
Sequential Code Generation of Lustre

Marc Pouzet

École normale supérieure
Marc.Pouzet@ens.fr

MPRI
September 19, 2017

1 / 64

Marc.Pouzet@ens.fr

Sequential Code Generation
Input: A parallel data-flow networks made of synchronous operators; not
necessarily Lustre (e.g., the discrete subset of Simulink)
Output: A sequential function written in an imperative language (e.g., C,
Java) to compute one step of the data-flow network:

parallelism is removed by the compiler

Example: the risingEdgeRetrigger of Scade

2 / 64

Sequential Code Generation

A stream function f : Stream(T)→ Stream(T ′) is compiled into a pair:

• an initial state and a transition function: 〈s0 : S , ft : S ×T → T ′× S〉

A stream equation y = f (x) defining y = (yn)n∈N is computed sequentially
by yn, sn+1 = ft(sn, xn)

Synchrony ensures that a stream of type Stream(T) is implemented by a
scalar value of type T .

Remarks

• The transition function can be split in two:

• an initial state: s0 : S
• a value function: fv : S × T → T ′

• a state modification (“commit”) function: fs : S × T → S ′

• The state is modified in place instead of being returned.

3 / 64

Two typical implementations

Periodic sampling

s := s0;

every clock tick

read input e;

let o, s’ = ft s e in

s := s’;

emit output o

end

Event driven

s := s0;

everytime e is present

let o, s’ = ft s e in

s := s’;

emit output o

end

4 / 64

Modular Code Generation
• produce a sequential function for each definition;
• compose them to obtain the final transition function;
• follow data-dependences;

Nonetheless, modular sequential code generation is not always possible,
even when there is no causality loop [Gonthier, 1988].

f

node copy(a, b:bool) returns (c, d:bool);

let

c = a;

d = b;

tel;

node loop(t:bool) returns (z:bool);

var y: bool;

let

(y, z) = copy(t, y);

tel;

loop(t) whould run perfectly in a parallel implementation. 5 / 64

Two possible sequential code for f
Since the equations c = f1(a) and d = f2(b) are independent, they can
be scheduled in any order. E.g.,

void step_copy_one(int *a, int *b, int *c, int *d) {

*c = *a;

*d = *b;}

void step_copy_two(int *a, int *b, int *c, int *d) {

*d = *b;

*c = *a;}

void loop_step(int *t, int *z) {

int y;

step_copy_one(t, &y, &y, z);}

Only the first implementation of copy can be used. Thus, modular static
scheduling generating a single transition function is not possible.

Two main approaches has been followed in synchronous compilers.
6 / 64

The two main approaches to code generation

Maximal Static Expansion (“white boxing”)

• function calls are statically (inlined); no restriction on causality loops

• the way it is done in the academic Lustre compiler (VERIMAG)

• efficient enumeration techniques can be applied to generate finite
state automata [Raymond PhD. Thesis[?], Halbwachs et al. [?]]

• the code is very efficient but code size may explode

• it is hard to find the “good” boolean variables to enumerate to get
efficient (in both time and space) code

Single Loop Code Generation (“black boxing”)

• a single code repeated infinitely

• modular; the way it is done for Scade. Iimposes stronger causality
constraints: every loop should cross an explicit delay

• this simplifies tracability issues

• static expansion and agressive optimisations still possible. 7 / 64

Modular Static Scheduling

An intermediate solution (“grey boxing”)

• Instead of producing a single step function, produce several. E.g., for
copy, two.

• This is called the Modular Static Scheduling problem.

• Identified in 1988 by Raymond who proposed a first algorithm [?]

• The Optimal Modular Static Scheduling problem is when the
number of step functions is minimal.

• Several solutions has been proposed. See extra course.

8 / 64

Sequential code generation

9 / 64

A small reference compiler for Lustre [?]
The architecture is that of the Lucid Synchrone compiler and SCADE 6.

MiniLS

• A minimalistic clocked data-flow language as the input.

• General enough to be used as a target language for Lustre.

• General enough to be a target for more advanced language like
SCADE 6.

Objective

• Sequential code generation with one step function per node definition.

• Write a reference compiler mainly with source-to-source
transformation with everything “traced”.

• Compilation into an intermediate “object based” language to
represent transition functions.

• Translated then to imperative code (e.g., structured C, Java).

