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Lustre describes discrete time models.

What about hybrid discrete/continuous models?
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Example: the cruise control in its environment1

Model the whole system: the controller and the plant.

1Image from ANSYS/Esterel-Technologies
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A hybrid system = a system with mix of discrete-time and continous-time
signals, discrete and continuous changes.

E.g., a software model + a model of the physics,

a continuous-time model with modes and/or discontinuous jumps.
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We focus on languages to write executable models.

This is complementary to the formal verification problem.
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E.g., Lustre and SCADE are restricted to discrete-time models.

Otherwise, e.g., Simulink/Stateflow, Modelica, Ptolemy, Scicos.
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For example 2

2Image taken from the standard distribution of Simulink
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In those languages, the compiler does a lot

Produces executable code for efficient simulation and/or an embedded
implementation.

Detect/reject statically certain models.

Does non trivial transformations.

E.g., static scheduling, inlining, rewriting, separation of the
continuous/discrete-time part, data representations, link with an ODE
solver.

A precise static/dynamic semantics is necessary to argue that the compiler
is correct.
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Where are the monsters?
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Besides difficulties related to numerical approximation of ODEs,

some model mix discrete time and continuous time in an ambiguous or
wrong manner;

They are fragile, hard to reuse, their simulation is difficult to reproduce.
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Typing discrete/continuous issues (in Simulink)
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Discrete time is not the logical time of Lustre.

It is that of the simulation engine.
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Some blocks explicitly refer to the major step of the simulation engine.

E.g., the derivative, transport delay, backlash, memory block.

They should be used very carefully when applied to continuous-time imputs.

Yet, if we forbid them, some systems are difficult to write.

E.g., the memory block is necessary to break certain algebraic loops and
get sequential code.
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Causality issue: the Simulink state port
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The output of the state port is the same as the output of
the block’s standard output port except for the following
case. If the block is reset in the current time step, the out-
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at the block’s standard output if the block had not been
reset.
–Simulink Reference (2-685)
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Excerpt of C code produced by RTW (release R2009)
static void mdlOutputs(SimStruct * S, int_T tid)
{ _rtX = (ssGetContStates(S));

...
_rtB = (_ssGetBlockIO(S));
_rtB->B_0_0_0 = _rtX->Integrator1_CSTATE + _rtP->P_0;
_rtB->B_0_1_0 = _rtP->P_1 * _rtX->Integrator1_CSTATE;
if (ssIsMajorTimeStep (S))

{ ...
if (zcEvent || ...)

{ (ssGetContStates (S))->Integrator0_CSTATE =
_ssGetBlockIO (S))->B_0_1_0;

}
...

(_ssGetBlockIO (S))->B_0_2_0 =
(ssGetContStates (S))->Integrator0_CSTATE;
_rtB->B_0_3_0 = _rtP->P_2 * _rtX->Integrator0_CSTATE;
if (ssIsMajorTimeStep (S))
{ ...

if (zcEvent || ...)
{ (ssGetContStates (S))-> Integrator1_CSTATE =

(ssGetBlockIO (S))->B_0_3_0;
}

... } ... }

x = −3 · last y

Before assignment:
integrator state con-
tains ‘last’ value

After assignment: integrator
state contains the new value

y = −4 · x
So, y is updated with the new value of x

There is a problem in the treatment of causality.
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Causality: Modelica example

model scheduling
Real x(start = 0);
Real y(start = 0);

equation

der(x) = 1;
der(y) = x;

when x >= 2 then
reinit(x, −3 ∗ y)

end when;
when x >= 2 then

reinit(y, −4 ∗ x);
end when;

end scheduling;

OpenModelica 1.9.2beta1
(r24372) Also in Dymola
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Wrongly typed models

Design type systems to statically reject bizarre models.

Can we formally ensure a property like:

“Well typed programs cannot go wrong” (Robin Milner) ?

What is a wrong model/program?

