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Three practical questions

• Determinacy: is the system deterministic, e.g., given the very same
sequence of inputs, it produces the same sequence of outputs?

• Deadlock freedom: is the system reactive (or productive), that is, at
every instant and for any valid input, it produces an output?

• Finally, is it possible to generate code that run in bounded time and
space?

The problem is simpler than in an asynchronous model because all
processes in parallel run in lock step.

Analyse instantaneous dependences only: does the current output of a
signal depends instantaneously on itself?
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Causality in synchronous programs

There have been a lot of work. Read [2]!

Several answers have been given.

The simplest is that of Lustre (and its successor): statically reject
instantaneous (unconditional) cycle. It can be expressed as a dedicated
type system; moreover, it combines quite well with higher-order.

Esterel and Signal have experimented a more general definition. Cycles are
allowed under certain conditions. We illustrate it with Zrun 1 interpreter.

The static analysis is more complicated and involve boolean reasonning. Its
expression as a type system applied modularily is an open question.

1https://github.com/marcpouzet/zrun
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Two examples in Esterel

The program P13 from the Esterel primer V5.91.
https://github.com/marcpouzet/zrun/blob/master/tests/
esterel-primer-p13.zls

Section 5.1.4
module P13:

input I;
output O1, O2;
present I then

present O2 then emit O1 end
else

present O1 then emit O2 end
end present

end module

This program is constructively causal.
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The program P14 from the Esterel primer V5.91.
https://github.com/marcpouzet/zrun/blob/master/tests/
esterel-primer-p14.zls

module P14:
output O1, O2;
present O1 then emit O2 end;
pause;
present O2 then emit O1 end

end module
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The cyclic circuit of Malik
https:
//github.com/marcpouzet/zrun/blob/master/tests/fog_gof.zls
let node mux(c, x, y) returns (o)

if c then o = x else o = y

let node f(x) returns (o) o = 2 * x
let node g(x) returns (o) o = x - 1

let node fog_gof(c, x) returns (y)
local x1, x2, y1, y2
do x1 = mux(c, x, y2)
and x2 = mux(c, y1, x)
and y1 = f(x1)
and y2 = g(x2)
and y = mux(c, y2, y1)
done

(* Same output with no cycle for reference *)
let node fog_gof_ref(c, x) returns (y)

y = mux(c, g(f(x)), f(g(x))) 6 / 44
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The cyclic token ring arbiter

https:
//github.com/marcpouzet/zrun/blob/master/tests/arbiter.zls
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Constructive causality
(* Constructiveness in the sense of Esterel *)
(* Verbatim from The Esterel Primer, V5.91, Berry, 2000
*-
*- 1. An unknown signal can be set present if it is emitted.
*- 2. An unknown signal can be set absent if no emitter

can emit it.
*- 3. The then branch of a test can be executed if the

test is executed and the signal is present.
*- 4. The else branch of a test can be executed if the

test is executed and the signal is absent.
*- 5. The then branch of a test cannot be executed if the

signal is absent.
*- 6. The else branch of a test cannot be executed if the

signal is present.
*)

(* Moreover, Esterel makes a special treatment of the two
boolean operators

*- (or and &) that are considered parallel and not sequential.
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The problem
Some equations deadlock like x = x + 1 or x = y and y = x.

That is, the transition functiom produces bottom values.

Causality analysis has two objectives in a synchronous language compiler.

1. find sufficient conditions to ensure that the transition function produce
non bottom values.

2. generate statically schedule code.

In Lustre and Lucid Synchrone, the causality analysis is performed after the
clock-calculus and independently of it.

It considers that stream operations are length preserving: either the output
instantaneously depend on the input or not.

Moreover, causality analysis does not depend on values of streams.
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The simplified problem

It amount at considering a language with only two basic operations.
• Lifting: lift a scalar into a constant stream; lift a n-ary function to apply

it pointwise.
• A unit delay, initialized or not. E.g., (x : xs) fby ys = x : ys.
• function definition, possibly higher-order, application and a fix-point

operator for defining mutually recursive streams only.

Two questions

1. Detect and reject stream equations that are not productive, i.e., ensure
that all streams are infinite; “reactivity and determinism”

2. Generate statically scheduled code which compute a stream step by
step. Recursion and laziness forbidden. “compile the parallelism”
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Several works address the question of productivity and proof techniques for
languages manipulating infinite data structures.

