
let
(o1, c1) = full_add(a,b,c);
(02, c2) = full_add h(a,b,c);
ok = (ol = 02) and (cl = c2);
tel;

Check equivalence with z3 and SMT-LIB!

19/50



Model Checking

20 /50



Model Checking: (extremely) partial overview

1981 Explicit state enumeration

E. M. Clarke and Emerson (1981): Design Queille and Sifakis (1982): Specification
and Synthesis of Synchronization Skeletons and Verification of Concurrent Systems
using Branching Time Temporal Logic in CESAR

1992 BDD-based algorithms
[Burch, E. Clarke, McMillan, Dill, and Hwang (1992): }
Symbolic Model Checking: 102° States and Beyond

1999 Bounded Model Checking

Biere, Cimatti, E. Clarke, and Zhu (1999):
Symbolic Model Checking without BDDs

2000 K-induction

Sheeran, Singh, and Stdlmarck (2000): Checking
Safety Properties Using Induction and a SAT-Solver

2003 Interpolation-based

[Mcl\/lillan (2003): Interpolation and SAT-based model checking ]

2011 IC3 Algorithm

[Bradley (2011): SAT-Based Model Checking without Unrolling ]

21/50


http://dx.doi.org/10.1007/BFb0025774
http://dx.doi.org/10.1007/BFb0025774
http://dx.doi.org/10.1007/BFb0025774
http://dx.doi.org/10.1007/3-540-11494-7_22
http://dx.doi.org/10.1007/3-540-11494-7_22
http://dx.doi.org/10.1007/3-540-11494-7_22
http://dx.doi.org/10.1007/3-540-49059-0_14
http://dx.doi.org/10.1007/3-540-49059-0_14
https://www.di.ens.fr/~pouzet/cours/mpri/sheeran-FMCAD00.pdf
https://www.di.ens.fr/~pouzet/cours/mpri/sheeran-FMCAD00.pdf
http://dx.doi.org/10.1007/978-3-540-45069-6_1

Model checking of Lustre

® |esar: based on BDDs

Halbwachs, Lagnier, and Ratel (1992): Programming and verifying real-time
systems by means of the synchronous data-flow language LUSTRE

e Kind 2: based on SMT /k-induction/IC3

[Champion, Mebsout, Sticksel, and Tinelli (2016): The Kind 2 Model Checker ]

® DV of (Ansys) Scade based on Prover SAT /k-induction

22/50


http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.7333
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.7333
https://www.di.ens.fr/~pouzet/cours/mpri/cours4/CAV2016-Kind2.pdf

Model checking: forward method

The set of reachable states never intersects the set of error states

23/50



Model checking: forward method

The set of reachable states never intersects the set of error states

23/50



Model checking: forward method

The set of reachable states never intersects the set of error states

23/50



Model checking: forward method

The set of reachable states never intersects the set of error states

23/50



Model checking: forward method

The set of reachable states never intersects the set of error states

23/50



Model checking: backward method

The states that can reach an error state do not include the initial states

24 /50



Model checking: backward method

The states that can reach an error state do not include the initial states

24 /50



Model checking: backward method

The states that can reach an error state do not include the initial states

24 /50



Model checking: backward method

The states that can reach an error state do not include the initial states

GNET A Lo

24 /50



Verifying safety properties of reactive systems

Zohar Manna
Amir Pnueli

Temporal Verification

of Reactive Systems
eSafety®

Published in 1995

Manna and Pnueli (1995): Temporal
Verification of Reactive Systems: Safety

e Companion to

Manna and Pnueli (1992): The Temporal
Logic of Reactive and Concurrent Systems

Builds on Floyd's inductive invariants

Temporal logic formulas as ‘proof patterns’

) Springer

25 /50



The basic ‘pattern’ for showing invariance

For an assertion ¢,

Bl. © — ¢
B2. {¢} T {¢}
Oe

Fig. 1.1.  Rule INV-B (basic invariance).

The verification condition (or proof obligation) of ¢ and ¥, relative to tran-
sition 7, is given by the state formula

pr A — .
We adopt the notation

{¢} 7 {¥}

as an abbreviation for this verification condition.

