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Two types of properties

Safety property: “Something bad never happens”
I.e., a property is invariant and true in any accessible state. E.g.:
• “The variable temp is always less than 101.”
• “The variable temp never increases by more than 5 in a single step.”

Liveness property: “Something good eventually happens.”
I.e., every execution will reach a state where the property holds.
• “If heat is on, temp eventually exceeds 10.”

Remark:
“If heat is on, temp exceeds 10 within 5 minutes.” is a safety property.

And remember that liveness properties are likely to be the least important part of
your specification. You will probably not lose much if you simply omit them.[

Lamport (2002): Specifying Systems:
The TLA+ Language and Tools for
Hardware and Software Engineers

]
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Synchronous Observers

• if y = F (x), we write ok = P(x , y) for the property relating x and y

• and assert(H(x , y)) to states an hypothesis on the environment.

node check(x:t) returns (ok:bool);
let

assert H(x,y);
y = F(x);
ok = P(x,y);

tel;

F

H

P

assert

ok

If assert remains indefinitely true then ok remains indefinitely true
always(assert) ⇒ always(ok).

Any safety property can be expressed as a Lustre program. No need to introduce a
temporal logic in the language[

Halbwachs, Lagnier, and Raymond (1993):
Synchronous observers and the verification of
reactive systems

] [
Halbwachs, Lagnier, and Ratel (1992): Programming
and verifying real-time systems by means of the syn-
chronous data-flow language LUSTRE

]
;

Temporal properties are regular Lustre programs
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SAT solvers

Given a boolean formula b with free variables x1, ..., xn from propositional logic,
find a valuation V : {x1, ..., xn} → {0, 1} such that V (b) = 1.
• initial algorithm by Davis-Putnam-Logemann-Loveland (DPLL); various

heuristics. Generalization of SAT to QBF (Quantified Boolean Formula)

• a very active/competitive research/industrial topic (see http://www.satlive.org/)

• Now, more interest for SMT (Satisfiability Modulo Theory) for first-order logic
(quantified formula + interpreted/non-interpreted functions)

• Close interaction between a SAT solver and ad-hoc solvers (e.g., simplex.
method for linear arithmetic constraints)
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SMT: Satisfiability Modulo Theories

• SAT = Satisfiability (of Boolean formulas)
• SMT = SAT Modulo Theories

• Input: set of constraints (interpreted in a theory)
• Output: are the constraints satisfiable?
» sat and a model (an assignment to free variables that satisfies the constraints)
» unsat: no model exists
» unknown: could not determine due to resource limits, incompleteness, etcetera.

• Different solvers:
» z3 (see also: docs and version in browser)
» Alt-Ergo
» CVC5
» Yices

• Today we will use Z3 and SMT-LIB.
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https://github.com/Z3Prover/z3
https://microsoft.github.io/z3guide/docs/logic/intro
https://jfmc.github.io/z3-play/
https://alt-ergo.ocamlpro.com
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SMT-LIB 2.6

• SMT-LIB defines a common language for interfacing with SMT solvers
[Barrett, Fontaine, and Tinelli (2021):
The SMT-LIB Standard: Version 2.6 ] https://smtlib.cs.uiowa.edu/

• Developed to facilitate research and development in SMT
(in particular, by providing an extensive benchmarking library)

• Lisp-like syntax for
» a many-sorted first-order logic with equality
» solver commands
» declaring theory interfaces

• Solvers like Z3 also provide programmatic interfaces (e.g., Python, OCaml)
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https://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.6-r2021-05-12.pdf
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Satisfiability: true for some assignment

A .smt2 file is a sequence of commands. (Fig. 3.6, p. 45
[
Barrett, Fontaine, and Tinelli (2021):
The SMT-LIB Standard: Version 2.6

]
)

(declare -fun a () Bool) ; uninterpreted function with zero arguments
(declare -const b Bool) ; similar effect , easier to read

(assert (or a b))
(assert (= a false))

(echo "Is (a or b) and (a = false) satisfiable ?")
(check -sat)
(get -model)

Try z3 a_or_b.smt2. . .

z3 looks for a model (an interpretation of the functions) that satisfies all the
constraints.
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Validity: true for all assignments

What about proving one of De Morgan’s laws? ¬(P ∨ Q) ⇔ ¬P ∧ ¬Q
(declare -const P Bool)
(declare -const Q Bool)

(assert (= (not (or P Q)) (and (not P) (not Q))))
(check -sat)

z3 says sat. Have we proved the law?

(declare -const P Bool)
(declare -const Q Bool)

(assert (not (= (not (or P Q)) (and (not P) (not Q)))))
(check -sat)

Now z3 says unsat. Have we proved the law?
Yes. There are no values for P and Q such that the law is not true.
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Satisfiability and Validity

satisfiable(b) def
== ∃V ,V (b) = 1

valid(b) def
== ∀V ,V (b) = 1

valid(b) = ¬¬ (∀V ,V (b) = 1)
= ¬ (∃V ,¬ (V (b) = 1))
= ¬ satisfiable(¬b)

satisfiable(b) = ¬¬ (∃V ,V (b) = 1)
= ¬ (∀V ,¬ (V (b) = 1))
= ¬ valid(¬b)

To determine valid(P ∧ Q ⇒ R), ask satisfiable(P ∧ Q ∧ ¬R) and require unsat.

(A ⇒ B
def
== ¬A ∨ B)

valid(P ∧ Q ⇒ R) = ¬ satisfiable(¬(¬(P ∧ Q) ∨ R))

= ¬ satisfiable((P ∧ Q) ∧ ¬R)
If sat, try (get-model). Can also use (check-sat-assuming ((and P Q) R)).
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Interacting with the solver

• Typical to run several (check-sat) commands in series.
• Use (push) and (pop) to manage the environment of functions and assertions.

(declare -const P Bool)
(declare -const Q Bool)

(push)
(assert (not (= (not (or P Q)) (and (not P) (not Q)))))
(echo "Checking: !(P or Q) <=> !P and !Q (unsat = valid )")
(check -sat)
(pop)

(push)
(assert (not (= (not (and P Q)) (or (not P) (not Q)))))
(echo "Checking: !(P and Q) <=> !P or !Q (unsat = valid )")
(check -sat)
(pop)

• Usually interact with the solver using a programmatic interface.
Query results determine future queries.

• Solvers are designed to work incrementally.
12 / 46



Functions

• Functions declared with declare-fun are uninterpreted.
• Functions from theories, like xor, are interpreted.

see https://smtlib.cs.uiowa.edu/theories-Core.shtml

(declare -fun f (Bool Bool) Bool)
(assert (and (= (f false false) false)

(= (f false true) true)
(= (f true false) true)
(= (f true true) false )))

(declare -const a Bool)
(declare -const b Bool)
(assert (not (= (f a b) (xor a b))))
(check -sat)

• Can also define functions:
(define -fun f ((x Bool) (y Bool)) Bool (xor x y))

13 / 46
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Terms and Formulas

3.6. TERMS AND FORMULAS 27

the reserved words , , , and ), and an annotation operator (the reserved
word ). In its simplest form, a term is a special constant symbol, a variable, a function
symbol, or the application of a function symbol to one or more terms. More complex terms
include one or more binders.

Concretely, a variable can be any h i, while a function symbol can be any h i
(i.e., a symbol or an indexed symbol). As a consequence, contextual information is needed
during parsing to know whether an identifier is to be treated as a variable or a function
symbol. For variables, this information is provided by the three binders which are the only
mechanism to introduce variables. Function symbols, in contrast, are predefined, as explained
later. Recall that every function symbol f is separately associated with one or more ranks, each
specifying the sorts of f ’s arguments and result. To simplify sort checking, a function symbol
in a term can be annotated with one of its result sorts s. Such an annotated function symbol
is a qualified identifier of the form f s .

h i ::= h i | h i h i
h i ::= h i h i
h i ::= h i h i
h i ::= h i | h i h i+

h i ::= h i h i
h i ::= h i

| h i
| h i h i+
| h i+ h i
| h i+ h i
| h i+ h i
| h i h i+
| h i h i+

SMT-LIB scripts can contain only well-sorted terms (see Section 3.6.4). Formulas in SMT-
LIB are just well-sorted terms of sort . As a consequence, there is no syntactic distinction
between function and predicate symbols; the latter are simply function symbols whose result
sort is . Another consequence is that function symbols can take formulas (even quantified
ones) as arguments.

(p. 27, [Barrett, Fontaine, and Tinelli (2021):
The SMT-LIB Standard: Version 2.6 ])

• Satisfiability without quantifiers is NP-Complete
• With quantifiers it is undecidable.
• The effectiveness of quantifier elimination depends on the shape of formulas.
• Take care with your encodings! 14 / 46

https://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.6-r2021-05-12.pdf
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Exercise: model checking 1-bit adders

How to be sure that full_add and full_add_h are equivalent?

∀a, b, c : bool. full_add(a, b, c) = full_add_h(a, b, c)

Implement the following interface so that it returns true exactly when two full
adder implementations return the same value for the same inputs.

−− file fulladder.lus
node equivalence(a,b,c:bool) returns (ok:bool);

var o1, c1, o2, c2: bool;
let

(o1, c1) = full_add(a,b,c);
(o2, c2) = full_add_h(a,b,c);
ok = (o1 = o2) and (c1 = c2);

tel;

Check equivalence with z3 and SMT-LIB!
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Model Checking: (extremely) partial overview

1981 Explicit state enumeration[
E. M. Clarke and Emerson (1981): Design
and Synthesis of Synchronization Skeletons
using Branching Time Temporal Logic

] [
Queille and Sifakis (1982): Specification
and Verification of Concurrent Systems
in CESAR

]

1992 BDD-based algorithms[Burch, E. Clarke, McMillan, Dill, and Hwang (1992):
Symbolic Model Checking: 1020 States and Beyond

]

1999 Bounded Model Checking[
Biere, Cimatti, E. Clarke, and Zhu (1999):
Symbolic Model Checking without BDDs

]

2000 K-induction[
Sheeran, Singh, and Stålmarck (2000): Checking
Safety Properties Using Induction and a SAT-Solver

]

2003 Interpolation-based
[McMillan (2003): Interpolation and SAT-based model checking ]

2011 IC3 Algorithm
[Bradley (2011): SAT-Based Model Checking without Unrolling ]
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Model checking of Lustre

• Lesar: based on BDDs[
Halbwachs, Lagnier, and Ratel (1992): Programming and verifying real-time
systems by means of the synchronous data-flow language LUSTRE

]

• Kind 2: based on SMT/k-induction/IC3
[Champion, Mebsout, Sticksel, and Tinelli (2016): The Kind 2 Model Checker ]

• DV of (Ansys) Scade based on Prover SAT/k-induction
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Model checking: forward method

The set of reachable states never intersects the set of error states

init
Error
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Model checking: backward method

The states that can reach an error state do not include the initial states

Error
init
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Verifying safety properties of reactive systems

• Published in 1995[
Manna and Pnueli (1995): Temporal
Verification of Reactive Systems: Safety

]

• Companion to[
Manna and Pnueli (1992): The Temporal
Logic of Reactive and Concurrent Systems

]

• Builds on Floyd’s inductive invariants

• Temporal logic formulas as ‘proof patterns’
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The basic ‘pattern’ for showing invariance
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The basic ‘pattern’ for showing invariance

show property of initial states

then for every transition:
• assume the property of the pre state (φ)
• show the property of the post state (φ′)

22 / 46



Exercise: proving invariance of a simple transition system

• Consider a simple transition system with two integer state variables x and y :
init(x , y) := (x = 1) ∧ (y = 1)
trans(x , y , x ′, y ′) := (x ′ = x + 1) ∧ (y ′ = y + x)

• And the safety property prop(x , y) = y ≥ 1.

