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Today

• Define a reference semantics for a synchronous data-flow language;

• that is executable and preferably constructive
• i.e., that can be defined as a function in typed lambda calculus with

strong normalisation (where all program terminate), e.g., the
programming language of Coq.

• to get a reference interpreter.
• What for?
• to execute programs independently of a compiler; be an oracle for

compiler testing; to prove compilation steps (e.g., the equivalence of
some source-to-source transformations, the correctness of compile-time
checks).
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The language kernel

We consider the following language kernel.

d ::= let f = e | let f p = e | let node f p = e | d d

p ::= () | x | x , ..., x
e ::= c | x | f (e, ..., e) | run f (e, ..., e)

| pre e | e fby e | (e, ..., e) | ()
| let E in e | let rec E in e
| if e then e else e
| when e then e else e | reset e every e

E ::= p = e | E andE

• e denotes an expression. E is a set of equations.
• e1 fby e2 is a unit delay (synchronous register).
• Two kinds of functions: combinatorial versus sequential.
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Two classical representation for infinite streams

1. An infinite stream is a value of the following (co-inductive) type:

stream(T ) = Cons : T × stream(T ) → stream(T )

with Cons the constructor (injective function).

2. Equivalently, an infinite stream is a function from the natural numbers
to values, that is:

stream(T ) = N → T
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Streams
These two representations can be used to define the semantics of Kahn
process
networks [Kahn, 1974, Kahn and MacQueen, 1977, Paulin-Mohring, 2009].

Also for the language Lustre [Boulmé and Hamon, 2001,
Bourke et al., 2017, Bourke et al., 2020].

The definition/existence of fix-point is complex because chains are of
infinite lengths and every element in the CPO is an infinite object.

A solution is to define a relational semantics and not a functional one.
Then, to prove that under some sufficient condition, the semantics exists
and it unique.

This approach has pros and cons. Pros: very simple; Cons: no interpreter;
sufficient conditions for existence/unicity ad-hoc.

Moreover, a stream semantics is not convenient to establish and prove some
important properties like “this program runs in bounded time and space”.

Can we define a reference semantics that is functional and construtive, e.g.,
expressed in a typed lambda calculus with strong normalization? 6 / 80



Streams as Sequential Processes

Instead, take a more operational interpretation of streams as sequential
processes.

It was used by Paulin to model synchronous circuits [Paulin-Mohring, 1995]
in Coq.

By by Caspi and Pouzet to characterize synchronous stream
functions [Caspi and Pouzet, 1998].

We build on these two to define the semantics of our kernel language.
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Concrete Streams
A concrete stream producing values in the set T is a a pair made of a step
function f : S → T × S and an initial state s : S .

coStream(T , S) = CoF (S → T × S ,S)

Given a concrete stream v = CoF (f , s), nth(v)(n) returns the n-th
element of the corresponding stream process:

nth(CoF (f , s))(0) = let v , s = f s in v
nth(CoF (F , s))(n) = let v , s = f s in nth(CoF (f , s))(n − 1)

Two stream processes CoF (f , s) and CoF (f ′, s ′) are equivalent iff they
compute the same streams, that is,

∀n ∈ N.nth(CoF (f , s))(n) = nth(CoF (f ′, s ′))(n)
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Equivalence

It amounts at finding a binary relation R between states and checking that
it is preserved by the transition function.

Let R such that R(sf , sg ) means that sf and sg are in relation by R . Two
concrete streams CoF (f , sf ) and CoF (g , sg ) are equivalent by R if the
following holds:

1. The relation holds for the initial states: R(sf , sg );
2. It is preserved by the transitions functions:

∀sf , sg , v , s ′f , s ′g .R(sf , sg ) ⇒ ((v , s ′f = f sf ) ⇔ (v , s ′g = g sg ))
∧ R(s ′f , s

′
g )
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Lifting
Two operations: one turn a constant into a constant stream; one apply a
function point-wise.

const(v) = CoF (λs.(v , s), ())
extend(CoF (f , s))(CoF (e, se)) = CoF λs. let vf , s = f s in

let ve , se = e se in
(vf ve), (s, se)

(s, se)

with:

const(.) : T → coStream(T ,Unit)
extend(.)(.) : coStream(T → T ′, S) → coStream(T , S ′)

→ coStream(T ′, S × S ′)

At every step, extend(.)(.) executes one step of its first argument f s to
get a value vf and a new state s; one step of its second argument to get a
value ve and a new state se. The result is that of the application vf (ve)
and the new state (s, se).
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The combination of those two operators can be used to lift a n-ary
combinatorial function. E.g.,:

liftTwo f x1 x2 = extend(extend(const(f ))(x1))(x2)

with:
liftTwo : (T → T ′ → T ′′) → coStream(T ,S)

→ coStream(T ′,S ′)
→ coStream(T ′′,S × S ′)

pair x1 x2 = extend(extend(const(λx , y .(x , y)))(x1))(x2)

with:

pair : (T → T ′ → (T × T ′) → coStream(T , S)
→ coStream(T ′, S ′)
→ coStream(T × T ′,S × S ′)
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Length Preserving Functions
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Synchronous Stream Processes
A stream function should be a value from:

stream(T ) → stream(T ′)

that is:
coStream(T ,S) → coStream(T ′,S ′)

We consider a particular class of stream functions that we call length
preserving functions.