26 /50



The basic ‘pattern’ for showing invariance

I

Bl o -, ——— show property of initial states

B2. {¢} 7 {¢} ‘
O¢ \

then for every transition:

For an assertion ¢,

Fig. 1.1.  Rule INV-B (basic invariance).

¢ assume the property of the pre state ()
® show the property of the post state (')
The verification condition (or proof obligation) of ¢ and ¥, relative to tran-
sition 7, is given by the state formula
pr A — .
We adopt the notation

{¢} 7 {¥}

as an abbreviation for this verification condition.

26 /50



Exercise: proving invariance of a simple transition system

e Consider a simple transition system with two integer state variables x and y:
init(x,y) = (x=1)A(y=1)
trans(x,y,x',y") = (X' =x+1)A (Y =y +x)

¢ And the safety property prop(x,y) =y > 1.

® Encode this system and use Z3 to prove that the property is invariant.

27 /50



General rule for showing invariance

For assertions ¢, p,

II. ¢ —p

12. © - ¢

3. {¢} T {4}
Op

Fig. 1.5. Rule INV (general invariance).

Not all invariants are inductive invariants.

28 /50



Inductive invariants and model checking

This idea works for manual/interactive proof.

What about automatic proof (model checking)?
(BTW, note that SMT solvers do not themselves do induction.)

k-induction: strengthen P with information from last k steps.

Sheeran, Singh, and St8lmarck (2000): Checking Safety Properties
Using Induction and a SAT-Solver

IC3: automate ‘discovery’ of strengthenings
[Bradley (2011): SAT-Based Model Checking without Unrolling ]

e Generic algorithms

» work with SAT solvers on boolean transition systems, or
» with SMT solvers on richer transition systems.
» avoid or minimize quantifiers, look for efficient encodings

29 /50


https://www.di.ens.fr/~pouzet/cours/mpri/sheeran-FMCAD00.pdf
https://www.di.ens.fr/~pouzet/cours/mpri/sheeran-FMCAD00.pdf

Bounded Model Checking and k-induction

30/50



k-induction

e |terate BMC. Explained as a succession of algorithms.

[Sheeran, Singh, and Stalmarck (2000): Checking Safety Properties Using Induction and a SAT-Solver ]

® Focus completely on invariant properties (AG f)

31/50


https://www.di.ens.fr/~pouzet/cours/mpri/sheeran-FMCAD00.pdf

Algorithm 1 First algorithm to check if system is P-safe
=0
while True do
if not Sat(I(so) A loopFree(spo..5))) or not Sat((loopFree(spo..;) A = P(s:)) then
return True
end if
if Sat(I(so) A path(sjo...;) A ~P(s;)) then
return Trace cjg..4
end if
t=1+1
end while

path(sp.n)) = /\ T(s4, Si+1)
0<i<n

loopFree(so..n]) = path(sp.n)) A /\ si £ 8j
0<i<j<n

The restriction to loop-free paths is necessary for completeness.

32/50



Algorithm 2 An improved algorithm to check if system is P-safe
1=0
while True do
if not Sat(I(so) A all.—I(s[1..q) A loopFree(so..s7))
or not Sat((loopFree(s(o...;) A all.P(so..(i—1)]) A ~P(s:)) then
return True
end if
if Sat(I(so) A path(spo...}) A ~P(s:)) then
return Trace c(o..q
end if
1=1+1
end while

path(s s[o. n] = /\ T(si, Sit1)
0<i<n
loopF‘ree(s[O“n]) = pa'th( So. n]) /\ 5; # Sj
0<i<j<n

Tighter termination conditions.
33/50



Algorithm 3 An algorithm that need not iterate from 0

i= some constant which can be greater than zero
while True do
if Sat(I(so) A path(sjo...;) A ~all. P(spp..;)) then
return Trace cjo..4
end if
if not Sat(I(so) A all.=I(sq1..¢i+1))) A loopFree(sio. (i+1)]))
or not Sat((loopFree(s(o..i+1y]) N all.P(s[0..5) A ~P(si41)) then
return True
end if
i=1+1
end while

