
Coiterative Synchronous Semantics
Part II: Control Structures

Marc Pouzet

Ecole normale supérieure
Paris

Marc.Pouzet@ens.fr

Course notes, MPRI, Nov. 2024

1 / 24

Marc.Pouzet@ens.fr

Language Extensions

Extension of the language kernel: local variables, last,
default value, by-case definition of streams, mutually

recursive definitions, hierarchical automata

2 / 24

The language kernel we have considered is similar to Lustre.
• It is first-order as Lustre but adds type polymorphism, a reset and an

elementary control-structure to execute a block conditionally.
• All functions are length preserving: there is no when/merge or current

operation.

We consider now an extended language that incorporates programming
construct that exists in Lucid Synchrone, Zélus and Scade 6.

Details in the paper [Colaco et al., 2023] and the implementation of ZRun
at:

https://github.com/marcpouzet/zrun

3 / 24

https://github.com/marcpouzet/zrun

Mutually Recursive Equations

Equations are extended with local definitions:

E ::= p = e | E andE
| local v inE

v ::= x | x init e | x default e
p ::= x | (p, ..., p)

Expressions are extended with a construct to access the last value of a
stream:

e ::= ... | last x

4 / 24

Environment

The construct local x inE declares x to be local in E .

The construct local x init e inE declares x to be local and the last
computed value of x to be initialized with the value of e.

The construct local x default e inE declares x to be local and the
default value of x to be the value of e, at instants where no definition of x
is given.

5 / 24

By case definition of streams

If e is an expression whose type is a sum type t = C1 | ... | Cn,
• match e with Ci1 → E1 | ... | Cin → En activates equation Ej such

that ij is the first index such that e = Cij , with 1 ≤ i1, ..., in ≤ n.

E ::= ... | match e with C → E ... C → E

if c then E1 else E2 is a short-case for
match e with (true → E1) | (false → E2).

6 / 24

Hierarchical Automata

A automaton describes a system with several modes and transitions
between them.
Such an automaton is characterized by:
• A finite set of states.
• In every state, a set of equations with variables that are possibly local to

the state.
• A set (possibly empty) of “weak transitions” (keyword until) which

define the active state for the next reaction.
• A set (possibly empty) of “strong transitions” (keyword unless) which

define the active set of equations for the current reaction.
• Transitions can be by “reset” or by “history”.
Rmq: Contrary to Scade 6 and Lucid Synchrone, weak and strong
transitions cannot be mixed inside an automaton. This choice was
introduced in Zélus.

7 / 24

The syntax is extended in the following way.

E ::= ... | automaton (S(p) → u wt)+

| automaton (S(p) → u st)+

u ::= local v in u | do E

st ::= unless t∗

wt ::= until t∗

t ::= e then S(e, ..., e) | e continue S(e, ..., e)

8 / 24

Examples in Zelus

type t = Incr | Decr | Idle

let f(c) =
local o init 0
do
match c with
| Idle -> (* o keeps its previous value, i.e., o = last o *)

do done
| Incr -> do o = last o + 1 done
| Decr -> do o = last o - 1 done

in o

9 / 24

Examples in Zelus

let node controller(auto, error, input) = output where rec
automaton
| Manual -> do output = input unless auto then Auto
| Auto -> do output = run pid(p, i, d, error)

unless (not auto) then Manual

let node await(a) = go where rec
automaton
| Await -> do go = false unless a then Run
| Go -> do go = true done

let node abro(a, b, r) = go where rec
reset automaton

| Await -> do go = false
unless (run await(a) && run await(b))
then Go

| Go -> do go = true done
every r

10 / 24

Semantics

11 / 24

Environment
The environement is complemented to possibly associate a default or initial
value to a variable.

ρ ::= ρ+ [v/x] | ρ+ [v/default x] | [v/last x] | []

If ρ and ρ′ are two environments, we write ρ by ρ′ the completion of ρ with
default or initial values from ρ′.

This operation is used to define the value of a variable in

ρ by [] = ρ
ρ by (ρ′ + [v/default x]) = (ρ+ [v/x]) by ρ′

ρ by (ρ′ + [v/last x]) = (ρ+ [v/x]) by ρ′

ρ by (ρ′ + [v/x]) = ρ by ρ′

If p is a pattern and v is a value, match v with p builds the environment
by matching v by p such that:

[v |x] = [v/x]
[(v1, v2)|(p1, p2)] = [v1|p1] + [v2|p2] 12 / 24

If E is an equation, ρ is an environment, [[E]]Init
ρ is the initial state and

[[E]]State
ρ is the step function. The semantics of an equation E is:

