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Abstract

The language Lustre was introduced to design and implement real-time control software,
modeling it as a continuous function over treams of datas. A set of equations written in Lustre
defines a restricted class of Kahn process networks which can be executed synchronously: all
computations can be dated according to a global time scale so that when a value is produced,
it is immediately consumed. This restriction is obtained by associating to every stream a
clock that defines when a value is present or not according to a global time scale. A dedicated
type system — the clock calculus — computes a clock for every expression and checks that
its actual clock equals its expected clock and thus that intermediate buffers are not needed.

In these course notes,1 we present a static and dynamic semantics of synchronous Kahn
networks. We consider a first-order functional language of streams reminiscent of Lustre and
Lucid Synchrone to which we give several denotational semantics. We show that without
imposing restrictions, we get two kinds of bad behavior: some networks may deadlock and
some cannot execute without unbounded FIFOs. We introduce a clocked semantics and show
that the clocking rules correspond to a type system with dependent types. We then extend
the language kernel with an explicit buffer operator to model communication through a
FIFO. The clock calculus is extended with a subtyping rule that is applied where the buffer
is used and whose size is inferred. To reduce the complexity of the resolution, we present an
abstraction of clocks.

1 Introduction

Synchronous languages [3] were introduced about thirty years ago by the concurrent work on
three academic languages: Signal [5], Esterel [7] and Lustre [20]. These domain specific languages
targeted real-time control software, allowing to write modular and mathematically precise system
specifications, to simulate, test and verify them, and to automatically translate them into embed-
ded executable code. The environment SCADE,2 based on a synchronous language [15], is now
used routinely to develop various critical control software: in planes (fly-by-wire, engine control,
emergency braking), trains (on-board control, interlocking), etc.

All these languages are founded on the synchronous model of time [6] where a system is modeled
ideally, with communications and computations assumed to be instantaneous, with formal checks
of important safety properties like determinism, deadlock freedom, execution in bounded time
and space, and with a posteriori verification that a given implementation in software or hardware
executes quickly enough.

Lustre is a data-flow language: it manipulates infinite streams of data that represent the
evolution of an input, an output or a local variable, streams are defined by writing mutually

∗The title refers to the article [10] by Paul Caspi.
1The present notes are based on one of the lectures on synchronous programming given by the author at the

Marktoberdorf summer school in August 2018. It includes previous works by Louis Mandel, Florence Plateau and
the author.

2http://www.esterel-technologies.com/products/scade-suite
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Figure 1: A Kahn Process Network with three processes

recursive equations over them, and a system is a function from streams to streams. Time is simply
the index in a stream. After passing static checks, a stream function is compiled to sequential
code (typically C). It can also serve as a functional model of a device or software for the purposes
of formal verification ([19] summarises the different uses of Lustre).

A set of stream equations written in Lustre can be interpreted as a Kahn Process Network [21]:
stream functions are the nodes, every stream defines a communication channel and a set of equa-
tions corresponds to a process network. Lustre is Kahnian because a stream function cannot
dynamically test whether a signal is present or absent. The consequence is that all execution
strategies for a network are guaranteed to compute the same set of streams. Nonetheless, as Lus-
tre targets real-time applications, a function written in Lustre defines a particular subset for which
the compiler ensures that it does not deadlock and can be compiled into statically scheduled code
running in bounded time and space. This is achieved by imposing a set of static constraints to
ensure that the network can be executed synchronously, that is, every computation in the network
must be dated according to a global time scale so that when a value is produced, it can be im-
mediately consumed. Hence, no intermediate buffers are needed. This synchronous interpretation
is obtained by associating to every stream a clock that defines when a value is present or not
according to a global time scale. Clocks may or may not be periodic and may depend on input
values. A dedicated type system — the clock calculus — computes a clock for every expression
and checks that it matches the expected clock.

In this text, we describe a static and dynamic semantics for Lustre from the perspective of
Kahn process networks. We consider a simple first-order language of streams reminiscent of Lustre
and Lucid Synchrone to which we give several denotational semantics. We show that the naive
encoding of streams as lazy data structures gives rise to strange non-causal behaviors, highlighting
the need for the prefix order introduced by Kahn. We then give a Kahn semantics to the language
kernel. To account for the synchronous restriction, we introduce a clocked semantics and show that
the clocking rules that a program must fulfill correspond to typing constraints in a type system
with dependent types. We derive a simpler type system which reduces the equality of clocks to
name equality. We then extend the language kernel with an explicit buffer operator to model
communications via FIFOs. The clock calculus is extended with a subtyping rule that is applied
where the buffer is used and whose size is inferred. To reduce the complexity of the resolution, we
present an abstraction of clocks.

