Coiterative Synchronous Semantics
Part Il: Control Structures

Marc Pouzet

Ecole normale supérieure
Paris

Marc.Pouzet@ens.fr

Course notes, MPRI, Nov. 2024

1/24

Marc.Pouzet@ens.fr

Language Extensions

Extension of the language kernel: local variables, last,
default value, by-case definition of streams, mutually
recursive definitions, hierarchical automata

2/24

The language kernel we have considered is similar to Lustre.

e |t is first-order as Lustre but adds type polymorphism, a reset and an
elementary control-structure to execute a block conditionally.

e All functions are length preserving: there is no when/merge or current
operation.

We consider now an extended language that incorporates programming
construct that exists in Lucid Synchrone, Zélus and Scade 6.

Details in the paper [Colaco et al., 2023] and the implementation of ZRun
at:

https://github.com/marcpouzet/zrun

3/24

https://github.com/marcpouzet/zrun

Mutually Recursive Equations

Equations are extended with local definitions:

E = p=e|EandE

| localvinE
v = x|xinite|xdefaulte
p == x|(py...,p)

Expressions are extended with a construct to access the last value of a
stream:
e = ..|lastx

4/24

Environment

The construct local x in E declares x to be local in E.

The construct local x init e in E declares x to be local and the /ast
computed value of x to be initialized with the value of e.

The construct local xdefault e in E declares x to be local and the

default value of x to be the value of e, at instants where no definition of x

is given.

5/24

By case definition of streams

If e is an expression whose type is a sum type t = C; | ... | G,

® match ewith G — E; | ... | G, — E, activates equation E; such
that Jj is the first index such that e = G, with 1 < iy, .epip < .

E = ..|matchewithC—E..C—E

if ¢ then Ej else E5 is a short-case for
match e with (true — E7) | (false — Ep).

6/24

Hierarchical Automata

A automaton describes a system with several modes and transitions
between them.
Such an automaton is characterized by:

A finite set of states.

® |n every state, a set of equations with variables that are possibly local to
the state.

A set (possibly empty) of “weak transitions” (keyword until) which
define the active state for the next reaction.

A set (possibly empty) of “strong transitions” (keyword unless) which
define the active set of equations for the current reaction.

® Transitions can be by “reset” or by “history".

Rmgq: Contrary to Scade 6 and Lucid Synchrone, weak and strong
transitions cannot be mixed inside an automaton. This choice was
introduced in Zélus.

7/24

The syntax is extended in the following way.

E = ..|automaton (S(p) — u wt)"
| automaton (S(p) — u st)*
u = localvinu|do E
st = unless t*
wt = until t*
t = ethenS(e,...,e) | e continue S(e, ..., €)

8/24

Examples in Zelus

type t = Incr | Decr | Idle

let f(c) =

local o init O
do

match ¢ with

| Idle -> (* o keeps its previous walue, i.e., o = last o *)

do done

| Incr -> do o = last o + 1 done

| Decr -> do o = last o - 1 done
in o

9/24

Examples in Zelus

let node controller(auto, error, input) = output where rec
automaton
| Manual -> do output = input unless auto then Auto
| Auto -> do output = run pid(p, i, d, error)
unless (not auto) then Manual

let node await(a) = go where rec
automaton
| Await -> do go = false unless a then Run
| Go -> do go = true done

let node abro(a, b, r) = go where rec
reset automaton
| Await -> do go = false
unless (run await(a) && run await(b))
then Go
| Go -> do go = true done
every r

10/24

Semantics

11/24

Environment

The environement is complemented to possibly associate a default or initial
value to a variable.

pu=p+[v/x]|p+[v/default x] | [v/last x] | []

If p and p’ are two environments, we write pby p’ the completion of p with
default or initial values from p'.