10 / 64

Organization of the Compiler

EmitC

Structured COBCMiniLS Annotated MiniLS

TranslationStatic checking

11 / 64

The source language

Consider a Lustre-like language. Translate it into imperative sequential
code.

a ::= v | x | v fby a
| op (a, ..., a)
| f (a, ..., a) every a
| a when C (x)
| merge x (C → a) ... (C → a)

D ::= pat = a | D andD

pat ::= x | (pat, ..., pat)

d ::= node f (p) = p with var p in D

p ::= x : bt; ...; x : bt

v ::= C | i

12 / 64

When/Merge

h true false true false ...

x x0 x1 x2 x3 ...

y y0 y1 y2 y3 ...

v fby x v x0 x1 x2 ...

x + y x0 + y0 x1 + y1 x2 + y2 x3 + y3 ...

z = x when true(h) x0 x2 ...

t = y when false(h) y1 y3 ...

merge h
(true→ z)
(false→ t)

x0 y1 x2 y3 ...

• v fby x is the unit delay initialized with v (1/z of Simulink)

• z is at a slower rate than x .

• the merge constructs combines two complementary sequences

13 / 64

Derived Operators

Mux/conditional:

if x then e2 else e3 = merge x
(true→ e2 when true(x))
(false→ e3 when false(x))

Initialization and un-initialized delay:

y = e1 -> e2 = y = if init then e1else e2

and init = true fby false

pre (e) = nil fby e

Simplification

Replace the n-ary merge by the one of Lucid Synchrone 1 [?] that apply
to a boolean condition: merge c e1 e2.

1www.di.ens.fr/~pouzet/lucid-synchrone
14 / 64

www.di.ens.fr/~pouzet/lucid-synchrone

Example (counter)

“Counts the number of tops between two ticks”.

node counting (tick:bool; top:bool) = (o:int) with

var v: int in

o = if tick then v else (0 fby o) + v

and v = if top then 1 else 0

tick true false false true false false false ...

top true true true false false true true ...

o 1 2 3 0 0 1 2 ...

v 1 1 1 0 0 1 1 ...

15 / 64

The n-ary merge operator
The merge operator:

• The deterministic merge combines two complementary flows (flows
on complementary clocks) to produce a faster one

Merge

.. b1b2b3b4b5b6b7

.. a2 a1

.. b1b2b3b4b5b6b7 a1a2a3

a3

Example: merge c (a when c) (b whenot c)

Generalization:

• generalized to n inputs of an enumerated type t with:

t = C1 | ... | Cn

• the sampling e when c is now written e when true(c), i.e.,

bool = true | False

16 / 64

Reseting a behavior

• There is no reset construct in Lustre: it must be manually defined

node counter() returns (s:int) with s = 0 fby s + 1

node resetable_counter(res:bool) returns (s:int) with

s = if res then 0 else 0 fby s + 1;

• making a component “resetable” is painful

• the generated code from the result is very bad whereas it is easy to
generate code that efficienly reset a set of initialized registers.

• two good reasons to make it primitive in the language

Specific notation:
f (a1, ..., an) every a

all the node instances used in the definition of node x are reseted when
the boolean a is true

17 / 64

Static Checking

MiniLS

Clock checkingType checking

Causality Check

Initialization Check

MiniLS+Types+Clocks

MiniLS+Types+Clocks

MiniLS+Types+Clocks

MiniLS+Types

18 / 64

Type and Clock checking
An intermediate language where every expression is annotated with two
informations: a type (bt) and a clock (ck)

a ::= eckbt
e ::= v | x | v fby a | a when C (x) | op (a, ..., a)

| f (a, ..., a) every a | merge x (C → a) ... (C → a)
D ::= pat = a | D andD
d ::= node f (p) = p with var p in D

Clock formula:

• The clock clock(s) of a sequence s is a boolean sequence such that
clock(s) = true iff s is present

• Compute a correct approximation of it, i.e., a boolean formula ck

ck ::= base | ck on C (x)

• For Lustre/MiniLS, clock formula are inferred and expressions are
annotated.

19 / 64

Clock Checking
Type and clock checking are performed in order to annotate every
expression with its type and clock. Clock checking is done structurally.
• Clock environment: H ::= [ck1/x1; ...; ckn/xn]
• H ` a : ct means that a is well annotated with clock type a under the

environment H.

(Annot)

H ` e : ck

H ` eckbt : ck

(Op)

H ` a1 : ck ... H ` an : ck

H ` op (a1, ..., an) : ck

(Const)

H ` v : ck

(Var)

H, x : ck ` x : ck

(Fby)

H ` a : ck

H ` v fby a : ck

(When)

H ` a : ck H ` x : ck

H ` a when C (x) : ck on C (x)

(Merge)

H ` x : ck H ` a1 : ck on C1(x) ... H ` an : ck on Cn(x)

H ` merge x (C1 → a1) ... (Cn → an) : ck
20 / 64

Clock Checking
For MiniLS, we consider the simpler case (than Lustre) where all
input/output of a node are synchronous.