16 / 67



Recycle/extend principles and techniques
developed for synchronous languages.
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Zélus 3

Zélus = Lustre + ODEs + zero crossings

3http://zelus.di.ens.fr
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In brief

Write data-flow equations (Lustre)

combined ordinary differential equations;

type checking to reject certain bizarre models;

compile to sequential code;

paired with an off-the-shelf solver when the model has ODEs.
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The two examples in Zélus
let hybrid wrong() = (time, cpt) where

rec
der time = 1.0 init 0.0

and
cpt = 0.0 fby (time +. cpt)

> cpt = 0.0 fby (time +. cpt)
> ^^^^^^^^^^^^^^^^^^^^^
Type error: this is a discrete expression
and is expected to be continuous.

let hybrid causal() = (x, y) where
rec

der x = 1.0 init 0.0 reset z -> -3.0 *. last y
and

der y = x init 0.0 reset z -> -4. *. last x
and

z = up(last y -. 2.0)
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Zélus = Lustre + ...

A discrete system = a Lustre node.

x 1 2 1 4 5 6 ...

y 2 4 2 1 1 2 ...

x + y 3 6 3 5 6 8 ...

pre x nil 1 2 1 4 5 ...

y->x 2 2 1 4 5 6 ...

The equation z = x + y means ∀n.zn = xn + yn.

Time is logical: inputs x and y arrive “at the same time”; the output z is
produced “at the same time”
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Example: the heater controller 4

Model of the heater
• u is the command. u = true (heat); u = false (not heat)
• α, β, c are parameters; ext is the outside temperature.
• The speed temp′ is defined below:

temp′ = α(c − temp) if u β(ext − temp) otherwise

We discretize (with a step h)

temp′ is approximated by the difference (tempn+1 − tempn)/h

Discrete controller (relay)

un = true if tempn < low false if tempn > high
un = false if n = 0 otherwise un−1

4Example given by Nicolas Halbwachs at CdF (2010). 22 / 67



Feedback loop

heater

relay

temp

reference

u

23 / 67



(* Integration Euler *)
let node euler(h)(x0, xprime) = x where

rec x = x0 -> pre(x +. h *. xprime)

(* Heater model *)
let node heat(h)(c, alpha, beta, temp_ext, temp0, u) = temp
where
rec temp =

euler(h)(temp0,
if u then alpha *. (c -. temp)
else beta *. (temp_ext -. temp))

(* Relay *)
let node relay(low, high, v) = u where

rec u = if v < low then true
else if v > haut then false
else false -> pre u
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let low = 1.0
let high = 1.0

let c = 50.0

let alpha = 0.1
let beta = 0.1

let h = 0.1

(* Main program *)
let node main(reference) = (u, temp) where

rec
u = relay(reference -. low, reference +. high, temp)

and
temp = heater(h)(c, alpha, beta, 0.0, 0.0, u)
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Demo
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This is a discrete time model

The choice of h, the integration scheme are hardwired in the model.

If h is too big, the simulation is unprecise; if it is too small, it is slow.

In particular with a more complicated (non linear) ODE.

Instead, write an ODE; approximate it with an off-the-shelf numerical
solver.
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...+ ODEs + zero-crossings
The model of the heater in continuous-time.

(* Integrator *)
let hybrid int(x0, xprime) = x where

rec der x = xprime init x0

(* Model of the heater *)
let hybrid heater(c, alpha, beta, temp_ext, temp0, u) = temp

where rec temp =
int(temp0,

if u then alpha *. (c -. temp)
else beta *. (temp_ext -. temp))

(* relay *)
let hybrid relay(low, high, v) = u where

rec u = present up(low -. v) -> true
| up(v -. high) -> false

init (v < haut)
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let low = 1.0
let high = 1.0

let c = 50.0

let alpha = 0.1
let beta = 0.1

(* Main program *)
let hybrid main(reference) = (u, temp) where

rec
u = relay(reference -. low, reference +. high, temp)

and
temp = heater(c, alpha, beta, 0.0, 0.0, u)
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(* The same with a discrete-time controller *)
let hybrid main_d(reference) = (u, temp) where

rec
u = present

(period (0.1)) ->
Heat.relay(reference -. low, referece +. high, temp)

init false
and

temp = heater(c, alpha, beta, 0.0, 0.0, u)
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Demo
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Internals
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A Non-standard Semantics for Hybrid Modelers [JCSS’12]

We proposed to build the semantics on non-standard analysis.

let hybrid f () = y where
rec

der y = z init 4.0
and

z = 10.0 -. 0.1 *. y
and k = y +. 1.0

defines signals y , z and k , where for all t ∈ R+:

dy
dt

(t) = z(t) y(0) = 4.0 z(t) = 10.0− 0.1 · y(t) k(t) = y(t) + 1
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What would be the value of y if computed by an ideal solver taking an
infinitesimal step of duration ∂?