Hamming’s exercise in SASL. [Dijkstra, 1981]

On the productivity of recursive list definitions. [Sijtsma, 1989].

Proving the correctness of reactive systems using sized types. [Hugues &
Pareto & Sabry, 1996];

Guarded recursion in proof assistants. E.g.,:

Infinite objects in type theory. [Coquand, 1993];

Structural recursive definitions in type theory. [Gimenez, 1994];

Termination checking in the presence of nested inductive and coinductive
types. [Danielson, Altenkirch, 2010];
Beating the Productivity Checker Using Embedded Languages. [Danielson,
2010];
(Many others: Abel, Bertot, Buchholz, Di Gianantonio & Miculan, Hancock
& Pattinson & Ghani, McBride, Morris & Altenkirch & Ghani, etc.)
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Related works

Those works address question (1) for a more general language where
stream functions can be length preserving or not and/or mixed with
inductive structures.

E.g: is the following equation productive?

x = 0 : 1 : tl x

where tl (x : xs) = xs

We only have an operator “delay” that make streams longer but not
shorter. 2

We adress a simpler problem: we forbid to write tl which is not length
preserving.

Those works do not address question (2) which is specific to infinite
streams programs.

2tl can be defined by tl x = x when (false fby true). when is not a length
preserving function.
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Operators

Hence, the language has essentially the following features:
1. Define mutually recursive equations;
2. point-wise application of an operations (e.g., +);
3. unit delay: pre, fby.
4. The non length preserving operators: when and merge are considered as

if they were length preserving, from the causality analysis point-of-view.
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A trivial solution

Build a dependence graph from the syntax such that:
• For every equation x = e, state that x depends on all variables

appearing in e but those on the right of a unit delay (pre or fby).
• compute the transitive closure;
• reject recursive definitions if the corresponding graph is cyclic.
This solution is easy to implement. It accepts:

let node int(x’) = x where
rec x = 0 fby (x’ + 1)

let node fix(g)(x0) = x where
rec x = g(x0 fby x) in x
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But rejects:

let node f(x) = (y, z) where
rec (y, z) = let t = x + 1 in (z, t)

let node copy(x, y) = (x, y)

let node main(x) = (t, u) where
rec = copy(x, t)

It is very sensitive to naming and the syntactic structure. It does not treat
modularity — the ability to define a function, compute some information
about it once and reuse it later.
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We propose a type based representation of input/output dependences.

The idea of representing causality information as a type was firt introduced
in the language Lucid Synchrone [4].

This is the way it is done in Scade [3] but consider a first-order language
only.

Here, we go a bit further by considering higher order with a new
formulation of dependences and algorithm for type simplification.
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A few examples in Zélus 3

3zelus.di.ens.fr
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Summary
• Represent the instantaneous input/output depependence by a type
• A stream expression is associated to a tag.
• Tags must be partially ordered.

Examples

let node forward_euler(t)(k, x0, u) = output where
rec output = x0 -> pre (output +. (k *. t) *. u)

let node backward_euler(t)(k, x0, u) = output where
rec output = x0 -> (pre output) +. (k *. t) *. u

let node filter(n)(h)(k, u) = udot where
rec udot = n *. (k *. u -. f)
and f = forward_euler(h)(n, 0.0, udot)

val forward_euler : {}. ’a -> ’a * ’b * ’a -> ’b
val backward_euler : {}. ’a -> ’a * ’a * ’a -> ’a
val filter : {}. ’a -> ’b -> ’b * ’b -> ’b
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Summary

let node bad_filter(n)(h)(k, u) = udot where
rec udot = n *. (k *. u -. f)
and f = backward_euler(h)(n, 0.0, udot)

File "examples.zls", line 17, characters 10-41:
> and f = backward_euler(h)(n, 0.0, udot)
> ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Causality error: This expression has causality type
’c, whereas it should be less than ’d
Here is an example of a cycle:
f at ’d < udot at ’c; udot at ’c < f at ’d
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Summary
2/ A function can have an argument which is a function.

let node gfilter(int)(h)(n)(k, u) = udot where
rec udot = n *. (k *. u -. f)
and f = run (int(h)) (n, 0.0, udot)

let node gpid(int)(filter)(h)(p, i, d, u) = c where
rec c_p = p *. u
and i_p = run (int h)(i, 0.0, u)
and c_d = run (filter h)(d, u)
and c = c_p +. i_p +. c_d

val gfilter :
{’a < ’b}. (’c -> ’a * ’d * ’b -> ’b) -> ’c ->

’a -> ’b * ’b -> ’b
val gpid :