A length preserving function, from inputs in set T to outputs in set T ′ is a
pair, made of a step function and an initial state.

sNode(T ,T ′,S) = CoP(S → T → T ′ × S , S)

That is, it only need the current value of its input in order to compute the
current value of its output.

A value s : coStream(T ,S) can be represented by a value of the set
sNode(Unit,T , S) with Unit the set with a single element ().
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Synchronous Application

A value f = CoP(ft , fs) can be interpreted as a stream function thanks to
the function run(.)(.):

run(CoP(ft , fs))(CoF (x , xs)) = CoF λ(m, s). let v , xs = x xs in
let v ,m = ft mv in
v , (m, xs)

(fs , xs)

with
run(.)(.) : sNode(T ,T ′, S ′) → coStream(T , S)

→ coStream(T ′, S ′ × S)

It enlights the fact that, in order to produce the current value of the
output, it only reads the current value of the input.

Question: give an example of a non length preserving function?
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Feedback (fixpoint)

Consider a stream function:

f : coStream(T ,S) → coStream(T ′,S ′)

and the following feedback loop written in the kernel language:

let rec y = f (y) in y

We would like to define a function fix (.) such that fix (f ) is a fixpoint of f ,
that is, fix (f ) = f (fix (f )).

Suppose that f is length preserving, that is, it exists a step function ft and
initial state s0 such that f x = run(CoP(ft , s0))(x). If vn = nth(v)(n), it
should verify the equation:

vn, sn+1 = ft sn vn
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A lazy functional language like Haskell allows for writting such a recursively
defined value:

feedback(ft) = λs.let rec v , s ′ = ft s v in v , s ′

where v is defined recursively.

cy = CoF (feedback(ft), s) is a concrete stream such that
y = λn.nth(cy)(n) is solution of equation y = f (y).

We have replaced a recursion on time, that is, a stream recursion, by a
recursion on a value produced at every instant.

The abstraction, application and recursion operators can be implemented in
a functional language with call-by-need (e.g, Haskell or OCaml with explicit
+lazy/force).

This gives an interpreter for free!

This idea was introduced in [Caspi and Pouzet, 1998]. I suggest you to
read it and implement it.
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Where are the monsters?
feedback(.) is not a total function; it may diverge for some functions ft .

For example, feedback(ft)()(i)s not defined when ft s x = x + 1, s. It
corresponds to the stream equation written in the kernel language:

let rec x = x + 1 in x

On the contrary, feedback(ft)()(e)xists when ft s x = 1 + s, (x + 2). It
corresponds to the stream equation:

let rec x = 1 + (0 fby (x + 2)) in x

feedback(ft)()(i)s not defined for ft s, (x , y) = (y , x), s which corresponds
to

let rec x , y = y , x in x , y

but not for ft s (x , y) = 1 + s, (y + 2, x + 3) which corresponds to: 1

let rec x , y = 1 + (0 fby (y + 2)), x + 3 in x , y
1It defines the sequences (xn)n∈N and (yn)n∈N with yn = xn + 3 and

xn = 1 + (if n = 0 then 0 else yn−1 + 2).
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Existence of the fixpoint

The function feedback(()(.)()) cannot be defined as a function in Coq, for
example, where all computations must terminate.

We want the semantics to be constructive in the sense that it is definable
as a total function in a typed lambda calculus with strong normalization.

Given an initial state s : S , feedback(ft) should be a solution of:

X (s) = let v , s ′ = X (s) in ft s v
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Existence of the fixpoint

We study now the conditions for feedback(.) to be a total function.

To study its existence, we make a step back to denotational
semantics [Reynolds, 1998], making all functions total by completing the
sets of value with a special value ⊥.

⊥ represents an undefined value or divergence.
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Flat Domain
Given a set T , the flat domain D = T⊥ = T + {⊥}, with ⊥ a minimal
element and ≤ the flat order, i.e., ∀x ∈ T .⊥ ≤ x .

If f : T → T ′ is a (total) function, f⊥(⊥) = ⊥ and f⊥(x) = f (x) otherwise.

(D,⊥,≤) is a complete partial order (CPO). It is lifted to:

Products:
(v1, v2) ≤ (v ′1, v

′
2) iff (v1 ≤ v ′1) ∧ (v2 ≤ v ′2)

with (⊥,⊥) for the bottom element.

Functions:
f ≤ g iff ∀x .f (x) ≤ g(x)

with λx .⊥ for the bottom element.

Stream processes:

CoF (f , sf ) ≤ CoF (g , sg ) iff f ≤ g ∧ sf ≤ sg

with CoF (λs.(⊥, s),⊥) the bottom element, that is, the process that stuck.
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Bounded Fixpoint:

If D1 an D2 are two CPOs. f : D1 → D2 is monotonous iff
∀x , y ∈ D1.x ≤D1 y ⇒ f (x) ≤D2 f (y).

f is continuous iff f (lub(X )) = lub(f (X )) where lub(X ) is the least upper
bound of a set X .

By the Kleene theorem, a continuous function f : D → D has a minimal
fix-point (fix (f ) = limn→∞(f n(⊥)).

Yet, this does not lead to a computational definition because D may
contain chains (comparable elements) of unbounded length.

When D is of bounded heigth, the fixpoint can be reached in a finite
number of steps.