• Encode this system and use Z3 to prove that the property is invariant.
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General rule for showing invariance

Not all invariants are inductive invariants.
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Inductive invariants and model checking

• This idea works for manual/interactive proof.
• What about automatic proof (model checking)?
• (BTW, note that SMT solvers do not themselves do induction.)

• k-induction: strengthen P with information from last k steps.[
Sheeran, Singh, and Stålmarck (2000): Checking Safety Properties
Using Induction and a SAT-Solver

]

• IC3: automate ‘discovery’ of strengthenings
[Bradley (2011): SAT-Based Model Checking without Unrolling ]

• Generic algorithms
» work with SAT solvers on boolean transition systems, or
» with SMT solvers on richer transition systems.
» avoid or minimize quantifiers, look for efficient encodings

25 / 46
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k-induction

• Iterate BMC. Explained as a succession of algorithms.
[Sheeran, Singh, and Stålmarck (2000): Checking Safety Properties Using Induction and a SAT-Solver ]

• Focus completely on invariant properties (AG f )

node ring_counter()
returns (a, b, c : bool);
let

a = true fby c;
b = false fby a;
c = false fby b;

tel

Checking Safety Properties Using Induction and a SAT-Solver 109

C

FDP
C

D Q a

FDR
C

D Q

FDR
C

D Qb c

Fig. 1. A 3-bit ring counter

Example 1. Figure 1 shows a circuit for a 3-bit ring counter which has the
property that only one bit is high at any given moment. When this circuit is
reset into its initial state the Q output of the FDP flip-flop is set to 1 and the
Q outputs of the two FDR flip-flops are set to 0. (We equate 0 with False and
1 with True.) This circuit has no inputs except for the clock C. Figure 2 shows
a state transition diagram for this circuit which has one initial state (1, 0, 0).
In general, the state will be a finite vector of boolean variables. Transitions are

(1,0,0) (0,1,0) (0,0,1)

initial state

(1,1,1)(1,1,0) (0,1,1) (1,0,1)(0,0,0)

Fig. 2. State transition diagram for a 3-bit ring counter

shown as arrows between states. So, the circuit cycles between three reachable
states. Let us call the three boolean state variables (a, b, c) as shown in Figure 1.
Then, the property that only one bit should be high is represented by the formula
(a ⊕ b ⊕ c) ∧ ¬(a ∧ b ∧ c), informally “an odd-number of bits should be high,
but not all three”, which we call oneHigh . (⊕ stands for exclusive or.) This
property holds for all of the reachable states (on the top row of the diagram)
and so the system shown is oneHigh-safe. An example of a property that does
not hold for all reachable states is the formula ¬c. It holds for the initial state
and for its successor, but not for the following state, so a suitable countermodel

27 / 46
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k-induction: Algorithm 1

112 Mary Sheeran, Satnam Singh, and Gunnar St̊almarck

holds for i = 0, i = 1, i = 2, and so on. This corresponds to checking that
I(s0) ∧ path(s[0..i]) ∧ ¬P (si) is contradictory (or that ¬(I(s0) ∧ path(s[0..i]) ∧
¬P (si)) is a tautology) for each i, for arbitrary s0 to si. If the property is
violated somewhere in the reachable states, we will eventually find an i for which
I(s0) ∧ path(s[0..i]) ∧ ¬P (si) is satisfiable. Then, we know that there is a path
of length i from an initial state to one violating P , and indeed the assignment
of values to s[0..i] that makes the formula satisfiable is such a path, and can be
used for debugging purposes. Also, we know that there is no shorter such error-
trace. For the special case of simple safety properties, Bounded Model Checking,
a particular form of model checking based on SAT-solving proposed by Clarke
and his collaborators [2], reduces to a similar kind of iteration and satisfiability
check.

If the system is P -safe, formula (4) will always hold. The question is how do
we know when it is safe to stop incrementing i and conclude that the system
is P -safe? It is no good waiting for I(s0) ∧ path(s[0..i]) to be contradictory, say.
Given that there is an initial state, this will never happen, as we assume that
every state has a successor through T , so there are always loops in both the
reachable and the unreachable state space.

A better strategy is to stop when I(s0)∧ loopFree(s[0..i]) becomes contradic-
tory. Then, we stop when we have checked every loop-free path (and thus every
state) in the reachable states. We can then safely conclude that the system is
P -safe. Similarly, we can keep checking until loopFree(s[0..i]) ∧ ¬P (si) becomes
contradictory, and stop, again with a positive answer, when we have checked
all states reachable backwards from those violating P . This solution is given
in pseudo-code below (Algorithm 1). The function Sat corresponds to a call to
a SAT-solver. The function Sat takes an expression and returns True if there
exists an assignment to the variables (in this case s[0..i]) which make the whole
expression true. Here, the trace c[0..i] is an assignment to the variables s[0..i] that

Algorithm 1 First algorithm to check if system is P -safe
i=0
while True do

if not Sat(I(s0) ∧ loopFree(s[0..i])) or not Sat((loopFree(s[0..i]) ∧ ¬P (si)) then
return True

end if
if Sat(I(s0) ∧ path(s[0..i]) ∧ ¬P (si)) then

return Trace c[0..i]

end if
i = i + 1

end while

makes I(s0) ∧ path(s[0..i]) ∧ ¬P (si) true, and so is a suitable error trace.
Let us consider the case when the answer is True. We prove that for all i

I(s0) ∧ loopFree(s[0..i]) ∧ ¬P (si)
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to the assertion that ¬c holds for all reachable states is the sequence of states
(1, 0, 0), (0, 1, 0), (0, 0, 1).

Generally such an error trace is a possible sequence of states starting at the
initial state, in which all but the last state satisfy the required condition. When
we check systems for P -safety, we would like to generate such a trace when the
system turns out not to be P -safe. The question of how to get from a system
description to a transition relation is not considered here. For an introduction
to model checking in general, see reference [6].

2.1 Transition Relations and Paths

In order to be able to formulate the problem more precisely, we introduce no-
tation for various types of paths through the graph of a transition relation. We
write T (x, y) to indicate that x is related to y by the transition relation T . Let us
assume for notational convenience that the transition relation being examined is
always T . For example the 3-bit ring counter presented in the previous section
has a transition relation which relates the current state (a, b, c) to the next state
(a′, b′, c′) such at a′ = c, b′ = a and c′ = b. Now we define what it means for a
sequence of states to be a path through T .

path(s[0..n]) =̂
∧

0≤i<n

T (si, si+1)

Read =̂ as “is defined to be”. s[0..n] is shorthand for the sequence of state
(s0, s1, . . . , sn). We say that a path has length n if it makes n T -transitions.
A path of length zero contains a single point and makes no transitions. To assert
that a property Q holds of every point in a path, we write all .Q(s[0..n]).

Later, we will have reason to restrict the paths in such a repeated composition
to be loop free, so that every element of the path is distinct. We define

loopFree(s[0..n]) =̂ path(s[0..n]) ∧
∧

0≤i<j≤n

si ̸= sj

The concatenation of two loop-free paths is not necessarily loop-free, but the
sub-paths of a loop-free path are themselves loop-free. Thus

loopFree(s[0..(i+j)]) → loopFree(s[0..i]) ∧ loopFree(s[i..(i+j)]) (1)

Sometimes we only want to talk about the ends of paths. So we are happy
to view path, for instance, not only as a predicate on paths but also as a binary
relation on points. We write pathi(s0, si) to indicate that there is a path from s0

to si through i copies of T . This corresponds to quantifying away the internal
points. So, for example

pathn(s0, sn) ↔ ∃s1 . . . sn−1. path(s[0..n]) (2)
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to the assertion that ¬c holds for all reachable states is the sequence of states
(1, 0, 0), (0, 1, 0), (0, 0, 1).

Generally such an error trace is a possible sequence of states starting at the
initial state, in which all but the last state satisfy the required condition. When
we check systems for P -safety, we would like to generate such a trace when the
system turns out not to be P -safe. The question of how to get from a system
description to a transition relation is not considered here. For an introduction
to model checking in general, see reference [6].

2.1 Transition Relations and Paths

In order to be able to formulate the problem more precisely, we introduce no-
tation for various types of paths through the graph of a transition relation. We
write T (x, y) to indicate that x is related to y by the transition relation T . Let us
assume for notational convenience that the transition relation being examined is
always T . For example the 3-bit ring counter presented in the previous section
has a transition relation which relates the current state (a, b, c) to the next state
(a′, b′, c′) such at a′ = c, b′ = a and c′ = b. Now we define what it means for a
sequence of states to be a path through T .

path(s[0..n]) =̂
∧

0≤i<n

T (si, si+1)

Read =̂ as “is defined to be”. s[0..n] is shorthand for the sequence of state
(s0, s1, . . . , sn). We say that a path has length n if it makes n T -transitions.
A path of length zero contains a single point and makes no transitions. To assert
that a property Q holds of every point in a path, we write all .Q(s[0..n]).

Later, we will have reason to restrict the paths in such a repeated composition
to be loop free, so that every element of the path is distinct. We define

loopFree(s[0..n]) =̂ path(s[0..n]) ∧
∧

0≤i<j≤n

si ̸= sj

The concatenation of two loop-free paths is not necessarily loop-free, but the
sub-paths of a loop-free path are themselves loop-free. Thus

loopFree(s[0..(i+j)]) → loopFree(s[0..i]) ∧ loopFree(s[i..(i+j)]) (1)

Sometimes we only want to talk about the ends of paths. So we are happy
to view path, for instance, not only as a predicate on paths but also as a binary
relation on points. We write pathi(s0, si) to indicate that there is a path from s0

to si through i copies of T . This corresponds to quantifying away the internal
points. So, for example

pathn(s0, sn) ↔ ∃s1 . . . sn−1. path(s[0..n]) (2)

The restriction to loop-free paths is
necessary for completeness.