(Call)

H ` a1 : ck ...H ` an : ck H ` a : ck

H ` f (a1, ..., an) (a) every :ck

(Node)

`base p : Hp `base q : Hq ` r : Hr Hp,Hq,Hr ` D

` node f (p)(q) = var r in D

(Pat)

` x1 : t1, ..., xn : tn : [x1 : ck1; ...; xn : ckn]

(Param)

`base x1 : t1, ..., xn : tn : [x1 : base; ...; xn : base]

21 / 64

Clock checking

(Eq)

H ` pat : ct H ` a : ck

H ` pat = a

(And)

H ` D1 H ` D2

H ` D1 andD2

This system is very limited. E.g., functions return a single value, all inputs
must be synchronous.

Extension

• The clock calculus of Lustre can be defined as a dependent type
system that also work for higher-order [?, ?]

• A simpler version reminiscent of the ML-type system with a limite
form of existential types [?].

• Yet, we stick to this simpler version to illustrate the use of clocks in
the compilation process.

22 / 64

Translation into sequential code

(naive to clever) scheduling
data−flow transformations

(CSE, Constant Prop.)

Inlining

Annotated MiniLS Annotated MiniLS

Normalization

(normalized)

Annotated MiniLS

(normalized)

Structured C

Obc

Translate

(scheduled)

EmitC

23 / 64

Putting Equations in Normal Form

• Prepare equations before the translation.

• Identify state variables vs temporaries.

• Rewrite equations such that delays and function applications do not
appear in nested expressions.

Normal Form:

a ::= eckbt

e ::= a when C (x) | op (a, ..., a) | x | v
ce ::= merge x (C → ca) ... (C → ca) | e
ca ::= ceckbt

eq ::= x = ca | x = v fby a
| (x , ..., x) = f (a, ..., a) every x

D ::= eq | eq andD

24 / 64

Alternative

Instead of a new intermediate language, characterize normal forms by a
predicate.

NA(xckbt) NA(v ckbt)
NA(a)

NA((a when C (x))ckbt)

NA(a1) . . . NA(an)

NA((op(a1, ..., an))ckbt)

NCA(a1) . . . NCA(an)

NCA((merge x (C1 → a1) ... (Cn → an))ckbt)

NA(a)

NCA(a)

NEQ(eq) NEQ(D)

NEQ(eq andD)

NA(a1) . . . NA(an) NA(a)

NEQ((x1, ..., xm) = f (a1, ..., an) every a)

NA(a)

NEQ(x = (v fby a)ckbt)

NCA(a)

NEQ(x = a)

25 / 64

Checking the correctness of the normalization
The normalization is a relatively simple rewritting. It can be implemented
in Ocaml. Then, it can be checked independently, e.g., by Coq.
• The only thing the normalization is allowed to do is to replace an

expression by a name
• Given a list of equations, produce a new list of normalized equations

and a substitution such that:

normalize([eq1; ...; eqn])
def
= [eq′1; ...; eq′n], [e1/x1, ..., ek/xk]

• A proof that the two equations:
var x1 : t1 in ...var xk : tk in x1 = e1 and ...xk = ek and eq

′
1 and ...eq

′
n

and eq1 and ...eqn are semantically equivalent.
• A verification test (e.g., implemented in Coq) such that:

subst([eq′1; ...; eq′m])[e1/x1, ..., el/xl] = [eq1; ...; eqn]

with:

subst(eqs)[e1/x1, ..., el/xl] = subst(subst(eqs)[e1/x1])[e2/x2, ..., en/xn]

• If the substitution succeeds, then the translation preserves the
semantics.

26 / 64

Syntactic Dependences and Scheduling

After the normalization, equations are scheduled according to
data-dependences.

• The scheduling function does not have to be proved. Define:

schedule: eq list → eq list

• Define what is a well scheduled sequence of equations:
• An equation x = ca must appear before any read of x

(data-dependence)
• An equation x = v fby a must appear after any read of x

(anti-dependence)

• A proof that any shuffle of equations preserves the semantics (easy).

• A test function (e.g., in Coq) checks that the result of
schedule(eq list) is well formed; otherwise, the compilation stops.

• A test function (e.g., in Coq) checks that two equations lists are
equal up-to a permutation.

27 / 64

Well Scheduled Equations
Two equations D1 and D2 are schedule-equivalent if they are equal up to
permutation.