We exploit this simple observation for the computation of the fix-point
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Bounded Fixpoint

The unbounded iteration for the fixpoint is replaced by a bounded one.

feedback(0)(f )(s) = ⊥, s
feedback(n)(f )(s) = let v , s ′ = feedback(n − 1)(f )(s) in f s v

with:

feedback(.) : N → (S → T⊥ → T⊥ × S) → S → coStream(T⊥,S)

or the equivalent form feedback(f )(s)(n)(⊥) with:

feedback(0)(f )(s)(⊥) = ⊥, s
feedback(n)(f )(s)(⊥) = let v ′, s ′ = f s v in

feedback(n − 1)(f )(s)(v ′)
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or one that stops as soon as the fixpoint is reached. < is the strict order
(x < y iff (x ≤ y) ∧ (x ̸= y)):

feedback(0)(f )(<)(s)(⊥) = ⊥, s
feedback(n)(f )(<)(s)(v) = let v , s ′ = f s v in

if v < v ′ then feedback(n − 1)(f )(<)(s)(v)
else v , s ′

with:

feedback(.) : N → (S → T⊥ → T⊥ × S) → (T⊥ → T⊥ → bool)
→ S → coStream(T⊥,S)

23 / 80



How many iterations are sufficient to get a fixpoint? It depends on T .
Several cases can happen:
1. Either the first element v ′ of the pair ft v s depends on v , that is,

v ′ = ⊥ whenever v = ⊥. The program contains a causality loop.
In a lazy functional language, this would corresponds to an unbounded
recursion when computing the value of v where v , s ′ = ft s v .

2. or it does not, that is, ⊥ < v ′.

In the first case, only 1 + 1 iterations are sufficient to get the fixpoint
(possibly equal to ⊥).

∥int∥ = 0
∥T⊥∥ = 1 + ∥T∥
∥T1 × T2∥ = ∥T1∥+ ∥T2∥

Then, it is enough to do ∥T∥+ 1 iterations for a fixpoint on a value of
type T . This idea of bounded iteration was used in [Edward and Lee, 2003]
to give a denotational semantics for a synchronous block diagram language.
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Splitting the step function
An alternative and equivalent representation for a concrete stream is to
split the step function f : S → T × V in two:
• an output function fo : S → T ;
• an update function fu : S → S

Consequently a length preserving stream function f can be represented as a
triple (s, fo , fu) where:
• s is the initial state;
• an output function fo : S → T → T ;
• an update function fu : S → T → S

The feedback of f is now:
• an initial state s;
• output function (λs.fix (fo s)) : S → T ;
• update function (λs.let v = fix (fo s) in fu s v) : S → S
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Semantics of the kernel language. [Colaco et al., 2023]
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Semantics
We define an untyped semantics. Let V

V = Z+ B+ F+ V ∗

where Z ranges for relative numbers, B for Booleans, F for floatting points
and V ∗ =

∑
i∈N V n where V 0 = {∅} and V n = V × V n−1. The set of

states S is:
S = V⊥ + S∗

A local environment ρ is a function which associate a value to a variable. It
is an element of (env (T⊥))⊥ where:

env (T ) = names → T

A global environment γ is an element of (genv (Global(T⊥,S⊥), S))⊥. It
associate a global value to a name:

genv (T , S) = names → Global(T ,S)

where:

Global(T ,S) = T + (T ∗ → T ∗) + sNode(T ∗,T ∗,S)
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The semantics of an expression e is:

[[e]]ρ = CoF (f , s) where f = [[e]]State
ρ and s = [[e]]Init

ρ

We use two auxiliary functions. If e is an expression and ρ an environment
which associates a value to a variable name:
• [[e]]Init

ρ is the initial state of the transition function associated to e;
• [[e]]State

ρ is the step function.
To simplify the notation, we keep γ implicit in the definitions.
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[[pre e]]Init
ρ = (nil , [[e]]Init

ρ )
[[pre e]]State

ρ = λ(m, s).m, [[e]]State
ρ (s)

[[x ]]Init
ρ = ()

[[x ]]State
ρ = λs.(ρ(x), s)

[[c]]Init
ρ = ()

[[c]]State
ρ = λs.(c , s)

[[(e1, ..., e2)]]
Init
ρ = ([[e1]]

Init
ρ , ..., [[e2]]

Init
ρ )

[[(e1, ..., e2)]]
State
ρ = λs. let (vi , si = [[ei ]]

State
ρ (si ))i∈[1..n] in

(v1, ..., vn), (s1, ..., sn)

For this first semantics, we take nil = ⊥.

A more precise account of errors can be taken by completing the set of
values, e.g.:

V + {⊥}+ {nil}+ {TypError}+ {DynError}

⊥ is the minimal element, all other being incomparable.
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[[run f (e1, ..., en)]]Init
ρ = ρ(f )I , [[e1]]

Init
ρ , ..., [[en]]

Init
ρ

[[run f (e1, ..., en)]]State
ρ = λ(m, s).let (vi , si = [[ei ]]

State
ρ (si ))i∈[1..n] in

let r ,m′ = ρ(f )S m (v1, ..., vn) in
r , (m′, s)

[[f (e1, ..., en)]]
Init
ρ = [[e1]]

Init
ρ , ..., [[en]]

Init
ρ

[[f (e1, ..., en)]]
State
ρ = λs. let (vi , si = [[ei ]]

State
ρ (si ))i∈[1..n] in

f (v1, ..., vn), s

[[let node f (x1, ..., xn) = e]]Init
γ = γ + [CoP(p, s)/f ]

where s = [[e]]Init
ρ and p = λs, (v1, ..., vn).[[e]]

State
ρ+[v1/x1,...,vn/xn]