• Check for existence of loop-free path.
• Check for existence of bad path.
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holds for i = 0, i = 1, i = 2, and so on. This corresponds to checking that
I(s0) ∧ path(s[0..i]) ∧ ¬P (si) is contradictory (or that ¬(I(s0) ∧ path(s[0..i]) ∧
¬P (si)) is a tautology) for each i, for arbitrary s0 to si. If the property is
violated somewhere in the reachable states, we will eventually find an i for which
I(s0) ∧ path(s[0..i]) ∧ ¬P (si) is satisfiable. Then, we know that there is a path
of length i from an initial state to one violating P , and indeed the assignment
of values to s[0..i] that makes the formula satisfiable is such a path, and can be
used for debugging purposes. Also, we know that there is no shorter such error-
trace. For the special case of simple safety properties, Bounded Model Checking,
a particular form of model checking based on SAT-solving proposed by Clarke
and his collaborators [2], reduces to a similar kind of iteration and satisfiability
check.

If the system is P -safe, formula (4) will always hold. The question is how do
we know when it is safe to stop incrementing i and conclude that the system
is P -safe? It is no good waiting for I(s0) ∧ path(s[0..i]) to be contradictory, say.
Given that there is an initial state, this will never happen, as we assume that
every state has a successor through T , so there are always loops in both the
reachable and the unreachable state space.

A better strategy is to stop when I(s0)∧ loopFree(s[0..i]) becomes contradic-
tory. Then, we stop when we have checked every loop-free path (and thus every
state) in the reachable states. We can then safely conclude that the system is
P -safe. Similarly, we can keep checking until loopFree(s[0..i]) ∧ ¬P (si) becomes
contradictory, and stop, again with a positive answer, when we have checked
all states reachable backwards from those violating P . This solution is given
in pseudo-code below (Algorithm 1). The function Sat corresponds to a call to
a SAT-solver. The function Sat takes an expression and returns True if there
exists an assignment to the variables (in this case s[0..i]) which make the whole
expression true. Here, the trace c[0..i] is an assignment to the variables s[0..i] that

Algorithm 1 First algorithm to check if system is P -safe
i=0
while True do

if not Sat(I(s0) ∧ loopFree(s[0..i])) or not Sat((loopFree(s[0..i]) ∧ ¬P (si)) then
return True

end if
if Sat(I(s0) ∧ path(s[0..i]) ∧ ¬P (si)) then

return Trace c[0..i]

end if
i = i + 1

end while

makes I(s0) ∧ path(s[0..i]) ∧ ¬P (si) true, and so is a suitable error trace.
Let us consider the case when the answer is True. We prove that for all i

I(s0) ∧ loopFree(s[0..i]) ∧ ¬P (si)
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to the assertion that ¬c holds for all reachable states is the sequence of states
(1, 0, 0), (0, 1, 0), (0, 0, 1).

Generally such an error trace is a possible sequence of states starting at the
initial state, in which all but the last state satisfy the required condition. When
we check systems for P -safety, we would like to generate such a trace when the
system turns out not to be P -safe. The question of how to get from a system
description to a transition relation is not considered here. For an introduction
to model checking in general, see reference [6].

2.1 Transition Relations and Paths

In order to be able to formulate the problem more precisely, we introduce no-
tation for various types of paths through the graph of a transition relation. We
write T (x, y) to indicate that x is related to y by the transition relation T . Let us
assume for notational convenience that the transition relation being examined is
always T . For example the 3-bit ring counter presented in the previous section
has a transition relation which relates the current state (a, b, c) to the next state
(a′, b′, c′) such at a′ = c, b′ = a and c′ = b. Now we define what it means for a
sequence of states to be a path through T .

path(s[0..n]) =̂
∧

0≤i<n

T (si, si+1)

Read =̂ as “is defined to be”. s[0..n] is shorthand for the sequence of state
(s0, s1, . . . , sn). We say that a path has length n if it makes n T -transitions.
A path of length zero contains a single point and makes no transitions. To assert
that a property Q holds of every point in a path, we write all .Q(s[0..n]).

Later, we will have reason to restrict the paths in such a repeated composition
to be loop free, so that every element of the path is distinct. We define

loopFree(s[0..n]) =̂ path(s[0..n]) ∧
∧

0≤i<j≤n

si ̸= sj

The concatenation of two loop-free paths is not necessarily loop-free, but the
sub-paths of a loop-free path are themselves loop-free. Thus

loopFree(s[0..(i+j)]) → loopFree(s[0..i]) ∧ loopFree(s[i..(i+j)]) (1)

Sometimes we only want to talk about the ends of paths. So we are happy
to view path, for instance, not only as a predicate on paths but also as a binary
relation on points. We write pathi(s0, si) to indicate that there is a path from s0

to si through i copies of T . This corresponds to quantifying away the internal
points. So, for example

pathn(s0, sn) ↔ ∃s1 . . . sn−1. path(s[0..n]) (2)
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initial state, in which all but the last state satisfy the required condition. When
we check systems for P -safety, we would like to generate such a trace when the
system turns out not to be P -safe. The question of how to get from a system
description to a transition relation is not considered here. For an introduction
to model checking in general, see reference [6].

2.1 Transition Relations and Paths

In order to be able to formulate the problem more precisely, we introduce no-
tation for various types of paths through the graph of a transition relation. We
write T (x, y) to indicate that x is related to y by the transition relation T . Let us
assume for notational convenience that the transition relation being examined is
always T . For example the 3-bit ring counter presented in the previous section
has a transition relation which relates the current state (a, b, c) to the next state
(a′, b′, c′) such at a′ = c, b′ = a and c′ = b. Now we define what it means for a
sequence of states to be a path through T .

path(s[0..n]) =̂
∧

0≤i<n

T (si, si+1)

Read =̂ as “is defined to be”. s[0..n] is shorthand for the sequence of state
(s0, s1, . . . , sn). We say that a path has length n if it makes n T -transitions.
A path of length zero contains a single point and makes no transitions. To assert
that a property Q holds of every point in a path, we write all .Q(s[0..n]).

Later, we will have reason to restrict the paths in such a repeated composition
to be loop free, so that every element of the path is distinct. We define

loopFree(s[0..n]) =̂ path(s[0..n]) ∧
∧

0≤i<j≤n

si ̸= sj

The concatenation of two loop-free paths is not necessarily loop-free, but the
sub-paths of a loop-free path are themselves loop-free. Thus

loopFree(s[0..(i+j)]) → loopFree(s[0..i]) ∧ loopFree(s[i..(i+j)]) (1)

Sometimes we only want to talk about the ends of paths. So we are happy
to view path, for instance, not only as a predicate on paths but also as a binary
relation on points. We write pathi(s0, si) to indicate that there is a path from s0

to si through i copies of T . This corresponds to quantifying away the internal
points. So, for example

pathn(s0, sn) ↔ ∃s1 . . . sn−1. path(s[0..n]) (2)

The restriction to loop-free paths is
necessary for completeness.

init

Error

28 / 46



k-induction: Algorithm 1

112 Mary Sheeran, Satnam Singh, and Gunnar St̊almarck

holds for i = 0, i = 1, i = 2, and so on. This corresponds to checking that
I(s0) ∧ path(s[0..i]) ∧ ¬P (si) is contradictory (or that ¬(I(s0) ∧ path(s[0..i]) ∧
¬P (si)) is a tautology) for each i, for arbitrary s0 to si. If the property is
violated somewhere in the reachable states, we will eventually find an i for which
I(s0) ∧ path(s[0..i]) ∧ ¬P (si) is satisfiable. Then, we know that there is a path
of length i from an initial state to one violating P , and indeed the assignment
of values to s[0..i] that makes the formula satisfiable is such a path, and can be
used for debugging purposes. Also, we know that there is no shorter such error-
trace. For the special case of simple safety properties, Bounded Model Checking,
a particular form of model checking based on SAT-solving proposed by Clarke
and his collaborators [2], reduces to a similar kind of iteration and satisfiability
check.

If the system is P -safe, formula (4) will always hold. The question is how do
we know when it is safe to stop incrementing i and conclude that the system
is P -safe? It is no good waiting for I(s0) ∧ path(s[0..i]) to be contradictory, say.
Given that there is an initial state, this will never happen, as we assume that
every state has a successor through T , so there are always loops in both the
reachable and the unreachable state space.

A better strategy is to stop when I(s0)∧ loopFree(s[0..i]) becomes contradic-
tory. Then, we stop when we have checked every loop-free path (and thus every
state) in the reachable states. We can then safely conclude that the system is
P -safe. Similarly, we can keep checking until loopFree(s[0..i]) ∧ ¬P (si) becomes
contradictory, and stop, again with a positive answer, when we have checked
all states reachable backwards from those violating P . This solution is given
in pseudo-code below (Algorithm 1). The function Sat corresponds to a call to
a SAT-solver. The function Sat takes an expression and returns True if there
exists an assignment to the variables (in this case s[0..i]) which make the whole
expression true. Here, the trace c[0..i] is an assignment to the variables s[0..i] that

Algorithm 1 First algorithm to check if system is P -safe
i=0
while True do

if not Sat(I(s0) ∧ loopFree(s[0..i])) or not Sat((loopFree(s[0..i]) ∧ ¬P (si)) then
return True

end if
if Sat(I(s0) ∧ path(s[0..i]) ∧ ¬P (si)) then

return Trace c[0..i]

end if
i = i + 1

end while

makes I(s0) ∧ path(s[0..i]) ∧ ¬P (si) true, and so is a suitable error trace.
Let us consider the case when the answer is True. We prove that for all i

I(s0) ∧ loopFree(s[0..i]) ∧ ¬P (si)
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to the assertion that ¬c holds for all reachable states is the sequence of states
(1, 0, 0), (0, 1, 0), (0, 0, 1).

Generally such an error trace is a possible sequence of states starting at the
initial state, in which all but the last state satisfy the required condition. When
we check systems for P -safety, we would like to generate such a trace when the
system turns out not to be P -safe. The question of how to get from a system
description to a transition relation is not considered here. For an introduction
to model checking in general, see reference [6].

2.1 Transition Relations and Paths

In order to be able to formulate the problem more precisely, we introduce no-
tation for various types of paths through the graph of a transition relation. We
write T (x, y) to indicate that x is related to y by the transition relation T . Let us
assume for notational convenience that the transition relation being examined is
always T . For example the 3-bit ring counter presented in the previous section
has a transition relation which relates the current state (a, b, c) to the next state
(a′, b′, c′) such at a′ = c, b′ = a and c′ = b. Now we define what it means for a
sequence of states to be a path through T .

path(s[0..n]) =̂
∧

0≤i<n

T (si, si+1)

Read =̂ as “is defined to be”. s[0..n] is shorthand for the sequence of state
(s0, s1, . . . , sn). We say that a path has length n if it makes n T -transitions.
A path of length zero contains a single point and makes no transitions. To assert
that a property Q holds of every point in a path, we write all .Q(s[0..n]).

