
Synchronous circuits, Automata, Parallel
composition

Marc Pouzet

École normale supérieure

Marc.Pouzet@ens.fr

MPRI, October 3, 2017

MPRI 2.23-1 Systèmes Synchrones, Marc Pouzet October 3, 2017 page 1/43

In this course

• Equivalence between an explicit and implicit representation of a transition

system (synchronous circuit versus an automaton).

• One-hot coding.

• Synchronous parallel and hierarchical composition of boolean automata.

• Translation of Esterel into data-flow equations.

• Some hints about the way data-flow and hierarchical automata are expressed

and compiled into clocked data-flow equations in SCADE 6.

MPRI 2.23-1 Systèmes Synchrones, Marc Pouzet October 3, 2017 page 2/43

Input and output automata: explicit and implicit

representations

We focus on the model of synchronous programs.

• We restrict to boolean Lustre programs and pure Esterel.

• Two classical models of explicit automata:

– Moore automata: the output is associated to a state.

– Mealy automata: the output is associated to a transition.

• Explicit versus implicit representation of an automaton.

• Boolean automata and interpreted automata.

• Parallel composition, hiding, hierarchy.

Hierarchical automata are widely used: StateCharts [5], StateFlow a but with

semantics pitfalls.

Historically, Argos [6] was the first definition of hierarchical boolean automata

with a precise semantics for composition. It is based on a synchronous semantics.

SyncCharts [1], Esterel [2], SCADE 6 are also based on a synchronous semantics.

awww.mathworks.com/products/stateflow

MPRI 2.23-1 Systèmes Synchrones, Marc Pouzet October 3, 2017 page 3/43

Moore Machines

A Moore automaton is a tuple (Q,Σ,∆, δ, λ, q0)

• Q is a finite set of states, q0 is the initial state.

• Σ is the finite input alphabet, ∆ the output alphabet.

• δ is an application from Q× Σ to Q.

• λ is an application from Q to ∆, that gives the output associated to every

state.

The answer of M to input a1a2...an, n ≥ 0 is λ(q0)λ(q1)...λ(qn) where q0, ..., qn is

the sequence of states such that δ(qi−1, ai) = qi for 1 ≤ i ≤ n.

Remark: A Moore automaton returns the output λ(q0) for input ε.

MPRI 2.23-1 Systèmes Synchrones, Marc Pouzet October 3, 2017 page 4/43

Example

Counter modulo 3 from a binary word.

0

q0 q1 q2

1

1

0

0 1 2

10

On input 1010, the sequence of states is q0, q1, q2, q2, q1 producing output 01221.

For ε, returns 0; for 1, returns 1; for 2 returns 2; for 5 returns 2 and for 10,

returns 1.

MPRI 2.23-1 Systèmes Synchrones, Marc Pouzet October 3, 2017 page 5/43

Mealy Machines

A Mealy automaton is a tuple M = (Q,Σ,∆, δ, λ, q0)

• Q is a finite set of stages, q0 the initial state.

• Σ is a input alphabet, ∆ the output alphabet.

• δ is an application from Q× Σ to Q

• λ is an application from Q× Σ to ∆

λ(q, a) returns the output associated to a transition from state q with input a.

The output of M for input sequence a1...an is λ(q0, a1)λ(q1, a2)...λ(qn−1, an)

where q0, q1, ..., qn is the sequence of states such that δ(qi−1, ai) = qi for

1 ≤ i ≤ n.

Remark: This sequence is of length n whereas it was of length n+ 1 for a Moore

automaton. On input ε, a Mealy automaton returns the output ε.

MPRI 2.23-1 Systèmes Synchrones, Marc Pouzet October 3, 2017 page 6/43

Example

Recognize words from {0, 1} which terminate either with 00 or 11.

A Mealy automaton with 3 states which returns o (for ok), when the input is

valid and n (for not ok) otherwise.

p1

1/n

1/o

1/n

0/n

0/o

0/n

q0

p0

The answer of M to input 01100 is nnono.