This operation is used to define the value of a variable in

pby] = p

pby (¢ + [v/default x]) = (p+[v/x])byp’
pby (p' + [v/last x]) = (p+[v/x])by
pby (o' + [v/x]) = pbyp

If pis a pattern and v is a value, match v with p builds the environment
by matching v by p such that:

[vIx] = [v/A]
[(vi, vw)[(p1,p2)] = [vilp] + [va|p2]

12 /24

If E is an equation, p is an environment, [E]”" is the initial state and
[[E]]gtate is the step function. The semantics of an equation E is:

I[E]]p [[E]] Init ﬂE]]State

|[p — e]] Init — |Ie]]g-”‘t

I[P — e]]State = As.letv,s = IIe]]State(s) in [v|p], s
[E1 and E2]]l”’t = (l[EI]]/mt |[E2]]Imt)

[E1 and E2]]5tate = s, 52) let p1,s1 = [[El]]State(1) in

let pp,sp = |[E2]]State() in
P1 + P2, (517 52)

13 /24

Notation: If p = p/ + [v/x], p\x = p’

[local xin E]I* = [E]r"

[Local x in E]Stte(s) = ety s = fix ()\s o IETS?S (s)) (s) in
p'\x; s

[Local xdefault v in E]]L”it = [E]]L”it

[local xinitvin E]];)”"t = (v,[E] lmt)

[Local xdefault vin E]]State()=
fet pf, s = fix <)\’0 s [[E]]p+p /+[v/default x]()) in
p\x,s

[local xinit vin E]]St"te(w s) =

let ', = fix (A, STEDS2EE (1o g (5)) i
p\x; (P (%), 5)

14 /24

Semantics for conditionals

The semantics for a conditional must consider the case where a branch
defines a value for a variable x in one branch but not the other branch. We
take the following convention:

e |f a variable x is declared with a default value v, then a missing
equation for x in a branch means that x = v in that branch.

e Otherwise, x = last x, that is, x keeps its previous value.

® |f x is declared with an initial value for 1ast x, this means that x has a
definition in every branch. Otherwise, there is a potential initialisation
issue which has to be checked by other means.

15 /24

Semantics for Conditionals

lIlf e then El else E2]]Imt IIe]]Imt lIEl]]lmt lIEZ]]lmt

[if e then E; else B]3t(s, 51, 5) =
let v,s = [e]3**(s) in
if v thenlet p1, s = [[El]]sme(sl) in
p1by p[N\N1], (5 51, 52)
else let pa, sp = |IE2]]§tate(52) in
p2 by p[N\N2]7 (S, 51, 52)
where N = N1 U Npand Ny = Def(Ej)and Ny = Def (Ej)

ﬂmatch e with (C — E)le[l n]]]lnlt (l[e]]ln/t IIE]]ln/t . IIEH Inlt)

16 /24

The Transition Function:

[match e with (G — E,‘),'e[lnn]]]gtate(s, S1y.esSp) =
let v,s = [e]3%*(s) inmatch v with
<Ci — let pi, s; = [[E,-]]E“”e(s;) in)
pi by p[N\Ni], (s, s1, .-, Sn) e[t]
where N = U,-e[l”,,](N,-)and N; = Def(E,)

The Last Computed Value:

[1ast x]];)"it =)
[1ast x]3tte = As.p(lastx),s

17 /24

Initial state of the transition function

[automaton (Si(pi) — uj wti);cpr. it

let (si = [uil™)ieqr.m in

let (s = [wti]!")ie1..n) in

(So(), false, (51,.. .Sn), (S1,---,5h))
[automaton (S; (p,) — U Stj)ic. ,,]]]’”’t =

let (Sl - I[uI]]p):e[l .0 in

IEt(IIStI]]p)lG[l..n] in

(50() false, (s1,...,5n),(S1,---,5)))

[automaton (Si(p;) — u; wt/);e[l..n]]],ft"te

p,(v,r,s,s")
[automaton (Si(pi) — u; Sti)fe[l.,n]]],gtate(V rys 5)
let (p,v,r),(s,s') = [(Si(pi) = ui sti)icp..lp" (s,
p7 (V’ r7 s’ S/)