⋆R and ⋆N are the non-standard extensions of R and N. 5

An infinitesimal is smaller in absolute value than any real number: ∂ ∈ ⋆R
is such that |∂| < a, for any positive a ∈ R. If x , y ∈ R, x ≈ y if x − y is
an infinitesimal.

Every hyperreal x ∈ ⋆R possesses a unique standard part st(x) ∈ R such
that st(x) ≈ x .

Let x : R 7→ R a R-valued (standard) signal. Then:
• x is continuous at instant t ∈ R iff for any ∂ ∈ ⋆R, x(t + ∂) ≈ x(t).
• x is differentiable at instant t ∈ R iff there exists an a ∈ R such that,

for any infinitesimal ∂ ∈ ⋆R, (x(t + ∂)− x(t))/∂ ≈ a.
In that case, a = x ′(t).

5The paper by Lindstrom [Lin88] is a an introduction to non standard analysis.
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The base clock

Let ∂ ∈ ⋆R be an infinitesimal, i.e., ∂ > 0, ∂ ≈ 0.

Imagine that the system is doing a sequence of steps of ∂ duration each.

Define the base clock:
0, ∂, 2∂, 3∂, 4∂, . . .

that is:
T∂ = {tn = n∂ | n ∈ ⋆N}

T∂ inherits its total order from ⋆N.
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⋆y(n) stands for the values of y at instant n∂, with n ∈ ⋆N a non-standard
integer.

A differential equation can be now turned into a difference equation:

(⋆x(n + 1)− ⋆x(n))/∂

is the derivative of signal x .

Example:

⋆y(0) = 4 ⋆z(n) = 10− 0.1 · ⋆y(n)
⋆y(n + 1) = ⋆y(n) + ⋆z(n) · ∂ ⋆k(n) = ⋆y(n) + 1

36 / 67



Non standard semantics [JCSS’12, HSCC’14]

A sub-clock T ⊂ T∂ .
What is a discrete clock?

A clock T is termed discrete if it is the result of a zero-crossing or a
sub-sampling of a discrete clock. Otherwise, it is termed continuous.

If T ⊆ T, we write •T (t) for the immediate predecessor of t in T and
T •(t) for the immediate successor of t in T .
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Signals and clocks

Signals
Let V a set. V⊥ = V + {⊥} with ∀v ∈ V ,⊥ ≤ v . S(V ) = T 7→ V⊥ is the
set of signals.

A signal x : T 7→ V⊥ is a total function from T ⊆ T to V⊥. Moreover, for
all t ̸∈ T , x(t) = ⊥.

Sampling
Let Bool = {false, true} and x : T 7→ Bool⊥. The sampling of T
according to x , written T on x is the subset of instants:

T on x = {t | (t ∈ T ) ∧ (x(t) = true)}

Note that T on x ⊆ T , it is also totally ordered.
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Semantics of basic operations
Replay the classical semantics of a synchronous language.

An ODE with reset
An ODE der x = e init e0 reset z −→ e1 is interpreted as a stream
equation.

⋆x(0) = ⋆e0(0)
⋆x(n) = if ⋆z(n) then ⋆e1(n) else ⋆x(n − 1) + ∂ · ⋆e(n − 1)

Zero-crossing up(x)
It is interpreted as a edge-front detection.

⋆up(x)(0) = false
⋆up(x)(n + 1) = (⋆x(n − 1) < 0) ∧ (⋆x(n) ≥ 0) ∧ (⋆x(n + 1) ≥ 0)

These definitions extend to the case where they are not defined on the base
clock but on a subclock T .
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Fixpoint Semantics: Principle [HSCC’14]

Define semantics as mutual least fixpoint of set of monotonous operators
(one for each expression or definition). Semantics of expression e:

⋆[[e]]ρG (T )(t) = (v , z)