MPRI 2.23-1 Systèmes Synchrones, Marc Pouzet October 3, 2017 page 7/43

Equivalence

TM (w) is the output produced by M on input w.

Definition 1 (Equivalence between automata) A Moore automaton M ′ is

equivalent to a Mealy automaton M if for any input w, bTM (w) = T ′M (w) where

b is the output of M ′ in the initial state.

Theorem 1 (Equivalence)

• If M1 is a Moore atomaton it exists a Mealy automaton M2 equivalent to M1.

• If M1 is a Mealy automaton it exists a Moore automaton M2 equivalent to

M1.

Remark: Mealy automata are more concise than Moore automata. Encoding a

Mealy automaton into an equivalent Moore automaton may need an number of

states at worst equal to |Q′| × |∆|

MPRI 2.23-1 Systèmes Synchrones, Marc Pouzet October 3, 2017 page 8/43

From Moore to Mealy

Let M1 a Moore automaton. Build a Mealy automaton M2 = (Q,Σ,∆, δ, λ′, q0)

such that λ′(q, a) = λ(δ(q, a))

From Mealy to Moore

Let M1 a Mealy automaton. Build M2 = (Q′,Σ,∆, δ′, λ′, [q0, b0]) where b0 is any

element from ∆. States in M2 are pairs [q, b] made of a state from M1 and an

output symbol (Q′ = Q×∆). We define:

δ′([q, b], a) = [δ(q, a), λ(q, a)]

and:

λ′([q, b]) = b.

MPRI 2.23-1 Systèmes Synchrones, Marc Pouzet October 3, 2017 page 9/43

Explicit Boolean Automaton

• An automaton can be represented by a set of boolean functions.

• That is, a circuit with logical operators (e.g., and, or gates) and registers.

• A set of inputs I, outputs O, memories S (state variables).

• Initial state: ~init ∈ IB|S|

• Output functions: oj = fj(~s,~i) ∈ IB

• Transition functions: s′k = gk(~s,~i) ∈ IB

Particular case of a synchronous observer: a single boolean output.

MPRI 2.23-1 Systèmes Synchrones, Marc Pouzet October 3, 2017 page 10/43

Explicit automaton

• Set of inputs I, outputs O, states Q (finite)

• Initial state: qinit ∈ Q

• Transition relation: T ⊆ Q× I → O ×Q
NB: Deterministic iff the relation is a function.

• Notation: T (q,~i) = (~o, q′) written q
~i/~o→ q′

Mealy automaton:

• The input alphabet is the set of all possible tuple values for inputs.

• The output alphabet is the set of all possible tuple values for outputs.

MPRI 2.23-1 Systèmes Synchrones, Marc Pouzet October 3, 2017 page 11/43

From implicit to explicit

By enumeration of boolean values.

• Input alphabet IB|I|, output alphabet IB|O|

• Let Q = IB|S|, qinit = ~init

• q
~i/~o→ q′ iff ~o = (f1(q,~i), . . . , f|O|(q,~i))

q′ = (g1(q,~i), . . . , g|S|(q,~i))

MPRI 2.23-1 Systèmes Synchrones, Marc Pouzet October 3, 2017 page 12/43

From explicit to implicit

Various solutions, more or less efficient. The simplest is one-hot coding.

• Input alphabet Σ = {a1, . . . , an}

• Output alphabet ∆ = {b1, . . . , bm}

• Finite set of states Q and initial state Init

• Transition function T : Q× Σ→ ∆×Q

• For any state q, write:

– Prec(q) = {(p, i) / p i/o→ q}

– Succ(q) = {(i, r) / q i/o→ r}

• Write Output(o) = {(p, q, i) / p i/o→ q}

MPRI 2.23-1 Systèmes Synchrones, Marc Pouzet October 3, 2017 page 13/43

One hot-coding:

• A boolean state variable sqj per explicit state;

• a boolean variable ik per element of Σ;

• a boolean variable ok per element of ∆.