Definition (Well Scheduled Equations)

Left (ca) returns the list of variables that are read in ca.

x 6∈ Left (ca)

SCH(x = ca) : Left (ca), {x}, ∅ SCH(x = (v fby a)ckbt) : Left (a), ∅, {x}

{x1, ..., xm} ∩ (∪0≤i≤nLeft (ai)) = ∅
SCH(~x = f (~a) every x) : (∪0≤i≤nLeft (ai)) ∪ {x}, {x1, ..., xm}, ∅

SCH(eq) : r ,w ,mem SCH(D) : r ′,w ′,mem′ w ′ ∩ r = ∅ mem ∩ r ′ = ∅
SCH(eq andD) : r ∪ r ′,w ∪ w ′,mem ∪mem′

Remark: By separating the scheduling function from what is a correctly
scheduled sequence of equation, we can implement more clever scheduling
functions. 28 / 64

Example (the counting node)

Once the type and clock checking and annotation are done, we get:

node counting (tick : bool , top : bool) with (o : int) in (v : int)
o = (merge tick (true→ (vb when true(tick))ck1)

(false→ (((0 fby ob)b + vb)b when false(tick))ck2))b

and v = (merge top (true→ (1b when true(top))ck3)
(false→ (0b when false(top))ck4))b

ck1 = b on true(tick)
ck2 = b on false(tick)
ck3 = b on true(top)
ck4 = b on false(top)

We write b as a short-cut for base.

29 / 64

Example (the counting node)

After the normalization, it becomes:

node counting (tick : bool , top : bool) with (o : int) in (v : int)
o = (merge tick (true→ (vb when true(tick))ck1)

(false→ ((tb + vb)b when false(tick))ck2))b

and t = (0 fby ob)b

and v = (merge top (true→ (1b when true(top))ck3)
(false→ (0b when false(top))ck4))b

where :
ck1 = b on true(tick)
ck2 = b on false(tick)
ck3 = b on true(top)
ck4 = b on false(top)

30 / 64

Example (the counting node)

After the scheduling, it becomes:

node counting (tick : bool , top : bool) with (o : int) in (v : int)
v = (merge top (true→ (1b when true(top))ck3)

(false→ (0b when false(top))ck4))b

and o = (merge tick (true→ (vb when true(tick))ck1)
(false→ ((tb + vb)b when false(tick))ck2))b

and t = (0 fby ob)b

ck1 = b on true(tick)
ck2 = b on false(tick)
ck3 = b on true(top)
ck4 = b on false(top)

31 / 64

Static scheduling and copy variables
Even when a collection of equations is causally correct, it may be
necessary to introduce auxiliary variables so as to schedule it.

x = 0 fby y
and y = 1 fby x

cx = x
and x = 0 fby y
and y = 1 fby cx

• Each of them is in normal form but the left sequence is not.
• Either introduce an extra variable as shown on the right during

normalization or scheduling,
• or eliminate it a posteriori.
• Introduce variables systematically is not good (i.e., a fresh name for e

in equation x = v fby e). It increases the number of copies.
• The scheduling heuristic tries to gather equations with the same clock

and to store x and v fby x into the same location.
• By characterising only what is a normal and scheduled form, we give

the liberty to the compiler to consider several possible
implementations of the scheduling/normalization functions.

32 / 64

Translation to Sequential Code
We introduce an intermediate target imperative language in which
annotated normalized data-flow programs are compiled.

What do we need?

• represent transition functions in an imperative style

• a simple memory model: static allocation of memory; no
aliasing/pointer

• such that the translation into C code is (almost) trivial

Intuition
A synchronous function f defines a “class” or “machine” with

• A set of state variables and a set of instance variables (for
“sub-machines”).

• A set of methods that read/write these state variables.

The memory model is a tree and there is no aliasing between states. The
method of a class can only modify its own states (“instance variables”).

33 / 64

A Simplification

For MiniLS, we consider the simple situation where we produce only two
methods step and reset:

• Given the current inputs, the method step produces the current
outputs and modifies its internal state.

• A method reset to initialize/reset its internal state.

Obc is expressive enough to be used as a target for compilation methods
that decompose the step function into several methods [Tripakis et al.
POPL’09, Pouzet et al., EMSOFT’09].
See extra course.

34 / 64

The Obc Intermediate Language

md ::= let x = c | md ;md
let f = class〈M, I , (method i (pi) = ci where Si)i∈[1..n]〉

M ::= [x : [= v]; . . . ; x : [= v]]

I ::= [o : f ; . . . ; o : f]

c ::= v | lv | | op(c , . . . , c) | o.method(c, . . . , c) | (c , . . . , c)

S ::= () | lv ← e | S ; S | var x , . . . , x in S | if c thenS elseS
| case (x) {C : S ; ...;C : S}

R, L ::= S ; . . . ;S

lv ::= x | state (x)

method ::= step | reset | ...