[[E]]ρ = [[E]]Init
ρ , [[E]]State

ρ

[[p = e]]Init
ρ = [[e]]Init

ρ

[[p = e]]State
ρ = λs.let v , s = [[e]]State

ρ (s) in [v |p], s
[[E1 andE2]]

Init
ρ = ([[E1]]

Init
ρ , [[E2]]

Init
ρ)

[[E1 andE2]]
State
ρ = λ(s1, s2).let ρ1, s1 = [[E1]]

State
ρ (s1) in

let ρ2, s2 = [[E2]]
State
ρ (s2) in

ρ1 + ρ2, (s1, s2)

13 / 24

Notation: If ρ = ρ′ + [v/x], ρ\x = ρ′.

[[local x inE]]Init
ρ = [[E]]Init

ρ

[[local x inE]]State
ρ (s) = let ρ′, s = fix

(
λs, ρ′.[[E]]State

ρ+ρ′ (s)
)
(s) in

ρ′\x , s

[[local x default v inE]]Init
ρ = [[E]]Init

ρ

[[local x init v inE]]Init
ρ = (v , [[E]]Init

ρ)

[[local x default v inE]]State
ρ (s) =

let ρ′, s = fix
(
λρ′, s.[[E]]State

ρ+ρ′+[v/default x]
(s)

)
in

ρ′\x , s

[[local x init v inE]]State
ρ (w , s) =

let ρ′, s = fix
(
λρ′, s.[[E]]State

ρ+ρ′+[w/last x]
(s)

)
in

ρ′\x , (ρ′(x), s)
14 / 24

Semantics for conditionals

The semantics for a conditional must consider the case where a branch
defines a value for a variable x in one branch but not the other branch. We
take the following convention:
• If a variable x is declared with a default value v , then a missing

equation for x in a branch means that x = v in that branch.
• Otherwise, x = last x , that is, x keeps its previous value.
• If x is declared with an initial value for last x , this means that x has a

definition in every branch. Otherwise, there is a potential initialisation
issue which has to be checked by other means.

15 / 24

Semantics for Conditionals

[[if e then E1 else E2]]
Init
ρ = ([[e]]Init

ρ , [[E1]]
Init
ρ , [[E2]]

Init
ρ)

[[if e then E1 else E2]]
State
ρ (s, s1, s2) =

let v , s = [[e]]State
ρ (s) in

if v then let ρ1, s1 = [[E1]]
State
ρ (s1) in

ρ1 by ρ[N\N1], (s, s1, s2)
else let ρ2, s2 = [[E2]]

State
ρ (s2) in

ρ2 by ρ[N\N2], (s, s1, s2)

where N = N1 ∪ N2and N1 = Def (E1)and N2 = Def (E2)

[[match e with (Ci → Ei)i∈[1..n]]]
Init
ρ = ([[e]]Init

ρ , [[E1]]
Init
ρ , ..., [[En]]

Init
ρ)

16 / 24

The Transition Function:

[[match e with (Ci → Ei)i∈[1..n]]]
State
ρ (s, s1, ..., sn) =

let v , s = [[e]]State
ρ (s) inmatch v with(

Ci → let ρi , si = [[Ei]]
State
ρ (si) in

ρi by ρ[N\Ni], (s, s1, ..., sn)

)
i∈[1..n]

where N = ∪i∈[1..n](Ni)and Ni = Def (Ei)

The Last Computed Value:

[[last x]]Init
ρ = ()

[[last x]]State
ρ = λs.ρ(last x), s

17 / 24

Initial state of the transition function

[[automaton (Si (pi) → ui wti)i∈[1..n]]]
Init
ρ =

let (si = [[ui]]
Init
ρ)i∈[1..n] in

let (s ′i = [[wti]]
Init
ρ)i∈[1..n] in

(S0(), false, (s1, . . . , sn), (s ′1, . . . , s
′
n))

[[automaton (Si (pi) → ui sti)i∈[1..n]]]
Init
ρ =

let (si = [[ui]]
Init
ρ)i∈[1..n] in

let (s ′i = [[sti]]
Init
ρ)i∈[1..n] in

(S0(), false, (s1, . . . , sn), (s ′1, . . . , s
′
n))

[[automaton (Si (pi) → ui wti)i∈[1..n]]]
State
ρ (v , r , s, s ′) =

let (ρ, v , r), (s, s ′) = [[(Si (pi) → ui wti)i∈[1..n]]]
v ,r
ρ (s, s ′) in

ρ, (v , r , s, s ′)
[[automaton (Si (pi) → ui sti)i∈[1..n]]]