Later, we will have reason to restrict the paths in such a repeated composition
to be loop free, so that every element of the path is distinct. We define

loopFree(s[0..n]) =̂ path(s[0..n]) ∧
∧

0≤i<j≤n

si ̸= sj

The concatenation of two loop-free paths is not necessarily loop-free, but the
sub-paths of a loop-free path are themselves loop-free. Thus

loopFree(s[0..(i+j)]) → loopFree(s[0..i]) ∧ loopFree(s[i..(i+j)]) (1)

Sometimes we only want to talk about the ends of paths. So we are happy
to view path, for instance, not only as a predicate on paths but also as a binary
relation on points. We write pathi(s0, si) to indicate that there is a path from s0

to si through i copies of T . This corresponds to quantifying away the internal
points. So, for example

pathn(s0, sn) ↔ ∃s1 . . . sn−1. path(s[0..n]) (2)
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to the assertion that ¬c holds for all reachable states is the sequence of states
(1, 0, 0), (0, 1, 0), (0, 0, 1).

Generally such an error trace is a possible sequence of states starting at the
initial state, in which all but the last state satisfy the required condition. When
we check systems for P -safety, we would like to generate such a trace when the
system turns out not to be P -safe. The question of how to get from a system
description to a transition relation is not considered here. For an introduction
to model checking in general, see reference [6].

2.1 Transition Relations and Paths

In order to be able to formulate the problem more precisely, we introduce no-
tation for various types of paths through the graph of a transition relation. We
write T (x, y) to indicate that x is related to y by the transition relation T . Let us
assume for notational convenience that the transition relation being examined is
always T . For example the 3-bit ring counter presented in the previous section
has a transition relation which relates the current state (a, b, c) to the next state
(a′, b′, c′) such at a′ = c, b′ = a and c′ = b. Now we define what it means for a
sequence of states to be a path through T .

path(s[0..n]) =̂
∧

0≤i<n

T (si, si+1)

Read =̂ as “is defined to be”. s[0..n] is shorthand for the sequence of state
(s0, s1, . . . , sn). We say that a path has length n if it makes n T -transitions.
A path of length zero contains a single point and makes no transitions. To assert
that a property Q holds of every point in a path, we write all .Q(s[0..n]).

Later, we will have reason to restrict the paths in such a repeated composition
to be loop free, so that every element of the path is distinct. We define

loopFree(s[0..n]) =̂ path(s[0..n]) ∧
∧

0≤i<j≤n

si ̸= sj

The concatenation of two loop-free paths is not necessarily loop-free, but the
sub-paths of a loop-free path are themselves loop-free. Thus

loopFree(s[0..(i+j)]) → loopFree(s[0..i]) ∧ loopFree(s[i..(i+j)]) (1)

Sometimes we only want to talk about the ends of paths. So we are happy
to view path, for instance, not only as a predicate on paths but also as a binary
relation on points. We write pathi(s0, si) to indicate that there is a path from s0

to si through i copies of T . This corresponds to quantifying away the internal
points. So, for example

pathn(s0, sn) ↔ ∃s1 . . . sn−1. path(s[0..n]) (2)

The restriction to loop-free paths is
necessary for completeness.
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holds for i = 0, i = 1, i = 2, and so on. This corresponds to checking that
I(s0) ∧ path(s[0..i]) ∧ ¬P (si) is contradictory (or that ¬(I(s0) ∧ path(s[0..i]) ∧
¬P (si)) is a tautology) for each i, for arbitrary s0 to si. If the property is
violated somewhere in the reachable states, we will eventually find an i for which
I(s0) ∧ path(s[0..i]) ∧ ¬P (si) is satisfiable. Then, we know that there is a path
of length i from an initial state to one violating P , and indeed the assignment
of values to s[0..i] that makes the formula satisfiable is such a path, and can be
used for debugging purposes. Also, we know that there is no shorter such error-
trace. For the special case of simple safety properties, Bounded Model Checking,
a particular form of model checking based on SAT-solving proposed by Clarke
and his collaborators [2], reduces to a similar kind of iteration and satisfiability
check.

If the system is P -safe, formula (4) will always hold. The question is how do
we know when it is safe to stop incrementing i and conclude that the system
is P -safe? It is no good waiting for I(s0) ∧ path(s[0..i]) to be contradictory, say.
Given that there is an initial state, this will never happen, as we assume that
every state has a successor through T , so there are always loops in both the
reachable and the unreachable state space.

A better strategy is to stop when I(s0)∧ loopFree(s[0..i]) becomes contradic-
tory. Then, we stop when we have checked every loop-free path (and thus every
state) in the reachable states. We can then safely conclude that the system is
P -safe. Similarly, we can keep checking until loopFree(s[0..i]) ∧ ¬P (si) becomes
contradictory, and stop, again with a positive answer, when we have checked
all states reachable backwards from those violating P . This solution is given
in pseudo-code below (Algorithm 1). The function Sat corresponds to a call to
a SAT-solver. The function Sat takes an expression and returns True if there
exists an assignment to the variables (in this case s[0..i]) which make the whole
expression true. Here, the trace c[0..i] is an assignment to the variables s[0..i] that

Algorithm 1 First algorithm to check if system is P -safe
i=0
while True do

if not Sat(I(s0) ∧ loopFree(s[0..i])) or not Sat((loopFree(s[0..i]) ∧ ¬P (si)) then
return True

end if
if Sat(I(s0) ∧ path(s[0..i]) ∧ ¬P (si)) then

return Trace c[0..i]

end if
i = i + 1

end while

makes I(s0) ∧ path(s[0..i]) ∧ ¬P (si) true, and so is a suitable error trace.
Let us consider the case when the answer is True. We prove that for all i

I(s0) ∧ loopFree(s[0..i]) ∧ ¬P (si)
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to the assertion that ¬c holds for all reachable states is the sequence of states
(1, 0, 0), (0, 1, 0), (0, 0, 1).

Generally such an error trace is a possible sequence of states starting at the
initial state, in which all but the last state satisfy the required condition. When
we check systems for P -safety, we would like to generate such a trace when the
system turns out not to be P -safe. The question of how to get from a system
description to a transition relation is not considered here. For an introduction
to model checking in general, see reference [6].

2.1 Transition Relations and Paths

In order to be able to formulate the problem more precisely, we introduce no-
tation for various types of paths through the graph of a transition relation. We
write T (x, y) to indicate that x is related to y by the transition relation T . Let us
assume for notational convenience that the transition relation being examined is
always T . For example the 3-bit ring counter presented in the previous section
has a transition relation which relates the current state (a, b, c) to the next state
(a′, b′, c′) such at a′ = c, b′ = a and c′ = b. Now we define what it means for a
sequence of states to be a path through T .

path(s[0..n]) =̂
∧

0≤i<n

T (si, si+1)

Read =̂ as “is defined to be”. s[0..n] is shorthand for the sequence of state
(s0, s1, . . . , sn). We say that a path has length n if it makes n T -transitions.
A path of length zero contains a single point and makes no transitions. To assert
that a property Q holds of every point in a path, we write all .Q(s[0..n]).

Later, we will have reason to restrict the paths in such a repeated composition
to be loop free, so that every element of the path is distinct. We define

loopFree(s[0..n]) =̂ path(s[0..n]) ∧
∧

0≤i<j≤n

si ̸= sj

The concatenation of two loop-free paths is not necessarily loop-free, but the
sub-paths of a loop-free path are themselves loop-free. Thus

loopFree(s[0..(i+j)]) → loopFree(s[0..i]) ∧ loopFree(s[i..(i+j)]) (1)

Sometimes we only want to talk about the ends of paths. So we are happy
to view path, for instance, not only as a predicate on paths but also as a binary
relation on points. We write pathi(s0, si) to indicate that there is a path from s0

to si through i copies of T . This corresponds to quantifying away the internal
points. So, for example

pathn(s0, sn) ↔ ∃s1 . . . sn−1. path(s[0..n]) (2)
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to the assertion that ¬c holds for all reachable states is the sequence of states
(1, 0, 0), (0, 1, 0), (0, 0, 1).

Generally such an error trace is a possible sequence of states starting at the
initial state, in which all but the last state satisfy the required condition. When
we check systems for P -safety, we would like to generate such a trace when the
system turns out not to be P -safe. The question of how to get from a system
description to a transition relation is not considered here. For an introduction
to model checking in general, see reference [6].

2.1 Transition Relations and Paths

In order to be able to formulate the problem more precisely, we introduce no-
tation for various types of paths through the graph of a transition relation. We
write T (x, y) to indicate that x is related to y by the transition relation T . Let us
assume for notational convenience that the transition relation being examined is
always T . For example the 3-bit ring counter presented in the previous section
has a transition relation which relates the current state (a, b, c) to the next state
(a′, b′, c′) such at a′ = c, b′ = a and c′ = b. Now we define what it means for a
sequence of states to be a path through T .

path(s[0..n]) =̂
∧

0≤i<n

T (si, si+1)

Read =̂ as “is defined to be”. s[0..n] is shorthand for the sequence of state
(s0, s1, . . . , sn). We say that a path has length n if it makes n T -transitions.
A path of length zero contains a single point and makes no transitions. To assert
that a property Q holds of every point in a path, we write all .Q(s[0..n]).

Later, we will have reason to restrict the paths in such a repeated composition
to be loop free, so that every element of the path is distinct. We define

loopFree(s[0..n]) =̂ path(s[0..n]) ∧
∧

0≤i<j≤n

si ̸= sj

The concatenation of two loop-free paths is not necessarily loop-free, but the
sub-paths of a loop-free path are themselves loop-free. Thus

loopFree(s[0..(i+j)]) → loopFree(s[0..i]) ∧ loopFree(s[i..(i+j)]) (1)

Sometimes we only want to talk about the ends of paths. So we are happy
to view path, for instance, not only as a predicate on paths but also as a binary
relation on points. We write pathi(s0, si) to indicate that there is a path from s0

to si through i copies of T . This corresponds to quantifying away the internal
points. So, for example

pathn(s0, sn) ↔ ∃s1 . . . sn−1. path(s[0..n]) (2)

The restriction to loop-free paths is
necessary for completeness.

initI
s0 s1 s2 · · · si ∃✓

Error
¬Psisi−1si−2· · ·s0∃✓
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holds for i = 0, i = 1, i = 2, and so on. This corresponds to checking that
I(s0) ∧ path(s[0..i]) ∧ ¬P (si) is contradictory (or that ¬(I(s0) ∧ path(s[0..i]) ∧
¬P (si)) is a tautology) for each i, for arbitrary s0 to si. If the property is
violated somewhere in the reachable states, we will eventually find an i for which
I(s0) ∧ path(s[0..i]) ∧ ¬P (si) is satisfiable. Then, we know that there is a path
of length i from an initial state to one violating P , and indeed the assignment
of values to s[0..i] that makes the formula satisfiable is such a path, and can be
used for debugging purposes. Also, we know that there is no shorter such error-
trace. For the special case of simple safety properties, Bounded Model Checking,
a particular form of model checking based on SAT-solving proposed by Clarke
and his collaborators [2], reduces to a similar kind of iteration and satisfiability
check.