35 / 64

Principles of the translation

• Hierarchical memory model which corresponds to the call graph: one
local memory for each function call

• the translation is made on a linear traversal of the sequence of
normalized and scheduled equations

• Control-structure (invariant): an equation annotated with clock ck is
executed when ck is true.

• A guarded equations x = eck translates into a control-structure. E.g.,
the equation:

x = (y + 2)base on C1(x1) on C2(x2)

is translated into a piece of control-structure:

case (x1) {C1 : case (x2) {C2 : x = y + 2}}

36 / 64

• local generation of a control-structure from a clock:

Control(base,S) = S
Control(ck on C (x), S) = Control(ck , case (x) {C : S})

• merge them locally

Join(case (x) {C1 : S1; ...;Cn : Sn}, case (x) {C1 : S ′
1; ...;Cn : S ′

n})
= case (x) {C1 : Join(S1, S

′
1); ...;Cn : Join(Sn,S

′
n)}

Join(S1,S2) = S1;S2

Control-optimization:

• The scheduling must put equations with the same clock close to
each others

• This does not complicates the proof as it can be programmed in
Ocaml provided equations are in well-formed scheduled form.

37 / 64

Example

machine counting =

memory t1 : int = 0;

reset () = state(t1) := 0;

step(tick:bool,top:bool) returns (o:int) =

v:int, t2:int in

case (top) {

| True: v := 1;

| False: v := 0; };

case(tick) {

| True: o := v;

| False: o := state(t1) + v; };

t2 := o;

state(t1) := t2;

38 / 64

Example (modularity)

Principle:

• Each function is compiled separately, once for all.

• A function call needs a local memory added to the caller.

Example:

node count(x:int) returns (o:int) with

o = 0 fby o + x;

node condact(c:bool;input:int) returns (o:int) with

var o’:int in

o = merge c (true -> o’)

(false -> (0 fby o) when false(c)) and

o’ = count(input when true(c))

39 / 64

Target code:

machine condact =

memory x_2 : int = 0

instances x_4 : count

reset() =

x_4.reset();

state x_2 := 0;

step(c : bool; input : int) returns (o : int)

var o’ : int in

case (c) {

case true :

o’ := x_4.step(input);

o := o’;

case false :

o := state(x_2);

};

state x_2 := o; }

40 / 64

Notations

• If p = [x1 : bt1; ...; xn : btn] and p2 = [x ′1 : bt ′1; ...; x ′k : bt ′k] then
p1 + p2 = [x1 : bt1; ...; xn : btn; x ′1 : bt ′1; ...; x ′k : bt ′k] provided xi 6= x ′j
for all i , j such that 1 ≤ i ≤ n, 1 ≤ j ≤ k .

• [] denotes the empty list of variable declarations.

• m1 and m2 denotes environments for memories.

• j1 and j2 denotes environments for instances.

• m1 + m2 for the composition of two substitutions on memory names
and j1 + j2 on object instances.

• S · L is a list of instructions whose head is S and tail is L. [] is the
empty list and [S1; ...;Sn] = S1 · (... · Sn · []).

41 / 64

Translation functions 2

A set of mutually recursive functions. It must be applied on
expressions/equations in normal form (normalized and scheduled).

• TEm (a) translates an expression.

• TCAm (x , ca) defines the translation of an expression ca to store in
variable x .

• TEq〈m,S ,j ,L〉 (eq) defines the translation of an equation:
• m is a memory environment;
• S is executed when reset;
• j is the instance environment;
• L is a sequence of instructions

• TEListm [a1, ..., an] translates a list of expressions.

• TEqList([D1, ...,Dn]) translates a list of equations.

2Original definitions in [?]. Rewritten here into a simpler but equivalent form.
42 / 64

TEm (eckbt) = TEm (e)
TEm (v) = v
TEm+[x :bt=v] (x) = state (x)
TEm (x) = x otherwise
TEm (a when C (x)) = TEm (a)
TEm (op(a1, ..., an)) = let [c1, ..., cn] = TEListm [a1, ..., an] in

op(c1, ..., cn)

TCAm (y , ca) defines the translation of an expression ca to store in
variable y .