(s)
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Control structure
The conditional “if/then/else” always executes its three arguments. The
“when/then/else” only execute one branch:

[[if e then e1 else e2]]
Init
ρ = ([[e]]Init

ρ , [[e1]]
Init
ρ , [[e2]]

Init
ρ )

[[if e then e1 else e2]]
State
ρ = λ(s, s1, s2).let v , s = [[e]]State

ρ (s) in
let v1, s1 = [[e1]]

State
ρ (s1) in

let v2, s2 = [[e2]]
State
ρ (s2) in

(if v then v1 else v2,
(s, s1, s2))

[[when e then e1 else e2]]
Init
ρ = ([[e]]Init

ρ , [[e1]]
Init
ρ , [[e2]]

Init
ρ )

[[when e then e1 else e2]]
State
ρ = λ(s, s1, s2).

let v , s = [[e]]State
ρ (s) in

if v then let v1, s1 = [[e1]]
State
ρ (s1) in

v1, (s, s1, s2)
else let v2, s2 = [[e2]]

State
ρ (s2) in

v2, (s, s1, s2)
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Modular Reset
Reset a computation when a boolean condition is true.

[[reset e1 every e2]]
Init
ρ = ([[e1]]

Init
ρ , [[e1]]

Init
ρ , [[e2]]

Init
ρ )

[[reset e1 every e2]]
State
ρ = λ(si , s1, s2).

let v2, s2 = [[e2]]
State
ρ (s2) in

let v1, s1 = [[e1]]
State
ρ (if v2 then si else s1) in

v1, (si , s1, s2)

This definition duplicates the initial state. An alternative is:

[[reset e1 every e2]]
Init
ρ = ([[e1]]

Init
ρ , [[e2]]

Init
ρ )

[[reset e1 every e2]]
State
ρ = λ(s1, s2).

let v2, s2 = [[e2]]
State
ρ (s2) in

let s1 = if v2 then [[e1]]Init
ρ else s1 in

let v1, s1 = [[e1]]
State
ρ (s1) in

v1, (s1, s2)
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Equations and Local Definitions

If p is a pattern and v is a value, [v |p] builds the environment by matching
v by p such that:

[v |x ] = [v/x ]
[(v1, v2)|(p1, p2)] = [v1|p1] + [v2|p2]
[v |p] = ⊥ otherwise

The last case is to make the definition total. + is the union of two
environments provided their domain do not intersect (otherwise, it returns
⊥).

If E is an equation, ρ is an environment, [[E ]]Init
ρ is the initial state and

[[E ]]State
ρ is the step function. The semantics of an equation eq is:

[[E ]]ρ = [[E ]]Init
ρ , [[E ]]State

ρ
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[[p = e]]Init
ρ = [[e]]Init

ρ

[[p = e]]State
ρ = λs.let v , s = [[e]]State

ρ (s) in [v |p], s

[[E1 andE2]]
Init
ρ = ([[E1]]

Init
ρ , [[E2]]

Init
ρ )

[[E1 andE2]]
State
ρ = λ(s1, s2).let ρ1, s1 = [[E1]]

State
ρ (s1) in

let ρ2, s2 = [[E2]]
State
ρ (s2) in

ρ1 + ρ2, (s1, s2)

[[rec E ]]Init
ρ = [[E ]]Init

ρ

[[rec E ]]State
ρ = λs.fix (∥E∥+ 1) (λs, ρ′.[[E ]]State

ρ+ρ′ (s))(s)
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[[let E in e ′]]Init
ρ = [[E ]]Init

ρ , [[e ′]]Init
ρ+[⊥/x]

[[let E in e ′]]State
ρ = λ(s, s ′).let ρ′, s = [[E ]]State

ρ (s) in
let v ′, s ′ = [[e ′]]State

ρ+ρ′ (s
′) in

v ′, (s, s ′)

[[let rec E in e ′]]Init
ρ = [[e]]Init

ρ , [[e ′]]Init
ρ+[⊥/x]

[[let rec E in e ′]]State
ρ = λ(s, s ′).let ρ′, s = [[rec E ]]State

ρ (s) in
let v ′, s ′ = [[e ′]]State

ρ+ρ′ (s
′) in

v ′, (s, s ′)
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Fix-point for mutually recursive streams

Consider:

let node sincos(x) = (sin, cos) where
rec sin = int(0.0, cos)
and cos = int(1.0, -. sin)

The fix-point construction used in the kernel language is able to deal with
mutually recursive definitions, encoding them as:

sincos = (int(0.0, snd sincos), int(1.0, -. fst sincos)
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Encoding mutually recursive streams
A set of mutually recursive streams:

e ::= let rec x = e and ... and x = e in e

is interpreted as the definition of a single recursive definition such that:
let rec x1 = e1 and ... and xn = en in e means:

let rec x = (e1, (e2, (..., en)))[e
′
1/x1, ..., e

′
n/xn] in

with:
e ′1 = fst(x)
e ′2 = fst(snd(x))
...
e ′n = sndn−1(x)

That is, if the n variables x1, ..., xn are streams whose outputs are of type
coStream(Ti ,Si ) with i ∈ [1..n], fix (.) is applied to a function of type
S → T1 × ...× Tn → (T1 × ...× Tn)× S with S = (S1 × (...× Sn)). All
streams progress synchronously.
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Where are the bottom values?
From the semantics we have given, some equations have the constant
bottom stream as minimal fix-point. E.g.:

let node f(x) = o where rec o = o

Indeed:

fix
(
λs, v .[[o]]State

ρ+[v/o](s)
)
= fix (λs, v .(v , s)) = λs, v .(⊥, s)

An other example is:

let node f(z) = (x, y) where rec x = y and y = x

Indeed:

fix
(
λs, v .[[(snd(v), fst(v))]]State

ρ+[v/x](s)
)

= fix (λs, v .(snd(v), fst(v)), s)

= λs.(⊥,⊥), s

We are interesting in finding sufficient conditions to ensure that the output
is not bottom or, even more, that it does not contain bottom.