With:
• t ∈ T = {n∂|n ∈ ⋆N} non standard date
• T ⊆ T : set of dates of evaluation of expression T is a discrete clock for

a Lustre expression.
• v ∈ ⋆V ⊎ {⊥} : ⊥ if undefined, ⊥ < v ∈ V (flat order)
• z ∈ B : true iff zero-crossings occurs in e at instant t
• Signals: S(⋆V ) = T→ ⋆V⊥
• G : Lg → S(⋆V )→ S(⋆V ) maps global function names to semantics
• ρ : L→ S(⋆V ) maps local variable names to semantics
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Non-standard time vs. Super-dense time

• Maler et al., Lee et al. super-dense time modeling R× N

Super-dense time
Define the time index S = R×N. A signal as a total function R×N 7→ V⊥.

Instants are lexically ordered: (t, n) <S (t ′, n′) iff t <R t ′, or t = t ′ and
n <N n′.

For any (t, n) and (t, n′) where n ≤N n′, if x(t, n′) ̸= ⊥ then x(t, n) ̸= ⊥.
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Non-standard time vs. Super-dense time

• Edward Lee & al. super-dense time modeling R× N

• non-standard time modeling T∂ = {n∂ | n ∈ ⋆N}
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Standardisation [HSCC’14]

A signal in non standard time has a standard part, in super-dense time.

Read HSCC’14 to see how it is done.

A signal in non standard time is denominated an Hyperstream by Hasuo et
al. [POPL’13].

NSA is modular and helps to design static analyses to reject some
meaningless programs.

Is the use of NSA more than a “style exercice”? Is-it useful to prove an
interesting theorem?

Yes! when a program is well-typed, signals are continuous during
integration, provided imported operators are also continuous.
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Basic typing [LCTES’11]
A simple ML type system with effects.

The type language

bt ::= float | int | bool | zero
t ::= bt | t × t | β
σ ::= ∀β1, ..., βn.t

k−→ t
k ::= D | C | A A

D C

Initial conditions

(+) : int× int A−→ int
if : ∀β.bool× β × β

A−→ β

(=) : ∀β.β × β
D−→ bool

pre(·) : ∀β.β D−→ β

· fby · : ∀β.β × β
D−→ β

up(·) : float C−→ zero
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The Example in Zélus

let hybrid wrong() = (time, cpt) where
rec

der time = 1.0 init 0.0
and

cpt = 0.0 fby (time +. cpt)

File ‘‘example.zls’, line 5, character 10-31:
> cpt = 0.0 fby (time +. cpt)
> ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
>
Type error: this is a discrete expression and is expected
to be continuous.
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Causality [HSCC’14]
A simple ML type system with sub-typing constraints.

The type language

bt ::= α
t ::= bt | t × t | α
σ ::= ∀C .α1, ..., αn.t

k−→ t
k ::= D | C | A

C ::= {αi < αj}i ,j∈I
C must define a partial order (cycle free).

Initial conditions

(+) : ∀α.α× α
A−→ α

if : ∀α.α× α× α
A−→ α

pre(·) : ∀α1, α2 : {α2 < α1}.α1
D−→ α2

· fby · : ∀α1, α2 : {α1 < α2}.α1 × α2
D−→ α1

up(·) : ∀α1, α2 : {α2 < α1}.α2
C−→ α1 45 / 67



The Example in Zélus

let hybrid causal() = (x, y) where
rec

der x = 1.0 init 0.0 reset z -> -3.0 *. last y
and

der y = x init 0.0 reset z -> -4. *. last x
and

z = up(last y -. 2.0)
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The main theorem [HSCC’14, NAHS’17]

When programs are well typed and causally correct,

signals are continuous during integration

provided imported functions are.
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Compilation
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Objective: simulate a hybrid model

• Generate (statically scheduled) sequential code.

• For hybrid models, this code has to be paired with an ODE solver and a
zero-crossing detection mechanism.

• The Zelus run-time uses the off-the-shelf solver SUNDIALS CVODE.6

• Uses the SundialML binding 7.
• And the classical Illinois algorithm, implemented in OCaml, for

zero-crossings detection.

6https://computing.llnl.gov/projects/sundials
7https://github.com/inria-parkas/sundialsml
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How does the simulation of a hybrid system works?