TCAm (y , merge x ~(C → ca)
ck

bt) = case (x) { ~C : TCAm (y , ca)}

TCAm (y , a) = y := TEm (a) otherwise

43 / 64

Translation of equations

TEListm [a1, ..., an] = [TEm (a1), ...,TEm (an)]
TEqList(eq) = TEq〈[],skip,[],[]〉 (eq)

TEqList(eq andD) = TEqTEqList(D) (eq)

Instantaneous equations and the unit delay

TEq〈m,S ,j ,L〉 (x = eckbt) = 〈m, j ,S , (Control(ck ,TCAm (x , eckbt))) · L〉

TEq〈m,S ,j ,L〉 (x = (v fby a)ckbt) =

let m′ = m + [x : bt = v] in
let c = TEm′ (a) in
〈m′, state (x) := v ; S , j , (Control(ck , state (x) := c)) · L〉

44 / 64

Translation of equations

TEq〈m,S ,j ,L〉 ((x1, ..., xk) = f (a1, ..., an) every e0
ck
bt) =

let c0 = TEm (e0
ck
bt) in

let [c1, ..., cn] = TEListm [a1, ..., an] in
〈m, o.reset;S , [o : f] + j
(Control(ck , case (c0) {(true : o.reset)}))·
(Control(ck , (x1, ..., xk) = o.step (c1, ..., cn))) · L〉 where o 6∈ Dom(j)

45 / 64

Translation of a node definition

TP (node f (p) returns (q) var r in D) =
let 〈m, S , j , L〉 = TEqList(D) in
class f = 〈memory = m;

instances = j ;
reset = S ;
step(p) returns(q) var r in JoinList(L)〉

where SCH(D)

For short, we write SCH(D) where there exists r ,w ,m such that
SCH(D) : r ,w ,m.

JoinList(L) concatenates instructions from L and fuse adjacent case
statements.

The translation from Obc to C is simple and not explained here.

46 / 64

Optimizations

• Some optimizations can be done by the compiler of the target
language. E.g., it is useless to optimize reuse between local (stack)
variables.

• But this depends on the quality of the compiler of the target language.

• Some classical optimizations (CSE, copy and const. prop., inlining)
can be applied directly on the data-flow representation.

• It is always useful to reduce the number of state variables and the
liveness between reads and writes.

• Optimize the control structure. E.g., gather if/then/else.

• These two optimizations depend on the scheduling heuristic.

47 / 64

Optimization that a C compiler cannot do easily

• Share memories (CSE), compile ...pre(x)... + ...pre(x)... as
...m1... + ...m1... with x1 = pre(x).

• Avoid copies: x and pre x can be shared when all equations reading
pre x can be scheduled before the equation x = ... E.g.:
x = pre x + 1 can be compiled into x := x + 1

• Automata minimization (generalization of CSE). E.g.,
y = pre y + 1; z = pre z + 1 as y = pre y + 1; z = y.

• share memories between two pieces of code never active in parallel
and when the transition between the two is by reset. E.g.:

automaton

| Left -> let rec nat = 0 -> pre nat + 1 in

do o = nat + 1 until c then Right

| Right -> let rec nat2 = 2 -> pre nat2 + 2 in

do o = nat2 + 1 until c then Left

end

The two occurrences of -> and pre can be shared.

48 / 64

Control Optimization

Share/reduce the number of control-structures
• some piece of code is only executed at the very first instant or only

when some condition is true. E.g.,

if m -> init_1 then x = 0; /* initialization code */

...

if m -> init_1 then x = 1; /* initialization code */

...

if c_1 then x = m -> pre_1 + 1;

/* step when clock c_1 is true */

...

if c_1 then m -> pre_1 = x;

/* set the memory when clock c_1 is true */

• minimize the number of if/then/else to open. For that, define a
scheduling function which gather equations activated on the same
clock (cf. Join(., .)).

Still, the generation is not that efficient.

49 / 64

Compilation into Automata

Generating a single step functions means that some conditions that are
surely false will be executed at every step. E.g., consider the way an
initialization o = x -> y is compiled.

if state(init_1) then o := x else o := y;

...;

state(init_1) := false;

Can we do a more aggressive optimization that would lead to an “optimal”
control structure which only execute the necessary code at every instant?

This is the idea of compilation into automata introduced by Halbwachs
and Plaice (Lustre V2).
It was improved to generate a minimal automaton (Lustre V3) by Ratel et
Raymond in 1991 [?].