(v,r,s,8') =
let (p,v,r),(s,s") = [(Si(pi) — ui Wt,'),-e[ln,,]]]Z’r(s,s’) in

18 /24

H(SI(P/) — Uj Wti)ie[l..n]]]pr((slv [EX) Sn)a (511 (RXX} 51/1)) =
match v with

Si(pi) = let p,si = [ui]}(si) in
let (v, r), sl = [wt]p " (st)in
)) i€[1..n]

P, (v, r (S1y .y Sn), (S1, oy Sh

[(Si(pi) = ui sti)ieqr.mle " ((s1, -, $n), (515 s 7)) =
let (v, r,(s],....,sp) =
match v with
(5(p,) — let (v,r), sl = [st;],"(s!)in >
(v,r, (51,... 7)) ie[in]
inmatch v with

<5i(Pi) — let p,si = [ui],(si) in >
)) i€[l..n]

p, (v, r (s1,..y5n), (S1, .-y Sh

19 /24

[until ¢*]

[unless t*

[until t*],"
[unless t*],"(s)

|[E]] Init

[e then se t*]
ﬂecontlnueset It

ﬂenp

(s)

]]Inlt

(s)

IIt*]]Inlt

[[t* Inlt
[t°15"(s)
[t°15"(s)

O

(lIe]]Imt Hse]]lmt)
(l[e]]lmt Ilse]lln/t)

(v,r),s

20/24

[e then se t*],"((s1, 2), 53) =
let s; = if r then [[e]] Init ofse s; in
let s = if r then [se],; [init else s in
let s3 = if r then [t*]]’”’t else s3 in
let c,s1 = [[e]]St"’te(sl)ln
if cthenletv,s; = ﬂse]]state(SQ) in (v, true), ((s1,s2), s3)
else let (v, r), s, = [t*],"(s) in(v,r), (s1,52)
[e continue se t*]," ((s1,52),53) =
let sy = if rthen [e] g”'t else sy in
let s = if r then [se],; Init efse s, in
let s3 = if r then [t*]];)”’t else s3 in
let c,s1 = [[e]]St"’te(1) in
if cthenletv,s; = [[se]]srate(s2) in (v, false), ((s1, s2), s3)
else let (v,r), sy = [t*]]p (s)in(v,r),(s1,s2)

I[S(el,--y)]]In/t — Hellllmt IIen]]In/t
[S(e, ..., e)]]State = /et(v,,s, |[e,]]5t"te(s,)),e[1) in

5(V1,-~ Vn) (51;---75n) 21/24

Interpretation

® The transition function associated with the automaton construct is
executed in an initial state.

® This state if of the form (ps, pr,s,s’). ps is the current state of the
automaton. It is initialised with the initial state of the automaton. pr is
the reset status. It is initialized with the value false. s is the state to
execute the code of the strong transitions; s’ is the state to execute the
body of the automaton; s’ is the state to execute the transitions.

® For an automaton with weak transition, the body is executed, then the
transitions.

® For an automaton with strong transitions, the code of transitions of the
current state are executed. This determines the active state. Then, the
corresponding body is executed.

22/24

Exercices/questions

e Defines the semantics of e; fby es.

e Based on the previous definitions, write a small interpretor in Haskell or
OCaml for a tiny language.

e Express the transition function and initial state directly as values in
Haskell or OCaml where fix-point computation is replaced by lazy
evaluation.

e Compare the efficiency between the two approaches.

23/24

References |

@ Colaco, J.-L., Mendler, M., Pauget, B., and Pouzet, M. (2023).

A Constructive State-based Semantics and Interpreter for a Synchronous Data-flow Language with State
machines.

In International Conference on Embedded Software (EMSOFT'23), Hamburg, Germany. ACM.

24 /24