{’a < ’b}.
(’c -> ’d * ’e * ’a -> ’b) ->
(’c -> ’f * ’a -> ’b) -> ’c ->
’b * ’d * ’f * ’a -> ’b 20 / 44



Summary

let node filter_forward(h)(n)(k, u) =
generic_filter(forward_euler)(h)(n)(k, u)

val filter_forward : {’a < ’b}. ’b -> ’a -> ’a * ’a -> ’a

(* This program is not causal *)
(* let node filter_backward(h)(n)(k, u) =

generic_filter(backward_euler)(h)(n)(k, u) *)

> gfilter(backward_euler)(h)(n)(k, u)
> ^^^^^^^^^^^^^^^^
Causality error: This expression has causality type
’c -> ’d * ’e * ’f -> ’g, whereas it should be less than
’h -> ’i * ’j * ’k -> ’l
Here is an example of a cycle:
k < f; f < g; g < l; l < k

Remove administrative relations: f < g and l < k are contradictory
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Examples in continuous time
The analysis is the same for functions on discrete-time and continuous-time
signals. E.g.,:

let hybrid gfilter_c(int)(n)(k, u) = udot where
rec udot = n *. (u -. f)
and f = run int (k, 0.0, udot)

let hybrid gpid_c(int)(filter)(n)(p, i, d, u) = c where
rec c_p = p *. u
and i_p = run int(i, 0.0, u)
and c_d = run (filter(n))(d, u)
and c = c_p +. i_p +. c_d

val gfilter_c : {}.
(’a * ’b * ’c -> ’c) -> ’c -> ’a * ’c -> ’c

val gpid_c :
{’a < ’b}.

(’c * ’d * ’a -> ’b)
-> (’e -> ’f * ’a -> ’b) -> ’e
-> ’b * ’c * ’f * ’a -> ’b 22 / 44



Examples in continuous time

let hybrid int(k, x0, xprime) = x where
rec der x = k *. xprime init x0

let hybrid pid_c(n)(p, i, d, u) =
gpid_c(int)(gfilter_c(int))(n)(p, i, d, u)

val int : {}. ’a * ’b * ’a -> ’b
val pid_c : {}. ’a -> ’a * ’b * ’b * ’a -> ’a
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A language kernel

Definition of functions; variables, constant, application, fix-point, tuples
and access functions.

d ::= let f x = e | d ; d

e ::= x | v | let rec x = e in e
| (e, e) | fst(e) | snd(e)
| e(e) | e fby e

v stand for values.

Typing constraints so that let rec x = e in e ′ is limited such that the type
of e is bounded: it has no function type in it.
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Expressing Dependences/Causality with a type

Since all stream operations are length preserving, express instantaneous
dependences only.

The dependence relation is a partial order.

Represent the instantaneous dependences of an expression by a type.

bt ::= α
t ::= bt | t × t | t → t
σ ::= ∀α1, ..., αn : C .t | t

C ::= {αi < αj}i ,j∈I

α1, ..., αn, ... are tags (a tag is a “time stamp”).

C must define a partial order (acyclic graph) between those tags.
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Initial conditions

(+) : ∀α.α× α → α

if . then . else . : ∀α.α× α× α → α

pre · : ∀α1, α2 : {α2 < α1}.α1 → α2

· fby · : ∀α1, α2 : {α1 < α2}.α1 × α2 → α1
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The typing predicate: C ,H ⊢ e : t, where:

H = [x1 : σ1, ..., xn : σn] and Acyclic(C ) as an implicit side condition.