50 / 64

An example

node counter(tick,top:bool) returns (cpt:int)

var i:int;

let cpt = 0 -> if pre top then i

else if tick then pre cpt + 1

else pre cpt;

i = if tick then 1 else 0;

tel;

After normalization, we get:

node counter(tick,top:bool) returns (cpt:int)

var i:int;

let cpt = if init then 0

else if ptop then i

else if tick then ptop + 1

else ptop;

i = if tick then 1 else 0;

ptop = pre top;

pcpt = pre cpt;

init = true fby false

tel; 51 / 64

Single loop code

(* sequence producing outputs *)

if tick then i := 1 else i := 0;

if state(init) = 0 then cpt := 0

else if state(ptop) then cpt := i

else if tick then cpt := state(pcpt) + 1

else cpt := state(pcpt)

state(init) := false;

state(ptop) := top;

state(pcpt) := cpt

All occurrences of top can be replaced by ptop, and cpt by
state(pcpt). Then, the last two assignment disappear.

The rule is this:
Try to schedule data-flow equations such that equation y = v fby x

disappear, that is, all equations reading y are scheduled before the
equation that define modifying x.

52 / 64

Compilation into automata

-O0:

• no control-structure = a single code executed infinitely

-O4 ?

• build an automaton by enumerating boolean state variables

• partial evaluation of the code for every value

• in a language that has automata at the language level, this
optimisation could be done as a source-to-source transformation.

• this is not done this way, at the moment.

53 / 64

Example

Initial state: S1 = [true/init]
The code that computes the output is:

if tick then i := 1 else i := 0;

cpt := 0;

state(pcpt) := cpt

• It can be simplified into state(pcpt) := 0;

• The code that computes the next state is:

if top then state(ns) := S2 else state(ns) := S3;

54 / 64

State S2: S2 = [false/init, true/ptop]

if tick then i := 1 else i := 0;

state(pcpt) := i;

if top then state(ns) := S2; else state(ns) := S3;

State S3: S3 = [false/init, false/ptop]

if tick then

begin

i := 1;

state(pcpt) := state(pcpt) + 1

end

else

begin

i := 0;

end;

if top then state(ns) := S2

else state(ns) := S3;

55 / 64

The final automaton

switch (state(ns))

S1: state(pcpt) := 0;

if top state(ns) := S2; else state(ns) := S3;

S2: if tick then i := 1 else i := 0;

state(pcpt) := i;

if top then state(ns) := S2 else state(ns) := S3;

S3: if tick then state(pcpt) := state(pcpt) + 1;

if top state(ns) := S2 else state(ns) := S3;

end;

56 / 64

Conclusion

• far better code but the size has increased

• assertions (i.e., assert P in Lustre) can be taken into account
during the enumeration

Problems

• combinatorial explosion worst than in Esterel

• in Lustre, the control-structure is hidden and encoded with booleans
(think of a one-hot encoding of an automaton)

• which boolean variables should we consider? There is no good
programming rules to avoid this explosion

Solutions?

• automata minimization done a posteriori.

• direct generation of a minimal automaton (called “compilation on
demand”, [Halbwachs, Ratel, Raymond, PLILP 91])

57 / 64

An example

node Example(i: bool) return (n: int);

var x,y,z : bool;

let

n = 0 -> if (pre x) then 0 else (pre n) + 1;

x = false -> not (pre x) and z;

y = i -> if (pre x) then (pre y) and i

else (pre z) or i;

z = true -> if (pre x) then (pre z)

else ((pre y) and (pre z)) or i);

tel

4 state variables (->, pre x, pre y and pre z)

58 / 64

Example
Example:

• q0 : (init, pre x , pre y , pre z) = (1, nil , nil , nil)
Action: n:=0

nextinit(q0, i) = 0
nextpre x(q0, i) = 0
nextpre y (q0, i) = i
nextpre z(q0, i) = 0
if (i) { state = q1;} else { state = q2;}
with q1 = (0, 0, 1, 1) et q2 = (0, 0, 0, 1)

• q1 = (0, 0, 1, 1)
Action: n:=n+1

nextinit(q1, i) = 0
nextpre x(q1, i) = 1
nextpre y (q1, i) = 1
nextpre z(q1, i) = 1
state = q3

• q2 = (0, 0, 0, 1)
Action: n:=n+1, if (i) { state = q3;} else { state = q4;}59 / 64

• q3 = (0, 1, 1, 1)
Action: n:=0, if (i) {state = q1;} else { state = q2;}

• q4 = (0, 0, 1, 0)
Action: n:=n+1, if (i) { state = q3;} else { state = q5;}

• q5 = (0, 0, 0, 0)
Action: n:=n+1, if (i) { state = q3;} else { state = q5;}

not(i)

q2

q3 q4 q5

q1 q0

n:=0
n:=n+1

n:=n+1

n:=0 n:=n+1
n:=n+1

i
not(i)

not(i)

i not(i)

i

not(i)

i

60 / 64

Compilation into automata “on demand”

• the automaton is not minimal: q0 and q3 are equivalent; q4, q5 and
q2 are equivalent

• we can minimize a posteriori (Lustre V2) but still an explosion of the
number of states in the intermediate automaton

Solution: directly generate a minimal automaton. In practice, the code is
still too big, but:

• this technique will be very interesting when compiling a program
having a single boolean variable

• what is the minimal automaton for a program with a single boolean
variable which is always true? The trivial automaton true!