38 / 80



Def-use chains

In term of def-use chains of variables based on the occurrence of variables
in expression, there is a cyclic dependence in both examples:

x depends on y which depends on x

The following definition does not define a bottom stream (provided that
inputs are non bottom streams). 2

let node euler_forward(h, x0, xprime) = x where
rec x = x0 fby (x +. h *. xprime)

2We suppose that all imported functions are total.
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Break the dependence cycles with a unit delay

The graphical argument we used — the dependence graph between
variables is cyclic or not — can be adapted to take the unit delay into
account.

Say that prec(e) does not depend on variable in e; hence, a variable x
defined by an equation x = e only depends on the variables in e which do
not appear on the right of a unit delay.

The dependence relation between variables in the euler_backward is
acyclic.
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Is that enough?

The dependence graph is a rough abstraction of the dependence relation. It
does not take into account the actual values of expressions. It over
approximate instantaneous dependences.

Some sets of equations whose associate dependence graph is cyclic do
define non bottom streams. E.g.,:

let node f(y) = x
where

rec x = if false then x else 0

The conditional only needs the current value of its first (or second)
argument with the condition is true (or false).

This program is rejected by Lustre compilers.
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Mutually recursive definitions
The notion of dependence is subtle. All function below are such that if x is
non bottom, outputs z and t are non bottom.

let node good1(x) = (z, t) where
rec z = t and t = 0 fby z

let node good2(x) = (z, t) where
rec (z, t) = (t, 0 fby z)

let node good3(x) = (fst r, snd r) where
rec r = (snd r, 0 fby (fst r))

let node pair(r) = (snd r, 0 fby (fst r))

let node good4(x) = r where
rec r = pair(r)

Do we want to accept all of them? What is the criterium to accept them
or not? The next lesson will be devoted to the precise definition of what is
a dependence and its exploitation to generate sequential code. 42 / 80



The following is a classical example that is “constructively causal” but is
also rejected by Lustre compilers.

let node mux(c, x, y) = present c then x else y

let node constructive(c, x) = y
where rec

rec x1 = mux(c, x, y2)
and x2 = mux(c, y1, x)
and y1 = f(x1)
and y2 = g(x2)
and y = mux(c, y2, y1)

If we look at the def-use chains of variables, there is a cycle in the
dependence graph:
• x1 depends on c, x and y2;
• x2 depends on c, y1 and x;
• y1 depends on x1; y2 depends on x2;
• y depends on c, y2 and y1.
By transitivity, y2 depends on y2 and y1 depends on y1.
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Yet, if c and x are non bottom streams, the fix-point that defines
(x1,x2,y1,y2,y) is a non bottom stream.

It can be proved to be equivalent to:

let node constructive(c, x) = y
where rec

rec y = mux(c, g(f(x)), f(g(x)))

Question: can you prove it? How?

In term of an implementation into a circuit, the cyclic version has a single
occurrence of f and g whereas the second has two copies of each.

A cyclic combinatorial circuit can be exponentially smaller than its non
cyclic counterpart. 3

The causality analysis ensures that an expression does not produce bottom
and can be translated into an expression with no fix-point.

3See notes for references.
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The following example (written in Zelus) also defines a node whose output
is non bottom:

let node composition(c1, c2, y) = (x, z, t, r)
where rec

present c1 then
do x = y + 1 and z = t + 1 done

else
do x = 1 and z = 2 done

and
present c2 then

do t = x + 1 and r = z + 2 done
else

do t = 1 and r = 2 done

that can be interpreted as the following program in the language kernel:

let node composition(c1, c2, y) = (x, z, t, r)
where rec
(x, z) = present c1 then (y + 1, t + 1) else (1, 2)

and
(t, r) = present c2 then (x + 1, z + 2) else (1, 2)
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Is it causal?

Supposing the c1, c2 and y are not bottom values, taking e.g., true for c1
and c2, starting with x0 = ⊥, z0 = ⊥, t0 = ⊥ and r0 = ⊥, the fixpoint is
the limit of the sequence:

xn = y + 1 ∧ zn = tn−1 + 1 ∧ tn = xn−1 + 1 ∧ rn = zn−1 + 2

and is obtained after 4 iterations.

This program is causal: if inputs are non bottom values, all outputs are non
bottom values and this is the case for all computations of it.

46 / 80



The inpact of static code generation
Nonetheless, if we want to generate statically scheduled sequential code,
the control structure must be duplicated:
(1) test c1 to compute x; (2) test c2 to compute t; (3) test (again) c1 to
compute z; (4) test (again) c2 to compute r

let node composition(c1, c2, y) = (x, z, t, r)
where rec

present c1 then do x = y + 1 done else do x = 1 done
and
present c2 then do t = x + 1 done else do t = 1 done

and
present c1 then do z = t + 1 done else do z = 2 done

and
present c2 then do r = z + 2 done else do r = 2 done

Accepting program with interwined dependences has an impact on code
size and efficiency.