P‘lth(s[o..n]) = /\ T(5i75i+1)
0<i<n

loopFree(s(o..n)) = path(sj.n)) A /\ Si # Sj
0<i<j<n

Swap ordering of conditions.
34 /50



Algorithm 4 A forwards version of the algorithm

i= some constant which can be greater than zero
while True do
if Sat(—(I(s0) A path(sjo..qj) = all.P(s[0..;}))) then
return Trace cjg. .4
end if
if Taut(—1(so0) = all.~I(s[1..(i41))) A loopFree(sjo..(i+1)]))
or Taut((loopFree(sjo..ci+1))) N all. P(s..q) = P(si+1)) then
return True
end if
i=1+1
end while

path(s On] = /\ T(si, Sit1)
0<i<n
loopFree(sjo..n)) = path(sj.n)) A /\ Si # 8
0<i<j<n

The base and transition cases of the induction become evident.
35/50



k-induction and completeness

® The algorithm is complete for finite transition systems.

® Diameter = length of the longest shortest path in transition system.

shortest(s(y..n)) = path(sp.n)) A —( \/ path;(so, Sn))
0<i<n

36 /50



Model Checking Lustre Programs: Kind 2

37/50



Model checking Lustre programs: Kind 2

® http://kind2-mc.github.io/kind2/ (Or use Web interface: http://kind.cs.uiowa.edu:8080/app/)
® SMT-based Model Checker for Lustre: BMC, k-induction, IC3, ...
® Specify properties to check as comments:

——%PROPERTY ok;

> kind2 toggles.lus
kind2 v1.1.0-214-g00b3d21d

Analyzing compare
with First top: "compare"
subsystems
| concrete: toggle2, togglel

<Success> Property ok is valid by inductive step after 0.164s.

> kind2 --enable BMC --enable IND --lus_main compare toggles.lus 38 /50


http://kind2-mc.github.io/kind2/
http://kind.cs.uiowa.edu:8080/app/

e Consider integers (not machine words)
® and infinite-precision rationals (not floating-point)

e Optimize existing techniques for Lustre programs and features of modern SMT
solvers.

39/50



Encoding Lustre in SMT

® Represent streams as uninterpreted functions N — 7

e Examples:
X=y+z Vn: N, x(n) = y(n) + z(n)
x=y—>y+prez Vn:N, x(n)=ite(n=0,y(0),y(n)+ z(n—1))

40/50


http://homepage.cs.uiowa.edu/~tinelli/papers/HagTin-FMCAD-08.pdf
http://homepage.cs.uiowa.edu/~tinelli/papers/HagTin-FMCAD-08.pdf

Encoding Lustre in SMT

® Represent streams as uninterpreted functions N — 7

e Examples:
X=y+z Vn: N, x(n) = y(n) + z(n)
x=y—>y+prez Vn:N, x(n)=ite(n=0,y(0),y(n)+ z(n—1))
® Let N be a node with stream variables x = (x1,...,Xp, y1,...,Yq)
(x1,...,xp are inputs, and yi, ..., yq are outputs)

yi(n) = ti[x(n),x(n —1),...,x(n — d)]
e A(n) =

Yq(n) = tg[x(n),x(n —1),...,x(n— d)]

40/50


http://homepage.cs.uiowa.edu/~tinelli/papers/HagTin-FMCAD-08.pdf
http://homepage.cs.uiowa.edu/~tinelli/papers/HagTin-FMCAD-08.pdf

node thermostat (actual temp, target temp, margin: real)
returns (cool, heat: bool);
let
cool = (actual temp — target temp) > margin;
heat = (actual temp — target temp) < —margin;
tel

node therm control (actual: real; up, down: bool) returns (heat, cool: bool);
var target, margin: real;
let
margin = 1.5;
target = 70.0 —> if down then (pre target) — 1.0
else if up then (pre target) + 1.0
else pre target;
(cool, heat) = thermostat (actual, target, margin);

tel m(n) = 1.5

t(n) = ite(n = 0,70.0, ite(d(n), t(n — 1) — 1.0,...))

c(n) = (a(n) — t(n)) > m(n)

h(n) = ((a(n) — t(n)) < —m(n) 41/50

A(n) =



SMT-based k-induction

Ag ANAT A -+ NAL ):IL PoANPLN--- NPy (1)
An/\An+1/\"'/\An+(k+1)/\

P, 2
PyAPoii A+ A Pris, =ze Poiiesn) 2)

where k > 0 and n is an uninterpreted integer constant.