A simulation loop alternates between two behaviors [BCP+15]:
• A “discrete” phase (D) where possible input/outputs are read/produced

and an internal state is changed.
• An “continuous” (or integration) phase (C ) where a solver computes an

approximation of solutions and observes the zero-crossing of some of the
signals of the system.
• From D to C , possibly resets the solver.
• From C to D, when a zero-crossing is detected.

D C
reaction

[reinitialize]

zero-crossing event
integrate
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Given a hybrid model, the compiler has to produce three functions, step, g
and f , an initial state σ0. y is called the continuous state.

σ′, y ′ = nextσ(t, y) upz = gσ(t, y) ẏ = fσ(t, y)

• nextσ gathers all discrete changes. Given a state σ, the current time t
and continuous state y , it returns a new state σ′ and a new continuous
state y ′.
• gσ defines zero-crossing signals to be observed during integration.
• fσ is the function to integrate and passed to an ODE solver.

f and g must be free of side effect!

Why? because the solver call them a variable (and unknown) number of
times to compute an approximation of the solution of ẏ = fσ(t, y).

It is even better that f be continuous (C 0) which is a sufficient condition
for the existence of a solution.

Can we ensure it by static typing?
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A Hybrid Systems Language Kernel

A synchronous language core extended with three primitives (in red).

d ::= let x = e | let k f (pi) = pi whereE | d ; d

k ::= fun | node | hybrid

e ::= x | v | op(e, ..., e) | v fby e | last x | f (e, ..., e) | up(e)

p ::= x | (x , ..., x)

pi ::= xi | xi , ..., xi

xi ::= x | x last e | x default e

E ::= p = e | der x = e
| if e thenE elseE
| reset E every e
| local pi in E | do E and . . .E done
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In order to generate sequential code, follow and adapt the compilation
method used in a synchronous compiler [DGP08], that is:.
• Reduction into a small data-flow language kernel;
• optimizations; normalisation and scheduling;
• generation of code in an intermediate sequential language.
• generation of target code (e.g., OCaml for Zelus, C for Scade Hybrid)
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An intermediate data-flow language

The intermediate language is extended with three new constructions.

d ::= let x = c | let k f (p) = a whereC | d ; d

k ::= fun | node | hybrid

C ::= (xi = ai )xi∈I with ∀i ̸= j .xi ̸= xj

a ::= eck

e ::= x | v | op(a, ..., a) | v fby a | pre(a)
| f (a, ..., a)
| merge(a, a, a) | a when a
| integr(a, a) | up(a)

p ::= x | (x , ..., x)

ck ::= base | ck on a
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Put data-flow equations in normal form
Name the result of every memory operation or node instanciation. Separate
them into three categories.
• se: strict expressions
• de: delay
• ce: expressions guarded by a condition (clock)
The equation lx = integr(x ′, x) defines lx as a (continuous) state
variable; possibly re-initialized by x during a discrete step.

eq ::= x = ceck | x = f (sa, ..., sa)ck | x = deck

sa ::= seck

ca ::= ceck

se ::= x | v | op(sa, ..., sa) | sa when sa

ce ::= se | merge(sa, ca, ca) | ca when sa

de ::= pre(ca) | v fby ca | integr(ca, ca) | up(ca)
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Well Scheduled Form

Equations are statically scheduled.

Read(a): set of variables read by a.

Given C = (xi = ai )xi∈I , a valid schedule is a one-to-one function

Schedule(.) : I → {1 . . . |I |}

such that, for all xi ∈ I , xj ∈ Read(ai ) ∩ I :
1. if ai is strict, Schedule(xj) < Schedule(xi ) and
2. if ai is delayed, Schedule(xi ) ≤ Schedule(xj).

From the data-dependence point-of-view, integr(ca1, ca2) and up(ca)
break instantaneous loops.
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A Sequential Object Language (SOL)
• Translation into an intermediate imperative language [Colaco et al.,

LCTES’08]
• Instead of producing two methods step and reset, produce more.
• Mark memory variables with a kind m

md ::= | let x = c
| let f = class⟨M, I , (method i (pi ) = ei where Si )i∈[1..n]⟩

M ::= [x : m[= v ]; ...; x : m[= v ]]

I ::= [o : f ; ...; o : f ]

m ::= Discrete | Zero | Cont

e ::= v | lv | op(e, ..., e) | o.method(e, ..., e)

S ::= () | lv ← e | S ; S | var x , ..., x in S | if c then S else S

R, L ::= S ; ...; S

lv ::= x | lv .field | state (x)
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State Variables

Discrete State Variables (sort Discrete)
• Read with state (x);
• modified with state (x)← c

Zero-crossing State Variables (sort Zero)
• A pair with two fields.
• The field state (x).zin is a boolean, true when a zero-crossing on x has

been detected, false otherwise.
• The field state (x).zout is the value for which a zero-crossing must be

detected.