It is possible to overconstraint the causality analysis and control structures
to be atomic (outputs all depend on all inputs).
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Removing Recursion

Yet, the semantics we have given computes a step function which must be
evaluated lazilly. Is this really a progress w.r.t the co-inductive semantics?

Some recursive equations can be translated into non recursive definitions.

Consider the stream equation:

let rec nat = 0 fby (nat + 1) in nat

Can we get rid of recursion in this definition? Surely we can, since it can
be compiled into a finite state machine corresponding to the co-iterative
process:

nat = Co(λs.(s, s + 1), 0)
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First: let us unfold the semantics

Consider the recursive equation:

rec nat = (0 fby nat) + 1

Let us try to compute the solution of this equation manually by unfolding
the definition of the semantics.

Let x = CoF (f , s) where f is a transition function of type f : S → X × S
and s : S the initial state, we write: x .step for f and x .init for x : init for s.

The bottom stream, to start with, is:

x0 = CoF (λs.(⊥, s),⊥)
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The equation that defines nat can be rewritten as
let rec nat = f (nat) in nat with let node f x = (0 fby x) + 1.

The semantics of f is:

f = CoP(fs , s0) = CoP(λs, x .(s + 1, x), 0)

Solving nat = f (nat) amount at finding a stream X such that:

X (s) = let v , s ′ = X (s) in fs s v
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Let us proceed iteratively by unfolding the definition of the semantics. We
have:

x1.step = λs.let v , s ′ = x0.step s in fs s v
= λs.fs s ⊥
= λs.s + 1,⊥

x1.init = 0

x2.step = λs.let v , s ′ = x1.step s in fs s v
= λs.let v = s + 1 in fs s v
= λs.let v = s + 1 in s + 1, v
= λs.s + 1, s + 1

x2.init = 0

x3.step = λs.let v , s ′ = x2.step s in fs s v
= λs.let v = s + 1 in fs s v
= λs.let v = s + 1 in s + 1, v
= λs.s + 1, s + 1

x3.init = 0

We have reached the fix-point CoF (λs.(s + 1, s + 1), 0) in three steps.
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Syntactically Guarded Stream Equations

We give now a simple, syntactic condition under which the semantics of
mutually recursive stream equations does not need any fix point.

Consider a node f : coStream(T ,S) → coStream(T ,S ′) whose semantics
is (ft , st) with ft : S

′ → T → T ′ × S ′ and st : S
′.

The semantics of an equation y = f (y) is: 4

[[let rec y = f (y) in y ]]Init
ρ = st

[[let rec y = f (y) in y ]]State
ρ = λs.let rec v , s ′ = ft v s in v , s ′

The recursion on time (a stream recursion) is transformed into a recursion
on the instant.

4We reason upto bisimulation, that is, independently on the actual representation of
the internal state.
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Two cases can happen:
• We deal with a 0-order expression (a stream expression or product of

0-order expressions), then:
• Either the first element of the pair ft v s, that is v , s ′ depends on v and we

have an unbounded recursion — the program contains a causality loop —;
• or it does not and the evaluation succeeds.

• the expression is an higher order one and its boundedness depends on
semantic conditions to be checked in each case.

For example, the following equation:

let rec nat = nat + 1 in nat

is not causal since x depends instantaneously on itself and its evaluation
have an unbounded recursion.
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When the program does not contain any causality loop, it means that
indeed the recursive evaluation of the pair v , s ′ can be split into two non
recursive ones.

This case appears, for example, when every stream recursion appears on
the right of a unit delay pre. A synchronous compiler takes advantage of
this in order to produce non recursive code like the co-iterative nat
expression given above.

Yet, if we are interested in defining an interpreter only, the co-iterative
semantics can be used for that purpose.
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For example, consider the equation y = f (v fby x). Its semantics is:

[[let rec x = f (v fby x) in x ]]Init
ρ = (v , st)

[[let rec x = f (v fby x) in x ]]State
ρ (m, s) = let rec v , s ′ = ft m s in

v , (v , s ′)

But this time, the recursion is no more necessary, that is:

[[let rec x = f (v fby x) in x ]]State
ρ (m, s) = let v , s ′ = ft m s in v , (v , s ′)
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Putting Mutually Recursive Equation in Normal Form

Consider:

let rec sin = 0.0 fby (sin +. h *. cos)
and cos = 1.0 -> (0.0 fby cos) +. h *. sin in
sin, cos

Rewrite it into:

let rec sin = 0.0 fby sin_next
and pre_cos = 0.0 fby cos
and sin_next = sin +. h *. cos
and cos = 1.0 -> pre_cos +. h *. sin

sin, cos

All the unit delay are un-nested; their argument is a variable.
Gather equations on delays on the top; statically schedule other equations
according to read/write variables.
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The transition function is:

λ(m1,m2,m3).let sin = m1 in
let pre_cos = m2 in
let sin_next = sin + .h ∗ .cos in
let cos = if m3 then 1.0 else pre_cos + .h ∗ .sin in
(sin, cos), (sin_next, cos, false)

and initial state:
(0.0, 0.0, true)

There is no more recursion in the transition function.
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The Semantics for Normalised Equations

Consider a set of mutually recursive equations such that it can be put
under the following form:

let rec x1 = v1 fby nx1
and ...
xn = vn fby nxn
and p1 = e1
and ...
and pk = ek

in e

where
∀i , j .(i < j) ⇒ Var(ei ) ∩ Var(pj) = ∅

where Var(p) and Var(e) are the set of variable names appearing in p and
e.
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Its transition function is:

λ(x1, ..., xn, s1, ..., sk , s).let p1, s1 = [[e1]]
State
ρ (s1) in

let ... in
let pk , sk = [[ek ]]

State
ρ (sk) in

let r , s = [[e]]State
ρ (s) in

r , (nx1, ..., nxn, s1, ..., sk , s)

with initial state:
(v1, ..., vn, s1, ..., sk , s)

if [[ei ]]Init
ρ = si and [[e]]Init

ρ = s.