42 /50



Kind 2 optimizations: path compression

Chk is a predicate over state variables that is satisfied iff no two configurations in
a path have the same state and none of them, except possibly the first is the initial

state.
An N An_|_]_ VANEIEEAN An—}-(k—l—l) N 5
PyAPoiy A A Papi A Cog Fze Poyern (27

Allows the addition of a termination condition.

Ao AN---NAL Eze —Cokt1

43/50



Kind 2 optimizations: abstraction

® Drop equations defining variables that are not mentioned in the property P.
Sound: those variables are unconstrained (like inputs).

e Add them back one-by-one if checking fails.
Take one (removed) variable appearing in counter-example and recursively add
removed variables from its defining expression (work towards input variables).

44 /50



® Express programs, (safety) properties, and assumptions on the environment in a
single language.

® Model-checking ideal:
» ‘push-button’ verification gives ok or counter-example;
» no need to understand why (i.e., write invariants).

® SAT-based techniques for BMC, complete with k-induction.

e Extend SAT to SMT to handle integers and directly encode Lustre programs.

® Lots of tools for automating induction and interfacing with SMT solvers
> Mlklno tutorial [Champion, Oliveira, and Didier (2022): ]

Mikino: Induction for Dummies
Swamy et al. (2016): Dependent

» F* {Types and Multi-monadic Effects in |, Why3 [BObOt' Filliatre, Marché, and Paskevich },
F*

(2011): Why3: Sheperd your herd of provers

. Barnett, Chang, DelLine, Jacobs, and Leino
Boogle (2005): Boogie: A Modular Reusable Ver-
ifier for Object-Oriented Programs

e Just the tip of the iceberg (IC3/PDR, interactive theorem provers, ...)

45 /50


https://ocamlpro.github.io/verification_for_dummies/
https://hal.inria.fr/hal-03626850/document
https://hal.inria.fr/hal-03626850/document
http://dx.doi.org/10.1145/2837614.2837655
http://dx.doi.org/10.1145/2837614.2837655
http://dx.doi.org/10.1145/2837614.2837655
http://dx.doi.org/10.1007/11804192_17
http://dx.doi.org/10.1007/11804192_17
http://dx.doi.org/10.1007/11804192_17

References |

Barnett, M., B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino (Nov. 2005).
“Boogie: A Modular Reusable Verifier for Object-Oriented Programs”. In: vol. 4111. LNCS.
Amsterdam, The Netherlands: Springer, pp. 364-387.

e Barrett, C., P. Fontaine, and C. Tinelli (2021). The SMT-LIB Standard: Version 2.6.

e Biere, A, A. Cimatti, E. Clarke, and Y. Zhu (Mar. 1999). “Symbolic Model Checking
without BDDs". In: 5th Int. Conf. on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS 1999). Ed. by W. R. Cleaveland. Vol. 1579. LNCS.
Amsterdam, The Netherlands: Springer, pp. 193-207.

e Bobot, F., J.-C. Filliatre, C. Marché, and A. Paskevich (Aug. 2011). “Why3: Sheperd your
herd of provers”. In: Boogie 2011: First Int. Workshop on Intermediate Verification
Languages. Wroctaw, Poland, pp. 53-64.

e Bradley, A. R. (Jan. 2011). “SAT-Based Model Checking without Unrolling”. In: Proc. 12th
Int. Conf. on on Verification, Model Checking, and Abstract Interpretation (VMCAI 2011).
Ed. by R. Jhala and D. Schmidt. Vol. 6538. LNCS. Austin, TX, USA: Springer, pp. 70-87.