(fundef)
C ,H[x : t1] ⊢ e : t2

H ⊢ let f x = e : H[f : Gen(C )(t1 → t2)]

(app)
C ,H ⊢ f : t1 → t2 C ,H ⊢ e : t1

C ,H ⊢ f e : t2

(const)
C ,H ⊢ v : bt

(tuple)
C ,H ⊢ e1 : t1 C ,H ⊢ e2 : t2

C ,H ⊢ (e1, e2) : t1 × t2
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(var)
Cx , t ∈ Inst(σ)

C + Cx ,H[x : σ] ⊢ x : t

(sub)
C ,H ⊢ e : t1 C |= t1 < t2

C ,H ⊢ e : t2

(rec)
C ,H[x : t] ⊢ e : te C |= te < t C ,H[x : te ] ⊢ e ′ : t ′

C ,H ⊢ let rec x = e in e ′ : t ′

Generalisation

Gen(C )(t) = ∀α1, ..., αn : C .t whereVars(t) = {α1, ..., αn}
provided Acyclic(C )

Instanciation

C [α⃗′/α⃗], t[α⃗′/α⃗] ∈ Inst(∀α⃗ : C .t) provided Acyclic(C [α⃗′/α⃗])
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The dependence order

The relation is strict.

(tuple)
C |= t1 < t ′1 C |= t2 < t ′2

C |= t1 × t2 < t ′1 × t ′2

(fun)
C |= t2 < t ′2 C |= t ′1 < t1

C |= t1 → t2 < t ′1 → t ′2

(trivial)
C [α1 < α2] |= α1 < α2

(trans)
C |= t1 < t2 C |= t2 < t3

C |= t1 < t3
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Strict order vs non strict order

We only consider a strict order because it is enough to answer the question
“is there an instantaneous feedback?”.

A more conventional system would use both < and ≤, replacing rules (sub)
and (rec) by:

(sub)
C ,H ⊢ e : t1 C |= t1 ≤ t2

C ,H ⊢ e : t2

(rec)
C ,H[x : t] ⊢ e : te C |= te < t C ,H[x : te ] ⊢ e ′ : t ′

C ,H ⊢ let rec x = e in e ′ : t ′
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Problems
Sub-typing constraints have to be simplified.

The type system for causality is similar to a type system with intersection
and union types. The relation:
• t1 < t ∧ t2 < t corresponds to t1 ∪ t2 < t;
• t < t1 ∧ t < t2 corresponds to t < t1 ∩ t2.

The current system do not have relations of the form α < t or t < α,
where t is not a variable.

The reason is that causality typing is done after typing: we use the type
structure to construct causality skeleton types.

Type simplification for systems with intersection/union types has been
studied a lot, in particular by Aiken & Wimmers, Pottier, Smith &
Trifonov, Castagna et al.
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Input/Output relation
We apply the simplification algorithm that uses the Input/output relation
of Pouzet & Raymond [5].

InOut(p)(t) computes the set of inputs and outputs. p ∈ {−,+} is a
polarity. neg(−) = + and neg(+) = −.

InOut(+)(α) = ∅, {α}

InOut(−)(α) = {α}, ∅

InOut(p)(t1 → t2) = let i1, o1 = InOut(neg(p))(t1) in
let i2, o2 = InOut(p)(t2) in
i1 ∪ i2, o1 ∪ o2

InOut(p)(t1 × ...× tn) = let (ik , ok = InOut(p)(tk))k∈[1..n] in
∪k∈[1..n]ik ,∪k∈[1..n]ok
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Given a set of variables V and a set of constraints C between them.
I ⊆ V the set of inputs; O ⊆ V the set of outputs. I and O not necessarily
disjoint.
• Out(a) = {b ∈ O | C ⊢ a ≤ b}
• In(a) = {b ∈ I | C ⊢ b ≤ a}
• IO(a) = {b ∈ I | Out(a) ⊆ Out(b)}

For every input and output variable, computes its IO set.

Associate a unique key (a fresh variable) to every IO set.

Replace the relation < by the relation between IO sets, that is:
if IO(a) ⊆ IO(b), with a′ the key of IO(a) and b′ the key for IO(b),
then a′ < b′.

There is a canonical form (i.e., unicity) that minimises the number of
variables.
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Extra simplification

Some dependences can be removed.

Only keep dependences of the form αp < βq where the polarities p is − or
+− and q is + or +−.

It gives extremely short type signature in practice.

Open question: does it simplify more than existing simplification methods
for type systems with sub-typing constraints?
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The second question
Given a function, generate a statically scheduled, non recursive, non lazy
implementation.

For a first-order language, it is a particular form of the Optimal Static
Scheduling problem [5].

But this algorithm did not consider higher-order functions. E.g.:

let node f(g)(h)(x) =
let rec y = g(x, y, z) and z = h(x, y, z) in (y, z)

In how many pieces g and h must be decomposed to generate a transition
function for f?