When a set of mutually recursive streams can be put in the above form, its
transition function does not need a fix-point. It can be statically scheduled
into a function that can be evaluated eagerly.

This removing of the recursion is the basis of generation of statically
scheduled code done by a synchronous language compiler.

Question: prove that the new semantics for the let/rec operation is
correct, that is, it produces the same stream as the original semantics.
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Non length-preserving stream functions
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Non length-preserving stream functions

The stream functions we have considered are length preserving: to produce
one output, their step function needs only one input. This is what allowed
us to implement a stream function with type:

coStream(T ,S) → coStream(T ′,S ′)

by a value of type:
(S ′ → T → T ′ × S ′)× S ′

Hence, it is not possible to represent non length preserving functions like
the function even which removes one element over two of the input
stream. In Haskell, with : the operation on lists: 5

even (x : (x’ : xs)) = x : (even xs)

The destructor function of the input hd,tl has to be applied twice in the
transition function of the result.

5See notes of the previous class.
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This would also be the case of filter-like functions like when defined as:

(x : xs) when (true : cs) = x : xs when cs
(x : xs) when (false : cs) = xs when cs
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Complementing Streams with Absent Values

An obvious idea to overcome the problem and turn these functions into
synchronous ones would be to consider the functor F :

FT (S) = S + (T × S)

with the two value constructors (injective functions):

S : S → FT S and P : T × S → FT S

where P stands for “present” and S for “silent”. The set of streams is now:

clockedStream(T , S) = (S → (S + (T × S))× S

Given t, s : clockedStream(T ,S), the process (t s) can be silent, that is, it
only updates its state without outputing values and return the next state or
output a value and returns the next state.
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Then a transition function for even could be:

even (CoF (t, s)) = CoF λ(e, s). match t s with
| S(sx) → S(e, sx)
| P(vx , sx) →if e then P(vx , (false, sx))

else S(true, sx)
(true, sx)

where e is a boolean state condition telling whether the current step is an
even one or not.

However, the question is now: does this functor still define streams? An
answer to this question is as follows:
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The co-algebra of clocked streams

Theorem (Co-algebra of clocked streams)
The terminal co-algebra associated to the functor FT (S) = S + (T × S)

• as ground set the set of streams of values in value(T ) = 1 + T , the set
T complemented with an empty value with 1 = {()} with the value
constructors: E : value(T ) and V : T → value(T ):

stream(T ) = (value(T ))N

• and as destructor,

dest(v : vs) = match v with E → S(vs) | V(v ′) → P(v ′, vs)
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Proof:

Given tx : S → F T S a transition function, let us denote by next(., .) the
iterated next state function next(.):

next(s) = match tx s with S(s ′) → s ′ | P(v , s ′) → s ′

next(n, s) = if n = 0 then next(s)
else next(n − 1, next(s))

Any function run which makes the following diagram commute:

S −−−run −→ (value(T ))N

| |
tx dest
↓ ↓

FT S −−−F id run −→ FT (value(T ))N
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yields:

dest(run(s)) = match run(s)(0) with
| E → S(λn.run(s)(n + 1))
| V(v) → P(v , λn.(run(s)(n + 1)))

= match t s with
| S(s ′) → S(run(s ′))
| P(v , s ′) → P(v , run(s ′))

that is:

run(s)(0) = match t s with S(s ′) → E | P(v , s ′) → V(v)

run(s)(n + 1) = match t s with
| S(s ′) → run(s ′)(n)
| P(v , s ′) → run(s ′)(n)

= run(next(s))n

This uniquely defines run as:

run(s)(n) = match t (next(n, s)) with S(s ′) → E | P(v , s ′) → V(v)
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Definition (Clocks)
The clock of a clocked stream s : (1 + T )N is the boolean stream:

clock(s) = λn. match s(n) with
| E → false
| V(v) → true

Note that clocks are just ordinary streams, i.e. without E elements.
Yet this result shows also that we can as well assimilate clocked streams
with ordinary streams with “empty” values 6. This allows us to easily reuse
the result for length preserving streams developed previously. We thus will
adopt this point of view in the sequel, by taking:

value(T ) = E+ V(T )
clockedStream(T , S) = coStream(value(T ),S)

6This quite obvious result has been used and rediscovered many times since the
pioneering work of F. Boussinot [Boussinot, 1992]. Yet, the above proof may bring some
insight about the need for “empty” values.
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New Definitions for Primitives
We can now revisit our previously defined operators as well as create new
ones. When defining binary operators, like extend we now find the
following problem: what to do if one argument yields a value while the
other one does not?

At least three possibilities are open:
1) store the value in a state variable implementing a FIFO queue, until it

matches an incoming value of the other argument,
2) generate an execution error,
3) or statically reject this situation.