If the system is P -safe, formula (4) will always hold. The question is how do
we know when it is safe to stop incrementing i and conclude that the system
is P -safe? It is no good waiting for I(s0) ∧ path(s[0..i]) to be contradictory, say.
Given that there is an initial state, this will never happen, as we assume that
every state has a successor through T , so there are always loops in both the
reachable and the unreachable state space.

A better strategy is to stop when I(s0)∧ loopFree(s[0..i]) becomes contradic-
tory. Then, we stop when we have checked every loop-free path (and thus every
state) in the reachable states. We can then safely conclude that the system is
P -safe. Similarly, we can keep checking until loopFree(s[0..i]) ∧ ¬P (si) becomes
contradictory, and stop, again with a positive answer, when we have checked
all states reachable backwards from those violating P . This solution is given
in pseudo-code below (Algorithm 1). The function Sat corresponds to a call to
a SAT-solver. The function Sat takes an expression and returns True if there
exists an assignment to the variables (in this case s[0..i]) which make the whole
expression true. Here, the trace c[0..i] is an assignment to the variables s[0..i] that

Algorithm 1 First algorithm to check if system is P -safe
i=0
while True do

if not Sat(I(s0) ∧ loopFree(s[0..i])) or not Sat((loopFree(s[0..i]) ∧ ¬P (si)) then
return True

end if
if Sat(I(s0) ∧ path(s[0..i]) ∧ ¬P (si)) then

return Trace c[0..i]

end if
i = i + 1

end while

makes I(s0) ∧ path(s[0..i]) ∧ ¬P (si) true, and so is a suitable error trace.
Let us consider the case when the answer is True. We prove that for all i

I(s0) ∧ loopFree(s[0..i]) ∧ ¬P (si)
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to the assertion that ¬c holds for all reachable states is the sequence of states
(1, 0, 0), (0, 1, 0), (0, 0, 1).

Generally such an error trace is a possible sequence of states starting at the
initial state, in which all but the last state satisfy the required condition. When
we check systems for P -safety, we would like to generate such a trace when the
system turns out not to be P -safe. The question of how to get from a system
description to a transition relation is not considered here. For an introduction
to model checking in general, see reference [6].

2.1 Transition Relations and Paths

In order to be able to formulate the problem more precisely, we introduce no-
tation for various types of paths through the graph of a transition relation. We
write T (x, y) to indicate that x is related to y by the transition relation T . Let us
assume for notational convenience that the transition relation being examined is
always T . For example the 3-bit ring counter presented in the previous section
has a transition relation which relates the current state (a, b, c) to the next state
(a′, b′, c′) such at a′ = c, b′ = a and c′ = b. Now we define what it means for a
sequence of states to be a path through T .

path(s[0..n]) =̂
∧

0≤i<n

T (si, si+1)

Read =̂ as “is defined to be”. s[0..n] is shorthand for the sequence of state
(s0, s1, . . . , sn). We say that a path has length n if it makes n T -transitions.
A path of length zero contains a single point and makes no transitions. To assert
that a property Q holds of every point in a path, we write all .Q(s[0..n]).

Later, we will have reason to restrict the paths in such a repeated composition
to be loop free, so that every element of the path is distinct. We define

loopFree(s[0..n]) =̂ path(s[0..n]) ∧
∧

0≤i<j≤n

si ̸= sj

The concatenation of two loop-free paths is not necessarily loop-free, but the
sub-paths of a loop-free path are themselves loop-free. Thus

loopFree(s[0..(i+j)]) → loopFree(s[0..i]) ∧ loopFree(s[i..(i+j)]) (1)

Sometimes we only want to talk about the ends of paths. So we are happy
to view path, for instance, not only as a predicate on paths but also as a binary
relation on points. We write pathi(s0, si) to indicate that there is a path from s0

to si through i copies of T . This corresponds to quantifying away the internal
points. So, for example

pathn(s0, sn) ↔ ∃s1 . . . sn−1. path(s[0..n]) (2)
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to the assertion that ¬c holds for all reachable states is the sequence of states
(1, 0, 0), (0, 1, 0), (0, 0, 1).

Generally such an error trace is a possible sequence of states starting at the
initial state, in which all but the last state satisfy the required condition. When
we check systems for P -safety, we would like to generate such a trace when the
system turns out not to be P -safe. The question of how to get from a system
description to a transition relation is not considered here. For an introduction
to model checking in general, see reference [6].

2.1 Transition Relations and Paths

In order to be able to formulate the problem more precisely, we introduce no-
tation for various types of paths through the graph of a transition relation. We
write T (x, y) to indicate that x is related to y by the transition relation T . Let us
assume for notational convenience that the transition relation being examined is
always T . For example the 3-bit ring counter presented in the previous section
has a transition relation which relates the current state (a, b, c) to the next state
(a′, b′, c′) such at a′ = c, b′ = a and c′ = b. Now we define what it means for a
sequence of states to be a path through T .

path(s[0..n]) =̂
∧

0≤i<n

T (si, si+1)

Read =̂ as “is defined to be”. s[0..n] is shorthand for the sequence of state
(s0, s1, . . . , sn). We say that a path has length n if it makes n T -transitions.
A path of length zero contains a single point and makes no transitions. To assert
that a property Q holds of every point in a path, we write all .Q(s[0..n]).

Later, we will have reason to restrict the paths in such a repeated composition
to be loop free, so that every element of the path is distinct. We define

loopFree(s[0..n]) =̂ path(s[0..n]) ∧
∧

0≤i<j≤n

si ̸= sj

The concatenation of two loop-free paths is not necessarily loop-free, but the
sub-paths of a loop-free path are themselves loop-free. Thus

loopFree(s[0..(i+j)]) → loopFree(s[0..i]) ∧ loopFree(s[i..(i+j)]) (1)

Sometimes we only want to talk about the ends of paths. So we are happy
to view path, for instance, not only as a predicate on paths but also as a binary
relation on points. We write pathi(s0, si) to indicate that there is a path from s0

to si through i copies of T . This corresponds to quantifying away the internal
points. So, for example

pathn(s0, sn) ↔ ∃s1 . . . sn−1. path(s[0..n]) (2)

The restriction to loop-free paths is
necessary for completeness.

initI
s0 s1 s2 · · · si ∃✓

Error
¬Psisi−1si−2· · ·s0∃✓

̸ ∃✓
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holds for i = 0, i = 1, i = 2, and so on. This corresponds to checking that
I(s0) ∧ path(s[0..i]) ∧ ¬P (si) is contradictory (or that ¬(I(s0) ∧ path(s[0..i]) ∧
¬P (si)) is a tautology) for each i, for arbitrary s0 to si. If the property is
violated somewhere in the reachable states, we will eventually find an i for which
I(s0) ∧ path(s[0..i]) ∧ ¬P (si) is satisfiable. Then, we know that there is a path
of length i from an initial state to one violating P , and indeed the assignment
of values to s[0..i] that makes the formula satisfiable is such a path, and can be
used for debugging purposes. Also, we know that there is no shorter such error-
trace. For the special case of simple safety properties, Bounded Model Checking,
a particular form of model checking based on SAT-solving proposed by Clarke
and his collaborators [2], reduces to a similar kind of iteration and satisfiability
check.

If the system is P -safe, formula (4) will always hold. The question is how do
we know when it is safe to stop incrementing i and conclude that the system
is P -safe? It is no good waiting for I(s0) ∧ path(s[0..i]) to be contradictory, say.
Given that there is an initial state, this will never happen, as we assume that
every state has a successor through T , so there are always loops in both the
reachable and the unreachable state space.

A better strategy is to stop when I(s0)∧ loopFree(s[0..i]) becomes contradic-
tory. Then, we stop when we have checked every loop-free path (and thus every
state) in the reachable states. We can then safely conclude that the system is
P -safe. Similarly, we can keep checking until loopFree(s[0..i]) ∧ ¬P (si) becomes
contradictory, and stop, again with a positive answer, when we have checked
all states reachable backwards from those violating P . This solution is given
in pseudo-code below (Algorithm 1). The function Sat corresponds to a call to
a SAT-solver. The function Sat takes an expression and returns True if there
exists an assignment to the variables (in this case s[0..i]) which make the whole
expression true. Here, the trace c[0..i] is an assignment to the variables s[0..i] that

Algorithm 1 First algorithm to check if system is P -safe
i=0
while True do

if not Sat(I(s0) ∧ loopFree(s[0..i])) or not Sat((loopFree(s[0..i]) ∧ ¬P (si)) then
return True

end if
if Sat(I(s0) ∧ path(s[0..i]) ∧ ¬P (si)) then

return Trace c[0..i]

end if
i = i + 1

end while

makes I(s0) ∧ path(s[0..i]) ∧ ¬P (si) true, and so is a suitable error trace.
Let us consider the case when the answer is True. We prove that for all i

I(s0) ∧ loopFree(s[0..i]) ∧ ¬P (si)
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4 Improving on this Solution

How can we improve this algorithm, bearing in mind that we will use a SAT-
solver to check the formulas? Well, we can make the two termination conditions
a bit tighter.

Let us think operationally for a moment, and imagine traversing the state
transition graph. In the forward direction, we don’t want to go back into an
initial state as we would then be considering a longer path than necessary. We
could in that case consider only the end part of the path starting from the
second point that is an initial state. The original termination condition was
I(s0) ∧ loopFree(s[0..i]) and now we want to replace it by

I(s0) ∧ all.¬I(s[1..i]) ∧ loopFree(s[0..i])

(In the special case where there is only one initial state, then this change is
unnecessary, as the restriction to proper paths prevents us from returning to the
initial state.) Similarly, in the backwards direction, we are uninterested in paths
that have a non-P -state somewhere in the middle. We only want to consider
paths in which all but the last state satisfy P . The new termination condition
is then

loopFree(s[0..i]) ∧ all .P (s[0..(i−1)]) ∧ ¬P (si)

The resulting algorithm is given as Algorithm 2.

Algorithm 2 An improved algorithm to check if system is P -safe
i=0
while True do

if not Sat(I(s0) ∧ all .¬I(s[1..i]) ∧ loopFree(s[0..i]))
or not Sat((loopFree(s[0..i]) ∧ all .P (s[0..(i−1)]) ∧ ¬P (si)) then

return True
end if
if Sat(I(s0) ∧ path(s[0..i]) ∧ ¬P (si)) then

return Trace c[0..i]

end if
i = i + 1

end while

One of us was sorely tempted to make use of facts proved in earlier iterations
to make further restrictions in both termination conditions, restoring a pleasing
symmetry. But this turns out to be a bad idea in practice because of the need
to rely on previous iterations. When a circuit requires a very high induction
depth to prove a property, it is simply too expensive to iterate all the way up
to that depth, from zero. The proofs that find that we cannot yet terminate are
much slower than the successful proofs of termination conditions. So, we should
instead concentrate on removing the need to iterate upwards from zero depth!
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to the assertion that ¬c holds for all reachable states is the sequence of states
(1, 0, 0), (0, 1, 0), (0, 0, 1).