• Every state variable sq and output variable o is defined by:

– Let i1, . . . , in and p1, . . . , pn such that (pk, ik) ∈ Prec(q), k ∈ {1, . . . , n}
– Let j1, . . . , jm when there exists r such that (jk, r) ∈ Succ(q),

k ∈ {1, . . . ,m}

s′q = if sq then not j1 ∧ . . . ∧ not jm
else sp1 ∧ i1 ∨ . . . ∨ spn ∧ in

o =
∨

(p,q,i)∈Output(o) (p ∧ i)

• Initial state Init = (Init1, . . . , Init|Q|) such that Initk = 1 and Initj = 0 for

all j 6= k if qk is the initial state.

MPRI 2.23-1 Systèmes Synchrones, Marc Pouzet October 3, 2017 page 14/43

Remarks:

• n boolean variables to encode n states whereas log n is enough.

• Same thing for the input and output alphabet.

• Other encoding exist.

MPRI 2.23-1 Systèmes Synchrones, Marc Pouzet October 3, 2017 page 15/43

Recognising a regular language

When an automaton is not deterministic, it may not be made deterministic first.

A synchronous circuit is an exellent recogniser of a regular language!

q1

a,b,c

a b c

q2 q3 q4

node grep_abc(a, b, c: bool) returns (ok: bool);

var q1, q2, q3, q4: bool;

let

q1 = true -> pre q1;

q2 = false -> pre q1 and a;

q3 = false -> pre q2 and b;

q4 = false -> pre q3 and c;

ok = q4;

tel;

Several states can be active at the same instant. The code is deterministic and

linear size without building the exponential power set.

MPRI 2.23-1 Systèmes Synchrones, Marc Pouzet October 3, 2017 page 16/43

Boolean automata and interpreted automata

• Transitions can be made with boolean expressions.

• Equivalence with an implicit automaton is trivial, e.g., using one-hot coding.

• Transitions are of the form:

p
f/o1,...,on→ q

where f is a boolean formula on input variables and oi are output variables.

f ::= x | f ∨ f | f ∧ f | f où x ∈ I

factorizes transitions (exponential gain on the number of transitions w.r.t

using an alphabet). E.g., transitions p
f1/o→ q and p

f2/o→ q are represented by

p
(f1∨f2)/o→ q.

MPRI 2.23-1 Systèmes Synchrones, Marc Pouzet October 3, 2017 page 17/43

From implicit to explicit

Compilers manage both representations (explicit and implicit).

Implicit:

• Reasonnable size thus good model for code generation: corresponds to the

compilation in “single loop code” for Lustre.

• More compact; boolean simplification algorithms.

Explicit:

• (potentially) exponential size.

• Simple model for analysis and verification: an infinite number of equivalent

automata but a unique minimal one.

• In practice, it is impossible to build an explicit automaton from an implicit

one.

MPRI 2.23-1 Systèmes Synchrones, Marc Pouzet October 3, 2017 page 18/43

Synchronous Composition of Automata

Remark: synchronous circuit composition (here a single global clock) =

composition of boolean functions.

Boolean Mealy automata M = (S, so, I, O, T) where:

• I: input variables, O: output variables with I,O ⊆ A

• T ⊆ S × f(I)× 2O × S

• f(I) is a boolean formula over I

Determinism: For all state s and for all pair of transitions s
bi/...→ s′ and

s
bj/...→ s′′, bi ∧ bj = false

Reactivity: For all state s, the set of transitions s
bi/...→ si, 0 ≤ i ≤ k from s

verifies ∨0≤i≤kbi = true

We say that an automaton is causal when it is reactive and deterministic.

MPRI 2.23-1 Systèmes Synchrones, Marc Pouzet October 3, 2017 page 19/43

Synchronous Parallel Composition

What is the meaning of P ||Q where P and Q are two transition systems? If both

P and Q are causal, is P ||Q causal?