As an extension of what is done for Lustre [Halbwachs et al., 1991] we
choose the third solution and write:
(CoF (tf , if )) ((CoF (te, ie))) =

CoF (λ(sf , se). match (tf sf ), (te se) with
| (E, sf ′), (E, se ′) → E, (sf ′, se ′)
| (V(vf ), sf ′), (V(ve), se ′) → V(vf ve), (sf ′, se ′),

(if , ie))
69 / 80



Under the condition that the clocks of the two arguments are the same.
Otherwise, the program should raise an execution error (a pattern-matching
failure).

The purpose of the clock calculus is to statically ensure that such errors do
not occur.

When expressions have passed the analysis, clock information is used to
remove the dynamic test of presence/absence.
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Primitive Functions

When: The co-iterative definition for the filter is as follows, assuming its
two arguments share the same clock:

(CoF (tx , ix)) when (CoF (tc , ic)) =
CoF (λ(sx , sc). match (tx sx), (tc sc) with

| (E, sx ′), (E, sc ′) → E, (sx ′, sc ′)
| (V(vx), sx ′), (V(true), sc ′) → V(vx), (sx ′, sc ′)
| (V(vx), sx ′), (V(false), sc ′) → E, (sx ′, sc ′),

(ix , ic))

The clock of the result depends on the boolean condition.
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If the clock of the two arguments is (CoF (tcl , scl)), the clock of the result
is CoF (tcl , scl) on CoF (tc , sc):

CoF (tcl , icl) on CoF (tc , ic) =
CoF λ(scl , sc). match tcl scl with

| false, scl ′ → let E, sc ′ = tc sc in
false, (scl ′, sc ′)

| true, scl ′ → let V(vc), sc ′ = tc sc in
vc , (scl ′, sc ′)

(icl , ic))

Note that, according to the definition, a clock is an ordinary stream which
has no “silent” move.
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Merge The converse of when whose abstract definition is:

merge (false : cs) xs (y : ys) = y : merge cs xs ys
merge (true : cs) (x : xs) ys = x : merge cs xs ys

and whose co-iterative one is:

merge (CoF (tc , ic)) (CoF (tx , ix)) (CoF (ty , iy)) =
CoF λ(sc , sx , sy).

match (tc sc), (tx sx), (ty sy) with
| (E, sc ′), (E, sx ′), (E, sy ′) → E, (sc ′, sx ′, sy ′)
| (V(true), sc ′), (V(vx), sx ′), (E, sy ′) → V(vx), (sc ′, sx ′, sy ′)
| (V(false), sc ′), (E, sx ′), (V(vy), sy ′) → V(vy), (sc ′, sx ′, sy ′)

(ic , ix , iy)

This definition does not raise any execution error if the true branch
produces a value when the false branch produces no value and the
condition is true, and conversely, the true branch does not produce any
value when the false branch produces its value and the condition is false.
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Constant This operator is polymorphic in the sense that it may produce or
not depending on its environment. For this reason, const should have an
extra argument giving its clock. We write it:

ClConst(v)(CoF (cl , icl)) = CoF (λscl . match cl scl with
| true, s → (V(v), s)
| false, s → (E, s),

icl)

The clock plays an essential role since this is the way to give a deterministic
operational semantics to the generator const. The clock calculus can infer
a clock for the constant so that it does not have to be explicitly passed.
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The unit delay We can wonder whether the previous definition for pre
extends naturally for programs which do not preserve length. Indeed, we
could simply write:

pre(v)((CoF (t, i))) = CoF λ(pre, s). match t s with
| E, s ′ → E, (pre, s ′)
| V(v), s ′ → V(pre), (v , s ′)

(v , i)

Unfortunately, this definition cannot be combined with recursion in a
satisfactory way. Running the co-iterative process:

fix (λx .pre(0)(x))

implementing the stream equation:

x = pre(0)(x)

leads to a deadlock (corresponding to a “stack overflow” in Haskell).
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This is due to the fact that the input of pre is connected to its output and
pre emits a value iff its input emits a value. This deadlock can be
eliminated by adding an extra argument — an input clock — to pre
controlling the production. The new definition becomes:

pre(v)(CoF (cl , icl))(CoF (t, i)) =
CoF λ(pre, s, scl). match cl scl with

| false, scl → E, let E, s ′ = t s in (pre, s ′, scl)
| true, scl → V(pre), let V(v), s ′ = t s in (v , s ′, scl)

(v , i , icl)

This time, programs are deadlock free if recursions appear on the right of a
pre . The use of this new pre instead of the previous one is satisfactory if
it is possible to built a system inferring the clock. This will be considered
later.
The definitions for application, abstraction and recursion remain
unchanged.
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To conclude
This co-iterative semantics interprets a stream as a process made of an
initial state and a step function.

A length preserving function only need its current input to produce its
current output.

A fix-point on time is replaced by a fix-point on the instant.

If equations are syntactically guarded by unit delays, no fix point is needed.

In this case, the step function can be expressed in a simple language with
let/in construct and a call-by-value semantics.

Non length preserving functions are treated by complementing
instantaneous values with a explicit “absent”.

Non synchrony means that an input is expected to be present but is
present (or the converse).

Program must fullfil static type constraint (clock calculus).
77 / 80



• It extends to a richer language (see extra notes).
• Can/how this semantics can replace a relational one for proving some

compiler steps?
• Can it be adapted to define a set-based simulation of a program that

computes a flowpipe instead of a single trace?
• Can it be used to do compiler validation of some compilation steps?
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