46 /50


http://dx.doi.org/10.1007/11804192_17
https://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.6-r2021-05-12.pdf
http://dx.doi.org/10.1007/3-540-49059-0_14
http://dx.doi.org/10.1007/3-540-49059-0_14

References 1l

e Burch, J., E. Clarke, K. McMillan, D. Dill, and J. Hwang (June 1992). “Symbolic Model
Checking: 10%° States and Beyond". In: Information and Computation 98.2, pp. 142-170.

e Champion, A., A. Mebsout, C. Sticksel, and C. Tinelli (July 2016). “The Kind 2 Model
Checker”. In: Proc. 28th Int. Conf. on Computer Aided Verification (CAV 2016), Part Il.
Ed. by S. Chaudhuri and A. Farzan. Vol. 9780. LNCS. Toronto, Canada: Springer,
pp. 510-517.

e Champion, A., S. de Oliveira, and K. Didier (June 2022). “Mikino: Induction for Dummies”.
In: ed. by C. Keller and T. Bourke. Saint-Médard-d’'Excideuil, France, pp. 254-260.

e Clarke, E. M. and E. A. Emerson (May 1981). “Design and Synthesis of Synchronization
Skeletons using Branching Time Temporal Logic”. In: Workshop on Logics of Programs.
Ed. by D. Kozen. Vol. 131. LNCS. Yorktown Heights, NY, USA: Springer, pp. 52-71.

e Hagen, G. and C. Tinelli (Nov. 2008). “Scaling Up the Formal Verification of Lustre
Programs with SMT-based Techniques”. In: Proc. 8th Int. Conf. on Formal Methods in
Computer-Aided Design (FMCAD 2008). Ed. by A. Cimatti and R. B. Jones. |EEE.
Portland, OR, USA, Article 15.

47 /50


https://www.di.ens.fr/~pouzet/cours/mpri/cours4/CAV2016-Kind2.pdf
https://www.di.ens.fr/~pouzet/cours/mpri/cours4/CAV2016-Kind2.pdf
https://hal.inria.fr/hal-03626850/document
http://dx.doi.org/10.1007/BFb0025774
http://dx.doi.org/10.1007/BFb0025774
http://homepage.cs.uiowa.edu/~tinelli/papers/HagTin-FMCAD-08.pdf
http://homepage.cs.uiowa.edu/~tinelli/papers/HagTin-FMCAD-08.pdf

References ||

e Halbwachs, N., F. Lagnier, and P. Raymond (June 1993). “Synchronous observers and the
verification of reactive systems”. In: Proc. 3rd Int. Conf. on Algebraic Methodology and
Software Technology (AMAST'93). Ed. by M. Nivat, C. Rattray, T. Rus, and G. Scollo.
Twente: Workshops in Computing, Springer Verlag.

e Halbwachs, N., J.-C. Fernandez, and A. Bouajjani (Apr. 1993). “An executable temporal
logic to express safety properties and its connection with the language Lustre”. In: Proc. 6th
Int. Symp. Lucid and Intensional Programming (ISLIP'93). Quebec, Canada.

e Halbwachs, N., F. Lagnier, and C. Ratel (Sept. 1992). “Programming and verifying real-time
systems by means of the synchronous data-flow language LUSTRE". In: IEEE Trans.
Software Engineering 18.9, pp. 785-793.

e Lamport, L. (2002). Specifying Systems: The TLA+ Language and Tools for Hardware and
Software Engineers. Addison Wesley.

e Manna, Z. and A. Pnueli (1992). The Temporal Logic of Reactive and Concurrent Systems.
Springer.

— (1995). Temporal Verification of Reactive Systems: Safety. Springer.