Synchronous Product:

(p, q)
c1∧c2/e1,e2→ (p′, q′) if (p

c1/e1→ p′) ∧ (q
c2/e2→ q′)

• Cartesian product of states with conjunction of gards and union of outputs.

• Synchronous broadcast: a signal is broadcast to all other signals:

• sending is non blocking;

• an arbitrary number of processes can receive a signal (broadcast)

• reaction to a broadcast is instantanous (same instant).

MPRI 2.23-1 Systèmes Synchrones, Marc Pouzet October 3, 2017 page 20/43

Some conditions on transitions are unsound.

• A/A→ : if A is absent, is A emitted? (all reaction must be logically sound)

• A/A→ when A is a local signal? (non determinacy)

• A/...→ where A is local and not emitted? (a signal is present if it is emitted)

MPRI 2.23-1 Systèmes Synchrones, Marc Pouzet October 3, 2017 page 21/43

No communication/synchronisation

p

c/o1 c/o2 c/o1,o2

not c not c not c

r

s qs

pr

q

Communication and hiding

• Reaction to a broadcast is instantaneous: when b is emitted, it is

immediately seen present.

• Add a hiding operation to eliminate certain transitions from the cartesian

product.

qs

not(b)

a/b b/c

not(a)

a/c

p r

sq

not(a)

pr

MPRI 2.23-1 Systèmes Synchrones, Marc Pouzet October 3, 2017 page 22/43

Hiding: hide b P (b is a local signal in P)

• Makes b local;

• synchronous product of the two automata:

(p, q)
c1∧c2/e1,e2→ (p′, q′) if (p

c1/e1→ p′) ∧ (q
c2/e2→ q′)

• some transition are logically unsound: keep transition
c/e→ iff:

(b ∈ e⇒ c ∧ b 6= false) ∧ (b 6∈ e⇒ c ∧ not b 6= false)

• no logical contradiction during a reaction;

• then remove b from transitions.

Conclusion:

• Iff P and Q are causal, P ||Q is not necessarily causal.

• A static analysis, called causality analysis is used to ensure that the overall

program is causal.

MPRI 2.23-1 Systèmes Synchrones, Marc Pouzet October 3, 2017 page 23/43

Automata and circuits:

What happens if we build the circuit corresponding to every automaton?

node left(a: bool) returns (b: bool);

var p: bool;

let

b = a and (true -> pre p);

p = (not(a)) and (true -> pre p);

tel;

node right(b: bool) returns (c: bool);

var r: bool;

let

c = b and (true -> pre r);

r = (not b) and (true -> pre r);

tel;

MPRI 2.23-1 Systèmes Synchrones, Marc Pouzet October 3, 2017 page 24/43

node produit(a: bool) returns (c: bool);

var b: bool;

let

b = left(a); c = right(b);

tel;

node simple(a: bool) returns (c: bool);

var pr: bool;

let

c = a and (true -> pre pr);

pr = (not a) and (true -> pre pr);

tel;

node observe(a: bool) returns (ok: bool);

let

ok = simple(a) = produit(a);

tel;

% lesar auto.lus observe

--Pollux Version 2.3

TRUE PROPERTY

MPRI 2.23-1 Systèmes Synchrones, Marc Pouzet October 3, 2017 page 25/43

Causality

If the system has a instantaneous loop (a variable depends instantaneously on

itself), it is statically rejected by the Lustre compiler.

Yet, some programs do have such loops but make sense mathematically. They are

constructively causal: feed with a constant input, their output stabilizes in

bounded time. An example is:

y = if c then x else i2

x = if c then i1 else y

It is not valid as a Lustre program but constructively correct.

Constructive causality is a very interesting question (and would deserve a full

extra course!).

Read:

Michael Mendler, Tom Shiple, Gérard Berry. Constructive Boolean circuits and

the exactness of timed ternary simulation Formal Methods in System Design,

2012; 40(3).