One solution is to inline all higher order functions (i.e., they become
macros). After that, the main function only call first order functions.
Then, apply a algorithm to solve the OSS problem.
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An intermediate approach

If we target a sequential langage like OCaml, full inlining is not always
necessary.

Try to inline “on demand”: only inline if it is not possible to generate a
statically schedule function.

Do not necessarily inline higher order function. E.g., the function

let node easy_fixpoint(f)(i, x) =
let rec o = run f (i fby o, x) in o

can be compiled into a transition function without knowing the
implementation of f
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Inlining “on demand” using causality types

Inline or not a function call according to the causality type.

Consider the function call (f t1 et2)t3 .

Let oin = Out(t1) ∪ Out(t2) and oout = Out(t3).

Do not inline if for all i ∈ oin, o ∈ oout :

(o ̸< i) ∧ (IO(i) ⊆ IO(o))

If the function is not inlined, add the dependence i < o, that is, consider
the function call to be strict.

This strategy is correct for a first order language (that is, Lustre).

Conjecture: it is correct and complete for a higher-order function too.

37 / 44



Examples

Right after the causality analysis, a pass annotates some of the function
call to be “inlined”.

let node filter(n)(h)(k, u) = udot where
rec udot = n *. (k *. u -. f)
and f = inline forward_euler(h)(n, 0.0, udot)

...
let node gpid(int)(filter)(h)(p, i, d, u) = c where

rec c_p = p *. u
and i_p = inline run (inline (int h))(i, 0.0, u)
and c_d = inline run (inline (filter h))(d, u)
and c = c_p +. i_p +. c_d

let node pid_forward_no_filter =
(inline gpid forward_euler derivative h (p, i, d, u))
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Example: two mutually recursive streams

let node int(h, x0, xprime) = x where
rec x = x0 -> pre(x +. h *. xprime)

let node main () = sin, cos where
rec sin = int(0.1, 0.0, cos)
and cos = int(0.1, 1.0, -. sin)

One of the two function calls has to be inlined. The one to be inlined is
arbitrary; here the order in which equations are traversed.

let main () = sin, cos where
rec sin = int(0.1, 0.0, cos)
and cos = inline int (0.1, 1.0, -. sin)
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Extra notes (to be continued).
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The curse of non linear functions

let node fix(f)(x) = o where rec o = run f (x, o)
let node twice(f)(x) = o where rec o = run f (run f (x))
let node f(x) = x + 1
val f : {}. ’a -> ’a

val twice : {’a < ’b}. (’b -> ’a) -> ’b -> ’a

The type of twice says that the output of f must not depend on its input
whereas it does not appear in any recursive stream equation!

This is a consequence of the contravariance rule and the fact that the
sub-typing rule uses a strict order. We get the same type by writting:

let node twice(f)(x) = o2 where
rec o1 = run f (x)
and o2 = run f (o1)

val twice : {’a < ’b}. (’b -> ’a) -> ’b -> ’a

Union/intersection types? Use non strict order for sub-typing?
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Atomic functions
let node twice_f(x) = twice(f)(x)
>let node twice_f(x) = twice(f)(x)
> ^^^
Causality error: This expression has causality type
’b -> ’c, whereas it should be less than ’d -> ’e
Here is an example of a cycle:
d < b; b < c; c < e; e < d

One way to impose the strongest constraints on an input function is to
consider it to be atomic, that is, as if all of its outputs would depend on all
of its inputs.

let node twice_atomic(f)(x) = o where
rec o = run (atomic f) (run (atomic f) (x))

let node twice_atomic_f(x) = twice_atomic(f)(x)

val twice_atomic : {’a < ’b}. (’a -> ’b) -> ’b -> ’b
val twice_atomic_f : {}. ’a -> ’a
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The typing rule for atomic values

skeleton(C )(α)(α′) = α,C + [α < α′]

skeleton(C )(α)(t1 → t2) = let t ′1,C1 = skeleton(C )(α′)(t1) in
let t ′2,C2 = skeleton(C1)(α)(t2) in
t ′1 → t ′2,C2 + [α′ < α]

skeleton(C )(α)(t1 × t2) = let t1,C1 = skeleton(C )(α)(t1) in
let t2,C2 = skeleton(C2)(α)(t2) in
t ′1 × t ′2,C2

(atomic)
t ′,C ′ = skeleton(∅)(α)(t)

C + C ′,H[f : t] ⊢ atomic f : t ′
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