• this corresponds exactly to proving a safety (invariant) property by a
Model Checking technique.

61 / 64

Conclusion

• The compilation into automata is possible but it is not modular and
tend to generate enormous code.

• Industrial compiler generate single-loop code.

• Memory (buffer) and control optimization are important, in particular
when the program manipulate arrays (read [?])

• The clock-directed translation method is a good compromise (simple
et reasonnably efficient code).

• Some mix of the two, possibly expressed as a source-to-source
transformation in a language that has automata, would be novel

• Would-it simplify the proof that it is correct?

• The clock-directed code generation technique has been
re-implemented in several compilers. Bourke et al. have recently
succeeded in formalising and proving it in Coq (late 2016).

Finally, single loop code generation impose causality restrictions on
feed-back loops. See course notes on the Optimal Static Scheduling
problem.

62 / 64

Complement: Automata Minimization

• An automaton = (Initial , State, Label ,→)
with →⊆ Label × State × State

• Find a partition of State with a equivalence relation

A bisimulation
p ∼ q iff

• p
a→ p′ ⇒ ∃q a→ q′ ∧ p′ ∼ q′

• q
a→ q′ ⇒ ∃p a→ p′ ∧ p′ ∼ q′

Algorithm: fix-point computation

• ∀p, q ∈ State, p ∼0 q

• p ∼n+1 q iff p
a→ p′ ⇒ ∃q a→ q′ ∧ p′ ∼n q′

q
a→ q′ ⇒ ∃p a→ p′ ∧ p′ ∼n q′

In practice, applying automata minimization on the generated automaton
does not work.

63 / 64

Darek Biernacki, Jean-Louis Colaco, Grégoire Hamon, and Marc Pouzet.

Clock-directed Modular Code Generation of Synchronous Data-flow Languages.
In ACM International Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES), Tucson,
Arizona, June 2008.

Sylvain Boulmé and Grégoire Hamon.

Certifying Synchrony for Free.
In International Conference on Logic for Programming, Artificial Intelligence and Reasoning (LPAR), volume 2250, La
Havana, Cuba, December 2001. Lecture Notes in Artificial Intelligence, Springer-Verlag.
Short version of A clocked denotational semantics for Lucid-Synchrone in Coq, available as a Technical Report (LIP6), at
www.di.ens.fr/∼pouzet/bib/bib.html.

Paul Caspi and Marc Pouzet.

Synchronous Kahn Networks.
In ACM SIGPLAN International Conference on Functional Programming (ICFP), Philadelphia, Pensylvania, May 1996.

Jean-Louis Colaço and Marc Pouzet.

Clocks as First Class Abstract Types.
In Third International Conference on Embedded Software (EMSOFT’03), Philadelphia, Pennsylvania, USA, october 2003.

Léonard Gérard, Adrien Guatto, Cédric Pasteur, and Marc Pouzet.

A Modular Memory Optimization for Synchronous Data-Flow Languages. Application to Arrays in a Lustre Compiler.
In Languages, Compilers and Tools for Embedded Systems (LCTES’12), Beijing, June 12-13 2012. ACM.
Best paper award.

N. Halbwachs, P. Raymond, and C. Ratel.

Generating efficient code from data-flow programs.
In Third International Symposium on Programming Language Implementation and Logic Programming, Passau
(Germany), August 1991.

R. Lublinerman, C. Szegedy, and S. Tripakis.

Modular Code Generation from Synchronous Block Diagrams — Modularity vs. Code Size.
In ACM Principles of Programming Languages (POPL), 2009.

Marc Pouzet.

Lucid Synchrone, version 3. Tutorial and reference manual.
Université Paris-Sud, LRI, April 2006.

Marc Pouzet and Pascal Raymond.

Modular Static Scheduling of Synchronous Data-flow Networks: An efficient symbolic representation.
In ACM International Conference on Embedded Software (EMSOFT’09), Grenoble, France, October 2009.

Pascal Raymond.

Compilation séparée de programmes Lustre.
Technical report, Projet SPECTRE, IMAG, July 1988.

Pascal Raymond.

Compilation efficace d’un langage déclaratif synchrone: le générateur de code Lustre-v3.
PhD thesis, Institut National Polytechnique de Grenoble, 1991.

64 / 64