48 /50


http://www-verimag.imag.fr/~raymond/publis/amast93.html
http://www-verimag.imag.fr/~raymond/publis/amast93.html
http://www-verimag.imag.fr/~halbwach/islip93.html
http://www-verimag.imag.fr/~halbwach/islip93.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.7333
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.7333
https://lamport.azurewebsites.net/tla/book-02-08-08.pdf
https://lamport.azurewebsites.net/tla/book-02-08-08.pdf

References IV

e McMillan, K. (July 2003). “Interpolation and SAT-based model checking”. In: Proc. 15th
Int. Conf. on Computer Aided Verification (CAV 2003). Ed. by W. A. Hunt Jr. and
F. Somenzi. Vol. 2725. LNCS. Boulder, CO, USA: Springer, pp. 1-13.

e Queille, J.-P. and J. Sifakis (Apr. 1982). “Specification and Verification of Concurrent
Systems in CESAR". In: Proc. 5th Int. Symp. Programming. Ed. by M. Dezani-Ciancaglini
and U. Montanari. Vol. 137. LNCS. Turin, Italy: Springer, pp. 337-351.

e Raymond, P. (July 1996). “Recognizing regular expressions by means of dataflow networks".
In: Proc. 23rd Int. Colloq. on Automata, Languages and Programming. Ed. by
F. Meyer auf der Heide and B. Monien. LNCS 1099. Paderborn, Germany: Springer,
pp. 336-347.

e Raymond, P., Y. Roux, and E. Jahier (2008). “Lutin: A Language for Specifying and
Executing Reactive Scenarios”. In: EURASIP Journal of Embedded Systems.

49 /50


http://dx.doi.org/10.1007/978-3-540-45069-6_1
http://dx.doi.org/10.1007/3-540-11494-7_22
http://dx.doi.org/10.1007/3-540-11494-7_22
https://hal.archives-ouvertes.fr/hal-00384443/document
https://jes-eurasipjournals.springeropen.com/track/pdf/10.1155/2008/753821
https://jes-eurasipjournals.springeropen.com/track/pdf/10.1155/2008/753821

e Sheeran, M., S. Singh, and G. Stalmarck (Nov. 2000). "Checking Safety Properties Using
Induction and a SAT-Solver". In: Proc. 3rd Int. Conf. on Formal Methods in
Computer-Aided Design (FMCAD 2000). Ed. by W. A. Hunt Jr. and S. D. Johnson. IEEE.
Austin, TX, USA, pp. 127-144.

e Swamy, N., C. Hritcu, C. Keller, A. Rastogi, A. Delignat-Lavaud, S. Forest, K. Bhargavan,
C. Fournet, P.-Y. Strub, M. Kohlweiss, J. K. Zinzindohoue, and S. Zanella Béguelin (Jan.
2016). “Dependent Types and Multi-monadic Effects in F*". In: Proc. 43rd ACM
SIGPLAN-SIGACT Symp. Principles of Programming Languages (POPL 2016). St.
Petersburg, FL, USA: ACM Press, pp. 256-270.

50 /50


https://www.di.ens.fr/~pouzet/cours/mpri/sheeran-FMCAD00.pdf
https://www.di.ens.fr/~pouzet/cours/mpri/sheeran-FMCAD00.pdf
http://dx.doi.org/10.1145/2837614.2837655

	Specifying Properties
	Two types of properties
	Model Checking: Temporal Logics
	LTL Basics (from [4.8cm]BiereEtAl:SymNoBDDs:1999)
	Synchronous Observers
	Example of Temporal Properties
	Example of Temporal Properties (cont.)
	Exercise: implementing temporal properties

	SMT Solver Basics
	SAT solvers
	SMT: Satisfiability Modulo Theories
	SMT-LIB 2.6
	Satisfiability
	Validity
	Interacting with the solver
	Functions
	Terms and Formulas
	Exercise: model checking 1-bit adders

	Model Checking
	Model Checking: (extremely) partial overview
	Model checking of Lustre
	Model checking: forward method
	Model checking: backward method
	Verifying safety properties of reactive systems
	The basic `pattern' for showing invariance
	Exercise: proving invariance of a simple transition system
	General rule for showing invariance
	Inductive invariants and model checking

	Bounded Model Checking and k-induction
	k-induction
	k-induction
	k-induction
	k-induction
	k-induction
	k-induction and completeness

	Model Checking Lustre Programs: Kind 2
	Model checking Lustre programs: Kind 2
	Kind 2
	Encoding Lustre in SMT HagenTin:Kind:2008
	SMT-based k-induction
	Kind 2 optimizations: path compression
	Kind 2 optimizations: abstraction
	Summary
	References
	References
	References
	References
	References
	References