Generally such an error trace is a possible sequence of states starting at the
initial state, in which all but the last state satisfy the required condition. When
we check systems for P -safety, we would like to generate such a trace when the
system turns out not to be P -safe. The question of how to get from a system
description to a transition relation is not considered here. For an introduction
to model checking in general, see reference [6].

2.1 Transition Relations and Paths

In order to be able to formulate the problem more precisely, we introduce no-
tation for various types of paths through the graph of a transition relation. We
write T (x, y) to indicate that x is related to y by the transition relation T . Let us
assume for notational convenience that the transition relation being examined is
always T . For example the 3-bit ring counter presented in the previous section
has a transition relation which relates the current state (a, b, c) to the next state
(a′, b′, c′) such at a′ = c, b′ = a and c′ = b. Now we define what it means for a
sequence of states to be a path through T .

path(s[0..n]) =̂
∧

0≤i<n

T (si, si+1)

Read =̂ as “is defined to be”. s[0..n] is shorthand for the sequence of state
(s0, s1, . . . , sn). We say that a path has length n if it makes n T -transitions.
A path of length zero contains a single point and makes no transitions. To assert
that a property Q holds of every point in a path, we write all .Q(s[0..n]).

Later, we will have reason to restrict the paths in such a repeated composition
to be loop free, so that every element of the path is distinct. We define

loopFree(s[0..n]) =̂ path(s[0..n]) ∧
∧

0≤i<j≤n

si ̸= sj

The concatenation of two loop-free paths is not necessarily loop-free, but the
sub-paths of a loop-free path are themselves loop-free. Thus

loopFree(s[0..(i+j)]) → loopFree(s[0..i]) ∧ loopFree(s[i..(i+j)]) (1)

Sometimes we only want to talk about the ends of paths. So we are happy
to view path, for instance, not only as a predicate on paths but also as a binary
relation on points. We write pathi(s0, si) to indicate that there is a path from s0

to si through i copies of T . This corresponds to quantifying away the internal
points. So, for example

pathn(s0, sn) ↔ ∃s1 . . . sn−1. path(s[0..n]) (2)
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to the assertion that ¬c holds for all reachable states is the sequence of states
(1, 0, 0), (0, 1, 0), (0, 0, 1).

Generally such an error trace is a possible sequence of states starting at the
initial state, in which all but the last state satisfy the required condition. When
we check systems for P -safety, we would like to generate such a trace when the
system turns out not to be P -safe. The question of how to get from a system
description to a transition relation is not considered here. For an introduction
to model checking in general, see reference [6].

2.1 Transition Relations and Paths

In order to be able to formulate the problem more precisely, we introduce no-
tation for various types of paths through the graph of a transition relation. We
write T (x, y) to indicate that x is related to y by the transition relation T . Let us
assume for notational convenience that the transition relation being examined is
always T . For example the 3-bit ring counter presented in the previous section
has a transition relation which relates the current state (a, b, c) to the next state
(a′, b′, c′) such at a′ = c, b′ = a and c′ = b. Now we define what it means for a
sequence of states to be a path through T .

path(s[0..n]) =̂
∧

0≤i<n

T (si, si+1)

Read =̂ as “is defined to be”. s[0..n] is shorthand for the sequence of state
(s0, s1, . . . , sn). We say that a path has length n if it makes n T -transitions.
A path of length zero contains a single point and makes no transitions. To assert
that a property Q holds of every point in a path, we write all .Q(s[0..n]).

Later, we will have reason to restrict the paths in such a repeated composition
to be loop free, so that every element of the path is distinct. We define

loopFree(s[0..n]) =̂ path(s[0..n]) ∧
∧

0≤i<j≤n

si ̸= sj

The concatenation of two loop-free paths is not necessarily loop-free, but the
sub-paths of a loop-free path are themselves loop-free. Thus

loopFree(s[0..(i+j)]) → loopFree(s[0..i]) ∧ loopFree(s[i..(i+j)]) (1)

Sometimes we only want to talk about the ends of paths. So we are happy
to view path, for instance, not only as a predicate on paths but also as a binary
relation on points. We write pathi(s0, si) to indicate that there is a path from s0

to si through i copies of T . This corresponds to quantifying away the internal
points. So, for example

pathn(s0, sn) ↔ ∃s1 . . . sn−1. path(s[0..n]) (2)

• Exclude forward paths that loop back
through initial states.

• Exclude backward paths that loop
back through error states.

• I.e., tighten the termination
conditions.
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4 Improving on this Solution

How can we improve this algorithm, bearing in mind that we will use a SAT-
solver to check the formulas? Well, we can make the two termination conditions
a bit tighter.

Let us think operationally for a moment, and imagine traversing the state
transition graph. In the forward direction, we don’t want to go back into an
initial state as we would then be considering a longer path than necessary. We
could in that case consider only the end part of the path starting from the
second point that is an initial state. The original termination condition was
I(s0) ∧ loopFree(s[0..i]) and now we want to replace it by

I(s0) ∧ all.¬I(s[1..i]) ∧ loopFree(s[0..i])

(In the special case where there is only one initial state, then this change is
unnecessary, as the restriction to proper paths prevents us from returning to the
initial state.) Similarly, in the backwards direction, we are uninterested in paths
that have a non-P -state somewhere in the middle. We only want to consider
paths in which all but the last state satisfy P . The new termination condition
is then

loopFree(s[0..i]) ∧ all .P (s[0..(i−1)]) ∧ ¬P (si)

The resulting algorithm is given as Algorithm 2.

Algorithm 2 An improved algorithm to check if system is P -safe
i=0
while True do

if not Sat(I(s0) ∧ all .¬I(s[1..i]) ∧ loopFree(s[0..i]))
or not Sat((loopFree(s[0..i]) ∧ all .P (s[0..(i−1)]) ∧ ¬P (si)) then

return True
end if
if Sat(I(s0) ∧ path(s[0..i]) ∧ ¬P (si)) then

return Trace c[0..i]

end if
i = i + 1

end while

One of us was sorely tempted to make use of facts proved in earlier iterations
to make further restrictions in both termination conditions, restoring a pleasing
symmetry. But this turns out to be a bad idea in practice because of the need
to rely on previous iterations. When a circuit requires a very high induction
depth to prove a property, it is simply too expensive to iterate all the way up
to that depth, from zero. The proofs that find that we cannot yet terminate are
much slower than the successful proofs of termination conditions. So, we should
instead concentrate on removing the need to iterate upwards from zero depth!
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We need to change the check for bad paths so that it can find bad paths of
length 0 up to i, and not just of length exactly i. It turns out to be convenient
to switch the order of the check for bad paths and the check for termination.

Algorithm 3 An algorithm that need not iterate from 0

i= some constant which can be greater than zero
while True do

if Sat(I(s0) ∧ path(s[0..i]) ∧ ¬all.P (s[0..i])) then
return Trace c[0..i]

end if
if not Sat(I(s0) ∧ all.¬I(s[1..(i+1)]) ∧ loopFree(s[0..(i+1)]))
or not Sat((loopFree(s[0..(i+1)]) ∧ all .P (s[0..i]) ∧ ¬P (si+1)) then

return True
end if
i = i + 1

end while

Now, we are no longer obliged to iterate all the way up from zero, as we have
removed the dependence between iterations. The length of the longest serial
connection of latches (or other delay elements) is usually a lower bound on the
number of iterations needed, so that is a good starting point. The algorithm is
still sound, even if we start at “too high” a value of i. In that case, though,
the error trace returned is no longer guaranteed to be of minimal length. Each
iteration also begins to look more like an inductive proof. Rewriting some of the
subproblems to equivalent ones gives Algorithm 4. Here the call to Taut invokes
a SAT-solver to establish whether its argument expression is always true.

Algorithm 4 A forwards version of the algorithm

i= some constant which can be greater than zero
while True do

if Sat(¬(I(s0) ∧ path(s[0..i])→ all.P (s[0..i]))) then
return Trace c[0..i]

end if
if Taut(¬I(s0)← all.¬I(s[1..(i+1)]) ∧ loopFree(s[0..(i+1)]))
or Taut((loopFree(s[0..(i+1)]) ∧ all .P (s[0..i])→ P (si+1)) then

return True
end if
i = i + 1

end while

Now we can begin to see the inductive shape of the proof. The first if state-
ment is the base case. It checks that P holds in the first i+1 states. The second
disjunct in the condition in the next if statement checks that after i+1 P -states
in a row one is guaranteed to reach another P -state. By induction, we conclude

110 Mary Sheeran, Satnam Singh, and Gunnar St̊almarck

to the assertion that ¬c holds for all reachable states is the sequence of states
(1, 0, 0), (0, 1, 0), (0, 0, 1).

Generally such an error trace is a possible sequence of states starting at the
initial state, in which all but the last state satisfy the required condition. When
we check systems for P -safety, we would like to generate such a trace when the
system turns out not to be P -safe. The question of how to get from a system
description to a transition relation is not considered here. For an introduction
to model checking in general, see reference [6].

2.1 Transition Relations and Paths

In order to be able to formulate the problem more precisely, we introduce no-
tation for various types of paths through the graph of a transition relation. We
write T (x, y) to indicate that x is related to y by the transition relation T . Let us
assume for notational convenience that the transition relation being examined is
always T . For example the 3-bit ring counter presented in the previous section
has a transition relation which relates the current state (a, b, c) to the next state
(a′, b′, c′) such at a′ = c, b′ = a and c′ = b. Now we define what it means for a
sequence of states to be a path through T .

path(s[0..n]) =̂
∧

0≤i<n

T (si, si+1)

Read =̂ as “is defined to be”. s[0..n] is shorthand for the sequence of state
(s0, s1, . . . , sn). We say that a path has length n if it makes n T -transitions.
A path of length zero contains a single point and makes no transitions. To assert
that a property Q holds of every point in a path, we write all .Q(s[0..n]).

Later, we will have reason to restrict the paths in such a repeated composition
to be loop free, so that every element of the path is distinct. We define

loopFree(s[0..n]) =̂ path(s[0..n]) ∧
∧

0≤i<j≤n

si ̸= sj

The concatenation of two loop-free paths is not necessarily loop-free, but the
sub-paths of a loop-free path are themselves loop-free. Thus

loopFree(s[0..(i+j)]) → loopFree(s[0..i]) ∧ loopFree(s[i..(i+j)]) (1)

Sometimes we only want to talk about the ends of paths. So we are happy
to view path, for instance, not only as a predicate on paths but also as a binary
relation on points. We write pathi(s0, si) to indicate that there is a path from s0

to si through i copies of T . This corresponds to quantifying away the internal
points. So, for example

pathn(s0, sn) ↔ ∃s1 . . . sn−1. path(s[0..n]) (2)
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to the assertion that ¬c holds for all reachable states is the sequence of states
(1, 0, 0), (0, 1, 0), (0, 0, 1).