State
ρ (v , r , s, s ′) =

let (ρ, v , r), (s, s ′) = [[(Si (pi) → ui sti)i∈[1..n]]]
v ,r
ρ (s, s ′) in

ρ, (v , r , s, s ′)

18 / 24

[[(Si (pi) → ui wti)i∈[1..n]]]
v ,r
ρ ((s1, ..., sn), (s

′
1, ..., s

′
n)) =

match v withSi (pi) → let ρ, si = [[ui]]
r
ρ(si) in

let (v , r), s ′i = [[wti]]
v ,r
ρ (s ′i) in

ρ, (v , r , (s1, ..., sn), (s
′
1, ..., s

′
n))

i∈[1..n]

[[(Si (pi) → ui sti)i∈[1..n]]]
v ,r
ρ ((s1, ..., sn), (s

′
1, ..., s

′
n)) =

let (v , r , (s ′1, ..., s
′
n) =

match v with(
Si (pi) → let (v , r), s ′i = [[sti]]

v ,r
ρ (s ′i) in

(v , r , (s ′1, ..., s
′
n))

)
i∈[1..n]

inmatch v with(
Si (pi) → let ρ, si = [[ui]]

r
ρ(si) in

ρ, (v , r , (s1, ..., sn), (s
′
1, ..., s

′
n))

)
i∈[1..n]

19 / 24

[[until t∗]]Init
ρ = [[t∗]]Init

ρ

[[unless t∗]]Init
ρ = [[t∗]]Init

ρ

[[until t∗]]v ,rρ (s) = [[t∗]]v ,rρ (s)
[[unless t∗]]v ,rρ (s) = [[t∗]]v ,rρ (s)

[[ϵ]]Init
ρ = ()

[[e then se t∗]]Init
ρ = ([[e]]Init

ρ , [[se]]Init
ρ)

[[e continue se t∗]]Init
ρ = ([[e]]Init

ρ , [[se]]Init
ρ)

[[ϵ]]v ,rρ (s) = (v , r), s

20 / 24

[[e then se t∗]]v ,rρ ((s1, s2), s3) =
let s1 = if r then [[e]]Init

ρ else s1 in
let s2 = if r then [[se]]Init

ρ else s2 in
let s3 = if r then [[t∗]]Init

ρ else s3 in
let c , s1 = [[e]]State

ρ (s1) in
if c then let v , s2 = [[se]]State

ρ (s2) in (v , true), ((s1, s2), s3)
else let (v , r), s2 = [[t∗]]v ,rρ (s) in (v , r), (s1, s2)

[[e continue se t∗]]v ,rρ ((s1, s2), s3) =
let s1 = if r then [[e]]Init

ρ else s1 in
let s2 = if r then [[se]]Init

ρ else s2 in
let s3 = if r then [[t∗]]Init

ρ else s3 in
let c , s1 = [[e]]State

ρ (s1) in
if c then let v , s2 = [[se]]State

ρ (s2) in (v , false), ((s1, s2), s3)
else let (v , r), s2 = [[t∗]]v ,rρ (s) in (v , r), (s1, s2)

[[S(e1, ..., en)]]
Init
ρ = [[e1]]

Init
ρ , ..., [[en]]

Init
ρ

[[S(e1, ..., en)]]
State
ρ = let (vi , si = [[ei]]

State
ρ (si))i∈[1..n] in

S(v1, ..., vn), (s1, ..., sn)
21 / 24

Interpretation

• The transition function associated with the automaton construct is
executed in an initial state.

• This state if of the form (ps, pr , s, s ′). ps is the current state of the
automaton. It is initialised with the initial state of the automaton. pr is
the reset status. It is initialized with the value false. s is the state to
execute the code of the strong transitions; s ′ is the state to execute the
body of the automaton; s ′ is the state to execute the transitions.

• For an automaton with weak transition, the body is executed, then the
transitions.

• For an automaton with strong transitions, the code of transitions of the
current state are executed. This determines the active state. Then, the
corresponding body is executed.

22 / 24

Exercices/questions

• Defines the semantics of e1 fby e2.
• Based on the previous definitions, write a small interpretor in Haskell or

OCaml for a tiny language.
• Express the transition function and initial state directly as values in

Haskell or OCaml where fix-point computation is replaced by lazy
evaluation.

• Compare the efficiency between the two approaches.

23 / 24

References I

Colaco, J.-L., Mendler, M., Pauget, B., and Pouzet, M. (2023).
A Constructive State-based Semantics and Interpreter for a Synchronous Data-flow Language with State
machines.
In International Conference on Embedded Software (EMSOFT’23), Hamburg, Germany. ACM.

24 / 24