MPRI 2.23-1 Systèmes Synchrones, Marc Pouzet October 3, 2017 page 26/43

Herarchical automata

• Introduced by David Harel in StateCharts.

• A state is itself an automata.

not(b)

 /o

on/oon/

/not(on)

reset/

q

p

o1&o2/ok

p

q

p

q

 /o

a/o

not(a)

a/o2

 /o2

But the semantics of StateCharts is unclear (almost 40 different ones).

We consider here:

• Weak preemption: the current reaction terminates.

• Synchronous semantics following the one proposed by Florence

Maraninchi [6] and implemented in Argos)

MPRI 2.23-1 Systèmes Synchrones, Marc Pouzet October 3, 2017 page 27/43

Synchronous semantics

Parallel composition Synchronous composition, eliminating unsound

transitions.

Hierarchical composition

Weak preemption: is the source state sk makes an internal transition

sk1

fk/ ~ok→ sk2 at the same time with an external transition sk
f(i)/~o→ s′k′ , then

signals ~ok are emitted when fk ∧ f(i) is true.

Let two hierachical states M1 = (S1, so, I, O, T1) and M2 = (S2, s
′
o, I, O, T2) and a

transition sk
f(i)/~o→ s′k′ .

Build an automaton M = (S1 + S2, so, I, O, T) such that:

• sk1

fk∧not f(i)/ ~ok→ s′k2
(if the transition is logically sound)

• sk1

fk∧f(i)/ ~ok,~o→ s′o (if the transition is logically sound)

MPRI 2.23-1 Systèmes Synchrones, Marc Pouzet October 3, 2017 page 28/43

Programs with non boolean values: interpreted automata

Equationnal model.

• O = To1 × . . .× To|O|

• I = Ti1 × . . .× Ti|I|
• S = Ts1 × . . .× Ts|S| with Tx = IB, IN, . . .

• Initial state Init = (v1, ..., v|S|)

• A transition function T : S × I → O × S

• Essentially Lustre.

• Explicit automaton: impossible to build (infinite set of states and transitions)

MPRI 2.23-1 Systèmes Synchrones, Marc Pouzet October 3, 2017 page 29/43

Interpreted automaton

• Finite control structure (boolean);

• transitions are labelled by conditions;

• equationnal model for the rest (integers, reals).

Essentially the result of a Lustre compiler.

Example:

node compter(top, click: bool) returns (cpt: int);

let

cpt = if top then i else i + 0 -> pre cpt;

i = if click then 1 else 0;

tel;

cpt:=if top then i else cpt

i:=if click then 1 else 0;
cpt:=if top then i else i

i:=if click then 1 else 0;initinit

MPRI 2.23-1 Systèmes Synchrones, Marc Pouzet October 3, 2017 page 30/43

Programming Language Questions

In practice, systems are mixed.

• some parts are purely data-flow: regulation systems, filters, etc.

• some are control-oriented: drivers, protocols, systems with modes, etc.

The two descriptions are equivalent (one can be used to express/translate the

other) mais the written code is not necessarily efficient nor easy to read.

Questions Find a unique language allowing to mix both kinds of descriptions. It

is possible in all existing industrial tools: SCADE + SSM (before SCADE 6 was

introduced; Simulink + StateFlow; etc.

• Mode automata (Maraninchi & al. [7]): automata whose states may contain

automata or Lustre equations.

• An extension of this idea but with a source-to-source translation into a

clocked data-flow kernel (Colaço et al. [4, 3]). Introduced first in Lucid

Synchrone

• The basis of SCADE 6 a.

awww.esterel-technologies/scade

MPRI 2.23-1 Systèmes Synchrones, Marc Pouzet October 3, 2017 page 31/43

Mode automata (Lucid Synchrone)

let node weak(up, down) = ok where

rec automaton

| Up -> do ok = true until down then Down

| Down -> do ok = false until up then Up

end

let node strong(up, down) = ok where

rec automaton

| Up -> do ok = true unless down then Down

| Down -> do ok = false unless up then Up

end

Compilation:

• Every automaton can be translated into a set of clocked data-flow equations

with merge and when.