Generally such an error trace is a possible sequence of states starting at the
initial state, in which all but the last state satisfy the required condition. When
we check systems for P -safety, we would like to generate such a trace when the
system turns out not to be P -safe. The question of how to get from a system
description to a transition relation is not considered here. For an introduction
to model checking in general, see reference [6].
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write T (x, y) to indicate that x is related to y by the transition relation T . Let us
assume for notational convenience that the transition relation being examined is
always T . For example the 3-bit ring counter presented in the previous section
has a transition relation which relates the current state (a, b, c) to the next state
(a′, b′, c′) such at a′ = c, b′ = a and c′ = b. Now we define what it means for a
sequence of states to be a path through T .
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A path of length zero contains a single point and makes no transitions. To assert
that a property Q holds of every point in a path, we write all .Q(s[0..n]).

Later, we will have reason to restrict the paths in such a repeated composition
to be loop free, so that every element of the path is distinct. We define

loopFree(s[0..n]) =̂ path(s[0..n]) ∧
∧
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The concatenation of two loop-free paths is not necessarily loop-free, but the
sub-paths of a loop-free path are themselves loop-free. Thus

loopFree(s[0..(i+j)]) → loopFree(s[0..i]) ∧ loopFree(s[i..(i+j)]) (1)

Sometimes we only want to talk about the ends of paths. So we are happy
to view path, for instance, not only as a predicate on paths but also as a binary
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to si through i copies of T . This corresponds to quantifying away the internal
points. So, for example
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• Start an any i

• Swap order of checks (ifs)
• Check proposition along entire path:
∀0≤ j ≤i ,P(sj)

• Extend loop-free check to i + 1
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We need to change the check for bad paths so that it can find bad paths of
length 0 up to i, and not just of length exactly i. It turns out to be convenient
to switch the order of the check for bad paths and the check for termination.

Algorithm 3 An algorithm that need not iterate from 0

i= some constant which can be greater than zero
while True do

if Sat(I(s0) ∧ path(s[0..i]) ∧ ¬all.P (s[0..i])) then
return Trace c[0..i]

end if
if not Sat(I(s0) ∧ all .¬I(s[1..(i+1)]) ∧ loopFree(s[0..(i+1)]))
or not Sat((loopFree(s[0..(i+1)]) ∧ all .P (s[0..i]) ∧ ¬P (si+1)) then

return True
end if
i = i + 1

end while

Now, we are no longer obliged to iterate all the way up from zero, as we have
removed the dependence between iterations. The length of the longest serial
connection of latches (or other delay elements) is usually a lower bound on the
number of iterations needed, so that is a good starting point. The algorithm is
still sound, even if we start at “too high” a value of i. In that case, though,
the error trace returned is no longer guaranteed to be of minimal length. Each
iteration also begins to look more like an inductive proof. Rewriting some of the
subproblems to equivalent ones gives Algorithm 4. Here the call to Taut invokes
a SAT-solver to establish whether its argument expression is always true.

Algorithm 4 A forwards version of the algorithm

i= some constant which can be greater than zero
while True do

if Sat(¬(I(s0) ∧ path(s[0..i])→ all.P (s[0..i]))) then
return Trace c[0..i]

end if
if Taut(¬I(s0)← all .¬I(s[1..(i+1)]) ∧ loopFree(s[0..(i+1)]))
or Taut((loopFree(s[0..(i+1)]) ∧ all .P (s[0..i])→ P (si+1)) then

return True
end if
i = i + 1

end while

Now we can begin to see the inductive shape of the proof. The first if state-
ment is the base case. It checks that P holds in the first i+1 states. The second
disjunct in the condition in the next if statement checks that after i+1 P -states
in a row one is guaranteed to reach another P -state. By induction, we conclude
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to the assertion that ¬c holds for all reachable states is the sequence of states
(1, 0, 0), (0, 1, 0), (0, 0, 1).

Generally such an error trace is a possible sequence of states starting at the
initial state, in which all but the last state satisfy the required condition. When
we check systems for P -safety, we would like to generate such a trace when the
system turns out not to be P -safe. The question of how to get from a system
description to a transition relation is not considered here. For an introduction
to model checking in general, see reference [6].

2.1 Transition Relations and Paths

In order to be able to formulate the problem more precisely, we introduce no-
tation for various types of paths through the graph of a transition relation. We
write T (x, y) to indicate that x is related to y by the transition relation T . Let us
assume for notational convenience that the transition relation being examined is
always T . For example the 3-bit ring counter presented in the previous section
has a transition relation which relates the current state (a, b, c) to the next state
(a′, b′, c′) such at a′ = c, b′ = a and c′ = b. Now we define what it means for a
sequence of states to be a path through T .

path(s[0..n]) =̂
∧

0≤i<n

T (si, si+1)

Read =̂ as “is defined to be”. s[0..n] is shorthand for the sequence of state
(s0, s1, . . . , sn). We say that a path has length n if it makes n T -transitions.
A path of length zero contains a single point and makes no transitions. To assert
that a property Q holds of every point in a path, we write all .Q(s[0..n]).

Later, we will have reason to restrict the paths in such a repeated composition
to be loop free, so that every element of the path is distinct. We define

loopFree(s[0..n]) =̂ path(s[0..n]) ∧
∧

0≤i<j≤n

si ̸= sj

The concatenation of two loop-free paths is not necessarily loop-free, but the
sub-paths of a loop-free path are themselves loop-free. Thus

loopFree(s[0..(i+j)]) → loopFree(s[0..i]) ∧ loopFree(s[i..(i+j)]) (1)

Sometimes we only want to talk about the ends of paths. So we are happy
to view path, for instance, not only as a predicate on paths but also as a binary
relation on points. We write pathi(s0, si) to indicate that there is a path from s0

to si through i copies of T . This corresponds to quantifying away the internal
points. So, for example

pathn(s0, sn) ↔ ∃s1 . . . sn−1. path(s[0..n]) (2)
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(s0, s1, . . . , sn). We say that a path has length n if it makes n T -transitions.
A path of length zero contains a single point and makes no transitions. To assert
that a property Q holds of every point in a path, we write all .Q(s[0..n]).

Later, we will have reason to restrict the paths in such a repeated composition
to be loop free, so that every element of the path is distinct. We define

loopFree(s[0..n]) =̂ path(s[0..n]) ∧
∧

0≤i<j≤n

si ̸= sj

The concatenation of two loop-free paths is not necessarily loop-free, but the
sub-paths of a loop-free path are themselves loop-free. Thus

loopFree(s[0..(i+j)]) → loopFree(s[0..i]) ∧ loopFree(s[i..(i+j)]) (1)

Sometimes we only want to talk about the ends of paths. So we are happy
to view path, for instance, not only as a predicate on paths but also as a binary
relation on points. We write pathi(s0, si) to indicate that there is a path from s0

to si through i copies of T . This corresponds to quantifying away the internal
points. So, for example

pathn(s0, sn) ↔ ∃s1 . . . sn−1. path(s[0..n]) (2)

• Reformulate checks as implications
• The first check is the base case of the

induction.
• The second is the transition case,

and also a check that a loop-free path
of length i exists.
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k-induction and completeness

• The algorithm is complete for finite transition systems.
• Diameter = length of the longest shortest path in transition system.

Checking Safety Properties Using Induction and a SAT-Solver 111

Finally, we define what it means for a path to be a shortest path. In this
case, we are only interested in the ends of paths. A path from a to b is shortest
if it joins a and b and if a and b are not joined by any shorter path. Define

shortest(s[0..n]) =̂ path(s[0..n]) ∧ ¬(
∨

0≤i<n

path i(s0, sn)) (3)

Shortest paths are also loop-free. Note that the definition of shortest in fact con-
tains many existential quantifiers, because we have repeatedly used pathi(s0, sn).
For a finite transition relation T , there exists a largest k for which shortest(s[0..k])
holds for some sequence of states. In other words, there is a longest shortest path
in a finite state transition graph. The length of that path is usually called the di-
ameter of the graph. The diameter of the state transition graph shown in figure 2
is 2.

2.2 Formulating the Problem

Let T be a transition relation on the set of states S. We assume that the domain
of T is the entire set of states S, so that every state has a successor through T .
Let I characterise the initial states, and P the property of states that we want
to check.

We want to show that starting in an initial state and repeatedly applying
the transition relation always leads to a state satisfying P . That is, we want to
prove

∀i. ∀s0 . . . si. (I(s0) ∧ path(s[0..i]) → P (si))

where i ≥ 0 and the si range over states. Or we can work backwards from the
bad states. We want to show that starting in a state violating P and working
backwards through T always leads to a non-initial state, that is

∀i. ∀s0 . . . si. (¬I(s0) ← path(s[0..i]) ∧ ¬P (si))

Both of these turn out to be the same thing as proving

∀i. ∀s0 . . . si. ¬(I(s0) ∧ path(s[0..i]) ∧ ¬P (si))

This gives a more symmetrical view of the problem. In words, we want to show
that there are no paths that start in an initial state and end in a non-P -state.

3 A First Solution

How can we divide our problem up into smaller sub-problems?
A possible first solution is to check that

∀s0 . . . si. ¬(I(s0) ∧ path(s[0..i]) ∧ ¬P (si)) (4)

• Two extra algorithms that only consider shortest paths, but they require
quantifier elimination.
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Model Checking Lustre Programs: Kind 2
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Model checking Lustre programs: Kind 2

• http://kind2-mc.github.io/kind2/ (or use web interface: http://kind.cs.uiowa.edu:8080/app/)
• SMT-based Model Checker for Lustre: BMC, k-induction, IC3, . . .
• Specify properties to check as comments:

−−%PROPERTY ok;
> kind2 toggles.lus
kind2 v1.1.0 -214- g00b3d21d

===============================================================
Analyzing compare

with First top: "compare"
subsystems

| concrete: toggle2 , toggle1

<Success > Property ok is valid by inductive step after 0.164s.