Continuous State Variables (sort Cont)
• state (x).der is its instantaneous derivative;
• state (x).pos its value
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The bouncing ball

let hybrid bouncing (y0) = y where
rec der y = y’ init y0
and der y’ = −. g init 0.0 reset up(−. y) → 0.8 ∗. last y’
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Example: Translation of the bouncing ball

let bouncing = machine(continuous) {
memories disc init_25 : bool = true;

zero result_17 : bool = false;
cont y_v_15 : float = 0.; cont y_14 : float = 0.

method reset =
init_25 <- true; y_v_15.pos <- 0.

method step time_23 y0_9 =
(if init_25 then (y_14.pos <- y0_9; ()) else ());
init_25 <- false;
result_17.zout <- (~-.) y_14.pos;
if result_17.zin
then (y_v_15.pos <- ( *. ) 0.8 y_v_15.pos);

y_14.der <- y_v_15.pos;
y_v_15.der <- (~-.) g; y_14.pos }
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Finally

1. Translate as usual to produce a function step.
2. For hybrid nodes, copy-and-paste the step method.
3. Either into a cont method activated during the continuous mode, or

two extra methods derivatives and crossings.
4. Apply the following:
• During the continuous mode (method cont), all zero-crossings (variables of

type zero, e.g., state (x).zin) are surely false.
• During the discrete step (method step), all derivative changes

(state (x).der ← ...) are useless. All zero-crossing outputs
(state (x).zout ← ...) are useless.

• Remove dead-code by calling an existing pass.

5. That’s all!
Examples (both Zélus and SCADE) at: zelus.di.ens.fr/cc2015
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Example: translation of the bouncing ball

let bouncing = machine(continuous) {
memories disc init_25 : bool = true;

zero result_17 : bool = false;
cont y_v_15 : float = 0.; cont y_14 : float = 0.

method reset =
init_25 <- true; y_v_15.pos <- 0.

method step time_23 y0_9 =
(if init_25 then (y_14.pos <- y0_9; ()) else ());
init_25 <- false;
if result_17.zin
then (y_v_15.pos <- ( *. ) 0.8 y_v_15.pos);

y_14.pos
method cont time_23 y0_9 =

result_17.zout <- (~-.) y_14.pos;
y_14.der <- y_v_15.pos;
y_v_15.der <- (~-.) g }
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In brief

A discrete-time signal = a stream.

A continuous-time signal = an “hyper stream” (Suenaga, Sekine, and
Hasuo [POPL’13]).

A system = a streams/hyper streams function.

Added to Lustre: der defines a signal by its derivative; up defines a
zero-crossing event.

Static typing to reject monsters.

The compiler generates sequential code (OCaml);

linked to an ODE solver.
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Conclusion
Two experiments
• The language Zélus and its compiler.
• An industrial prototype SCADE Hybrid based on the production

compiler KCG 6.7 of Scade.
• For KCG, less than 5% of LOC added to account for hybrid features.
• It is a conservative extension w.r.t the Scade language.
• This means that the very same code is used for simulation and the

platform.
• A new tool developed by ANSYS, called DigitalTwins, reuses a part of

Scade Hybrid.

Is the language expressive enough to define a standard library?
• In many tools (e.g., Simulink), many blocks (e.g., filters, integrators,

etc.) are directly programmed in C.
• Instead, can we program them (e.g., directly in Zelus)? How the

generated code compares (in efficiency) w.r.t, the hand-written code?
• To reach a goal: The program is the formal specification.
• A preliminary experiment: a standard library of discrete/continuous

blocks [EMSOFT’17].
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Timeline
Timeline
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Scade 6
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38 Timeline c© ANSYS, Inc.
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