• Then, use the existing code generation method to produce sequential code.

MPRI 2.23-1 Systèmes Synchrones, Marc Pouzet October 3, 2017 page 32/43

Application: compilation of Esterel into boolean circuits

Principle: the control point is encoded by a boolean circuit.

Example: ABRO.

every R do

[await A || await B];

emit O;

end every

After simplification (i.e., translation into a kernel language), we get:

await R;

loop

abort

[await A || await B];

emit O; halt

when R

end

MPRI 2.23-1 Systèmes Synchrones, Marc Pouzet October 3, 2017 page 33/43

The Kernel Language

p ::= emit s | p; p | P ||P | loop p
| abort p when s | present s then p else p
| suspendP when s | nothing | signal s in p | halt

• pause ≡ await tick

• await S ≡ abort half when S

• halt ≡ loop pause end

Remark: The two elementary construct of the kernel should be exception and

suspension.

Cf. [G. Berry, Preemption in Concurrent Systems, FSTTCS’96].

We consider here only preemption which corresponds to a simple form of

exception, together with suspension.

MPRI 2.23-1 Systèmes Synchrones, Marc Pouzet October 3, 2017 page 34/43

ABRO

await R; -- 1

loop

abort

[await A -- 2

|| await B -- 3

];

emit O;

halt -- 4

when R

end

R

1

23

4

23

R

AB~R/O

~AB~RA~B~R

B~R/O A~R/O

R R

Two different compilation methods for Esterel

• Explicit automaton obtained by symbolic evaluation of the operational

semantics. Code may explode in size.

• Implicit automaton, i.e., translation into boolean equations (circuits).

MPRI 2.23-1 Systèmes Synchrones, Marc Pouzet October 3, 2017 page 35/43

Compilation into circuits

Principe Every construct is translated into a system of boolean equations, i.e., a

Lustre program.

• inputs S1, ..., Sn; outputs S′1, ..., S
′
k.

• control inputs: go and enable

• control outputs: term and halt

Corresponds to a Lustre signature:

node f(go, enable: bool; S1,...,Sn:bool)

returns (term, halt: bool; S’1,...,S’k: bool)

MPRI 2.23-1 Systèmes Synchrones, Marc Pouzet October 3, 2017 page 36/43

Translation rules

emit S

term = go;

halt = false;

S = go

pause

term = false -> pre go and enable;

halt = go;

await S

term = enable and pwait and S;

halt = enable and wait and not(S);

pwait = false -> pre (go and halt)

p1 || p2

(term1, halt1, S
′
1, ...) = p1(go, enable, ...);

(term2, halt2, S
′
2, ...) = p2(go, enable, ...);

halt = halt1 or halt2;

term = term1 and term2;

S′ = S′1 or S
′
2...

MPRI 2.23-1 Systèmes Synchrones, Marc Pouzet October 3, 2017 page 37/43

Translation rules

p1;p2

(term1, halt1, S
′
1, ...) = p1(go, enable, S1, ...);

(term2, halt2, S
′
2, ...) = p2(term2, enable and not(halt1), ...);

halt = halt1 or halt2;

term = term2;

S′ = S′1 or S
′
2

abort p whenS

(term1, halt1, S
′
1, ...) = p1(go, enable and (not(S) or go), ...);

halt = halt1 and not(S);

term = term1 or halt1 and S

loop p

(term1, halt1, S
′
1) = p1(go or term1, enable, ...);

term = false;

halt = halt1

MPRI 2.23-1 Systèmes Synchrones, Marc Pouzet October 3, 2017 page 38/43

Translation rules

suspend p whenS

(term1, halt1, S
′
1, ...) = p1(go, enable and (not(S) or go), S1, ...);

halt = halt1 or (S and not(go));

term = term1

Reincarnation:

loop

signal S in

[await T; emit S

||

present S then emit O]

end

end

Two different instances of S at the same time.