---------------------------------------------------------------
Summary of properties:
---------------------------------------------------------------
ok: valid (at 1)
===============================================================
> kind2 --enable BMC --enable IND --lus_main compare toggles.lus
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Kind 2

• Consider integers (not machine words)
• and infinite-precision rationals (not floating-point)

• Optimize existing techniques for Lustre programs and features of modern SMT
solvers.
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Encoding Lustre in SMT [Hagen and Tinelli (2008): Scaling Up the Formal Verification
of Lustre Programs with SMT-based Techniques ]

• Represent streams as uninterpreted functions N → τ

• Examples:
x = y + z ∀n : N, x(n) = y(n) + z(n)
x = y −> y + pre z ∀n : N, x(n) = ite(n = 0, y(0), y(n) + z(n − 1))

• Let N be a node with stream variables x = ⟨x1, . . . , xp, y1, . . . , yq⟩
(x1, . . . , xp are inputs, and y1, . . . , yq are outputs)

• ∆(n) =





y1(n) = t1[x(n), x(n − 1), . . . , x(n − d)]

...
yq(n) = tq[x(n), x(n − 1), . . . , x(n − d)]

36 / 46

http://homepage.cs.uiowa.edu/~tinelli/papers/HagTin-FMCAD-08.pdf
http://homepage.cs.uiowa.edu/~tinelli/papers/HagTin-FMCAD-08.pdf


Encoding Lustre in SMT [Hagen and Tinelli (2008): Scaling Up the Formal Verification
of Lustre Programs with SMT-based Techniques ]

• Represent streams as uninterpreted functions N → τ

• Examples:
x = y + z ∀n : N, x(n) = y(n) + z(n)
x = y −> y + pre z ∀n : N, x(n) = ite(n = 0, y(0), y(n) + z(n − 1))

• Let N be a node with stream variables x = ⟨x1, . . . , xp, y1, . . . , yq⟩
(x1, . . . , xp are inputs, and y1, . . . , yq are outputs)

• ∆(n) =





y1(n) = t1[x(n), x(n − 1), . . . , x(n − d)]

...
yq(n) = tq[x(n), x(n − 1), . . . , x(n − d)]

36 / 46

http://homepage.cs.uiowa.edu/~tinelli/papers/HagTin-FMCAD-08.pdf
http://homepage.cs.uiowa.edu/~tinelli/papers/HagTin-FMCAD-08.pdf


node thermostat (actual_temp, target_temp, margin: real)
returns (cool, heat: bool);
let

cool = (actual_temp − target_temp) > margin;
heat = (actual_temp − target_temp) < −margin;

tel

node therm_control (actual: real; up, down: bool) returns (heat, cool: bool);
var target, margin: real;
let

margin = 1.5;
target = 70.0 −> if down then (pre target) − 1.0

else if up then (pre target) + 1.0
else pre target;

(cool, heat) = thermostat (actual, target, margin);
tel

∆(n) =





m(n) = 1.5
t(n) = ite(n = 0, 70.0, ite(d(n), t(n − 1)− 1.0, . . .))
c(n) = (a(n)− t(n)) > m(n)

h(n) = ((a(n)− t(n)) < −m(n) 37 / 46



SMT-based k-induction

progress must occur within predefined temporal limits and so it expressible as a
safety property. More precisely, we are interested in properties invariant in the
following sense.

Definition 1 A property P of configurations is invariant (for N) if it holds for
all reachable configurations.

More generally, one can consider properties of paths, not of single config-
urations. We do not do that here, just for simplicity. We will consider only
quantifier-free properties, properties expressible by a quantifier-free formula of
IL. While this an actual restriction, invariant properties checked in common
practice are indeed quantifier-free.

Checking invariant properties of Lustre programs can be done by lifting and
adapting to the logic IL a number of SAT-based model checking techniques.
The main ones used in this work is k-induction.

3 SMT-based k-Induction

Let N be again a single node Lustre program, and let �(n) be the equational
system modeling N in IL. Let P be a property of N ’s configurations expressible
by a quantifier-free formula P (n) of IL over x(n). If t is any integer term of IL,
we denote by �t the formula obtained from �(n) by replacing every occurrence
of n with t. Similarly, for Pt.

3.1 Basic Procedure

Similarly to previous work on k-induction-based verification of transition sys-
tems [21, 5, 11, 10], we can prove that P is invariant for N if we succeed in
proving the validity of the following two statements for some concrete k � 0 :

�0 ^�1 ^ · · · ^�k |=IL P0 ^ P1 ^ · · · ^ Pk (1)

�n ^�n+1 ^ · · · ^�n+(k+1) ^
Pn ^ Pn+1 ^ · · · ^ Pn+k

|=IL Pn+(k+1) (2)

where |=IL denotes logical entailment in IL and n is an uninterpreted integer
constant.

Both entailments can be decided by current SMT solvers for IL. To verify
P then, one asks the solver to prove both cases for some initial choice of k,
retrying with a larger k until either the base case (1) is proven invalid or both
the base case and the induction step (2) are proven valid. In the first situation,
P is not invariant for N , and a counterexample path can be generated from an
IL-model of �0 ^ · · · ^�k ^ ¬(P0 ^ · · · ^ Pk) provided that the SMT solver is
able to return models. In the second situation, P has been shown to hold for
a set of configurations including all reachable configurations, which implies it is
invariant.

This procedure is sound; it will never mistake a variant property for an
invariant one. Standard arguments [12] can be used to show that in general

where k ≥ 0 and n is an uninterpreted integer constant.
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Kind 2 optimizations: path compression

Cn,k is a predicate over state variables that is satisfied iff no two configurations in
a path have the same state and none of them, except possibly the first is the initial
state.

the procedure is not—and cannot be made—complete for general Lustre pro-
grams; specifically, the procedure may keep increasing k indefinitely for some
invariant properties. Nevertheless, a number of improvements are possible to
increase the procedure’s accuracy, the set of invariant properties it can prove.
Further improvements can also be applied to accelerate convergence to an an-
swer. Two main enhancements to the basic k-induction procedure that we have
found e↵ective in practice are described in the next two sections.

The procedure’s e�ciency is also increased by exploiting several features of
SMT solvers based on the lazy approach [4]. Similarly to previous SAT-based k-
induction work [11, e.g.], we take full advantage of the fact that such solvers are
on-line, incremental and backtrackable, return models, compute unsatisfiable
cores, and can remember learned lemmas. Details on this and on other useful
enhancements based on program slicing and other static preprocessing of the
formulas in (1) and (2) can be found in [15].

3.2 Path Compression

A major enhancement of the basic procedure is represented by path compression,
first introduced for k-induction in [5, 21]. In our setting, path compression is
achieved by strengthening the left hand side of (1) and (2) so as to eliminate from
consideration paths that contain repeated configurations or, more generally,
configurations that are equivalent in an appropriate sense. A rather general
notion of path compression for SMT-based k-induction is presented in [10].
Performance considerations usually prevent one from using that notion in its
full generality. We use the one defined below, which seems better suited to the
current capabilities of SMT solvers for IL.

Let us assume for convenience that the argument of each application of the
operator pre in the program N is just a stream variable.3 We call those variables
the state variables of N . Given a configuration v for N , the state of v is the
subtuple of v corresponding to N ’s state variables. A path is compressed if no
two configurations in it have the same state and none of them, except possibly
the first, are initial.

We strengthen the premise of (2) by adding a quantifier-free formula Cn,k

over N ’s state variables that is satisfied by all and only those traces whose
configurations from position n to n + k form a compressed path:

�n ^�n+1 ^ · · · ^�n+(k+1) ^
Pn ^ Pn+1 ^ · · · ^ Pn+k ^ Cn,k

|=IL Pn+(k+1) (2’)

It is immediate that using (2’) instead of (2) preserves the k-induction pro-
cedure’s accuracy. More interestingly, it also preserves its soundness, as proved
in [15].

In addition to facilitating the SMT solver’s task of proving Pn+(k+1), the
restriction to compressed paths also yields a complete k-induction procedure

3We can always reduce ourselves to this case by first applying simple observational-
equivalence-preserving transformations to N .

Allows the addition of a termination condition.

whenever the length of compressed initial paths is (statically) bounded above.
Completeness then is achieved, while preserving soundness, by checking (1) and
(2’) for consecutive values of k starting at 0, and verifying before repeating the
whole loop with a larger k whether there are any compressed initial paths of
length k + 1. In turn, this is done by checking that the entailment

�0 ^ · · · ^�k |=IL ¬C0,k+1 (3)

holds. This is analogous to a loop check in Bounded Model Checking: if the
test succeeds, no counterexamples will be found from k + 1 on—because if they
existed they could be compressed to counterexamples of length k0 < k + 1,
against the fact that (1) held for k0. Hence, one can stop the induction loop
and conclude that P is invariant for N .

3.3 Structural Abstraction

Abstraction is often helpful in scaling up the verification of properties of tran-
sition systems. One tries to prove a safety property for a given system S by
proving it for a conservative abstraction S] of S that is easier to deal with.
This process may be followed by some refinement of the abstraction when the
property does not hold for it. The same principle applies to Lustre programs as
well, with some added advantages provided by Lustre’s declarative nature.

Traditionally, predicate abstraction, a popular abstraction approach in soft-
ware model checking [3], takes an infinite-state system S and a set of abstraction
predicates, and generates a conservative (typically finite-state) abstraction of S.
A main challenge in predicate abstraction is coming up with a good set of ab-
straction predicates.

With Lustre, a predicate completely capturing the behavior of a single node
program N is readly provided by the equational system (predicate) � introduced
in Section 2.1. This suggests a conceptually and practically much simpler yet
e↵ective form of abstraction, which we call structural abstraction following [2],
based on the syntactical structure of N . In our case, it consists simply in
removing equations from �. Conversely, refinement is achieved by adding back
equations from � to the current abstraction �] ✓ �.

At the Lustre level, this is essentially a form of localization abstraction [19]
as it corresponds to turning some non-input streams of N into input ones,
and removing their defining equation from the program. Clearly, the set of
legal traces for the resulting program N ] contains all the legal traces for N .
Therefore, every property invariant for N ] is also invariant for N . A property
P that is invariant for N but not for N ] will have spurious counterexamples,
legal traces for N ] that falsify P but are not legal traces of N .

We integrated the following counterexample-driven refinement strategy into
our k-induction procedure. Instead of instances of the original system �, we
use instances of its current abstraction �], initially consisting of the definitions
of the variables of N that occur in the property to be checked. Whenever the
base step (1) or the induction step (2) produces a spurious counterexample, we
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Kind 2 optimizations: abstraction

• Drop equations defining variables that are not mentioned in the property P .
Sound: those variables are unconstrained (like inputs).

• Add them back one-by-one if checking fails.
Take one (removed) variable appearing in counter-example and recursively add
removed variables from its defining expression (work towards input variables).
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Summary

• Express programs, (safety) properties, and assumptions on the environment in a
single language.

• Model-checking ideal:
» ‘push-button’ verification gives ok or counter-example;
» no need to understand why (i.e., write invariants).

• SAT-based techniques for BMC, complete with k-induction.

• Extend SAT to SMT to handle integers and directly encode Lustre programs.

• Lots of tools for automating induction and interfacing with SMT solvers
» Mikino tutorial [Champion, Oliveira, and Didier (2022):

Mikino: Induction for Dummies ]

» F*
[

Swamy et al. (2016): Dependent
Types and Multi-monadic Effects in
F*

]
, Why3

[
Bobot, Filliâtre, Marché, and Paskevich
(2011): Why3: Sheperd your herd of provers

]
,

Boogie
[

Barnett, Chang, DeLine, Jacobs, and Leino
(2005): Boogie: A Modular Reusable Ver-
ifier for Object-Oriented Programs

]
, . . .

• Just the tip of the iceberg (IC3/PDR, interactive theorem provers, . . . )
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