MPRI 2.23-1 Systèmes Synchrones, Marc Pouzet October 3, 2017 page 39/43

Reincarnation

Three solutions:

Solution 1:

• Code duplication:

loop

signal S1 in [await T; emit S1 || present S1 then emit O] end;

signal S2 in [await T; emit S2 || present S2 then emit O] end;

end

Expensive in size and efficiency.

Solution 2:

• Do better by distinguishing “surface” and “depth”.

– The surface of a programme is the part to be executed at the very first

instant.

– The depth is the complementary part.

surface(awaitT) = pause

profondeur(awaitT) = await immediateT

surface(presentS then emitO) = presentS then emitO

profondeur(presentS then emitO) = nothing

MPRI 2.23-1 Systèmes Synchrones, Marc Pouzet October 3, 2017 page 40/43

loop

signal S1 in [pause || present S1 then emit O] end;

signal S2 in [await immediate T; emit S2 || nothing] end;

end

To go further, read “Constructive semantics of Esterel” of G. Berry or (better),

the book “Compiling Esterel”.

Solution 3 Introduce an intermediate language with gotopause constructs.

Read “De la sémantique opérationnelle à la spécification formelle de compilateurs:

l’exemple des boucles en Esterel”. Thèse de doctorat, 2004. Olivier Tardieu.

The reincarnation problem is specific to Esterel.

It does not exists with mode automata and the solution adopted in SCADE 6 to

mix data-flow and hierarchical automata, with no loss in expressiveness.

MPRI 2.23-1 Systèmes Synchrones, Marc Pouzet October 3, 2017 page 41/43

References

[1] Charles André. Representation and Analysis of Reactive Behaviors: A

Synchronous Approach. In CESA, Lille, july 1996. IEEE-SMC. Available at:

www-mips.unice.fr/∼andre/synccharts.html.

[2] G. Berry and G. Gonthier. The Esterel synchronous programming language,

design, semantics, implementation. Science of Computer Programming,

19(2):87–152, 1992.

[3] Jean-Louis Colaço, Grégoire Hamon, and Marc Pouzet. Mixing Signals and

Modes in Synchronous Data-flow Systems. In ACM International Conference

on Embedded Software (EMSOFT’06), Seoul, South Korea, October 2006.

[4] Jean-Louis Colaço, Bruno Pagano, and Marc Pouzet. A Conservative

Extension of Synchronous Data-flow with State Machines. In ACM

International Conference on Embedded Software (EMSOFT’05), Jersey city,

New Jersey, USA, September 2005.

[5] D. Harel. StateCharts: a Visual Approach to Complex Systems. Science of

Computer Programming, 8-3:231–275, 1987.

[6] F. Maraninchi. The Argos Language: Graphical Representation of

Automata and Description of Reactive Systems. In IEEE Workshop on

Visual Languages, Kobe, Japan, october 1991.

MPRI 2.23-1 Systèmes Synchrones, Marc Pouzet October 3, 2017 page 42/43

[7] F. Maraninchi and Y. Rémond. Mode-automata: a new domain-specific

construct for the development of safe critical systems. Science of Computer

Programming, (46):219–254, 2003.

[8] Florence Maraninchi. Operational and compositional semantics of

synchronous automaton compositions. In CONCUR, pages 550–564, 1992.

[9] Florence Maraninchi and Yann Rémond. Argos: an automaton-based

synchronous language. Computer Languages, (27):61–92, 2001.

[10] Dumitru Potop-Butucaru, Stephen A. Edwards, and Gérard Berry.

Compiling Esterel. Springer, 2010.

MPRI 2.23-1 Systèmes Synchrones, Marc Pouzet October 3, 2017 page 43/43