1.1 Kahn Process Networks

In the 1970s, Kahn studied the semantics of networks of deterministic parallel processes commu-
nicating asynchronously through FIFO channels. One may think, e.g., of a set of Unix processes
communicating via pipes or of threads running asynchronously and synchronising through bounded
FIFO queues. Kahn showed that in the case where elementary processes are deterministic, with
blocking read on an empty channel and non-blocking writes, the overall network is deterministic
— the result does not depend on the relative order in which nodes are activated — and delay in-
sensitive — computation and communication times do not change the network semantics [21, 22].
In short, the model is one of the very few that conciliates parallelism and determinism. In a Kahn

2



network, a basic process can be programmed in a sequential language with two primitives: push

to write a value to a channel and pop to read a value. Figure 1 depicts a network with three
processes.3 There is a single reader and writer per channel. A process may only read a single
channel at a time and, once committed to reading, it must wait until a value is available. It may
not test the channel for emptiness or impose a timeout; that is, it cannot test whether a value is
present or absent. One cannot write, for instance:4

if is empty a then ... or if not (is empty a) or not (is empty b) then ...

But, it is possible to conditionally read or write according to a value that has been read from a
channel, e.g.:

let v = pop c in let w = if cond a then pop a else pop b in ...

or

let v = pop a in if cond v then push a (f v)

Figure 2 gives a few examples of elementary primitives: lift2 f x y z applies a function f

pointwise to its two input channels x and y, and produces an output on channel z; the unit delay
fby x y z concatenates the first element of its input channel x to the elements of its second input
channel y and writes on channel z; merge c x y z conditionally reads an input channel x or y

according to the value on channel c and writes on channel z; split c y z conditionally writes
on channel y or z according to the value on channel c.

Kahn networks with bounded buffers can be implemented by adding a back pressure mechanism
in order to avoid writes into a full buffer. Nonetheless, this may introduce artificial blocking if the
size of buffers are underestimated. The size of buffers can be increased dynamically [28] but this
solution cannot be used for real-time applications where overall memory use must be guaranteed
at compile time.

Whether or not a Kahn network is deadlock free or can be executed in bounded memory is
undecidable in general [9]. Synchronous Data Flow (or SDF) [24] and its variants (Cyclo Static
Data Flow [27] among others) are restricted classes of networks where every node consumes and
produces a fixed number of tokens at every step. The size of buffers can be computed at compile
time and a periodic static schedule can be generated. This make SDF suitable for modeling and
programming video intensive applications with periodic behavior [32].

To prove that determinism is preserved by composition, Kahn took an approach based on
denotational semantics using the following interpretation of channels and processes. A commu-
nication channel that carries values of type T is interpreted as a (possibly infinite) sequence of
values of type T that describe the history of values on the channel. Because a node has its own
internal memory, it is interpreted as a function from the histories of its inputs to the histories of
its outputs, that is, a stream function. We now recall a few basic properties of sequences, cpos
and continuous functions.

1.1.1 Sequences and Continuous Functions over Sequences

Consider a set T of values. Tn denotes the set of sequences of length n made by concatenating
elements from T . The sequence v.s comprises head v and tail s. The empty sequence is written ε.
The set of finite sequences is written T ? = ∪∞n=0T

n. The set of finite and infinite sequences of
elements of T is written T∞ = T ∗ ∪ Tω. We write ≤ for the prefix order over sequences; s ≤ s′

means that s is a prefix of s′. For any s, s′, ε ≤ s and if s ≤ s′, then v.s ≤ v.s′. A chain in T∞ is
any non-empty subset that is totally ordered by ≤. (T∞,≤, ε) is a complete partial order (CPO):
ε is its minimum element for the partial order ≤ and every chain has a least upper bound. In the
case of boolean sequences, where 0 stands for false and 1 for true, ε ≤ 0 ≤ 0.1 ≤ 0.1.0 ≤ 0.1.0.0
but not 1.1 ≤ 1.0.

3Figure 16 in Appendix A gives an implementation with threads.
4The concrete syntax is that of OCaml.
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(* OCaml interface of a FIFO buffer *)

type 'a buff = { push: 'a -> unit; pop: unit -> 'a }

val buffer : unit -> 'a buff

(* pointwise application *)

let lift2 f x y z =

while true do

let v = x.pop () in

let w = y.pop () in

z.push (f v w)

done

z = lift2 (f)(x, y) f
z

x

y

(* unit delay *)

let fby x y z =

let memo = ref (x.pop ()) in

while true do

z.push !memo;

memo := y.pop ()

done

z = x fby y z

x

y

(* deterministic merge *)

let merge c x y z =

while true do

let v = c.pop () in

let w = if v then x.pop ()

else y.pop () in

z.push w

end

z = merge c x y

z

1

x

0

y

c

(* filter/split a stream *)

let split c x y z =

while true do

let cond = c.pop () in

let v = x.pop () in

if cond then y.push v

else z.push v

done

y, z = split x c

x

1

y

0

z

c

(* sampling *)

let when c x z =

let y = buffer () in

split c x z y

z = x when c

x

1

z

c

Figure 2: A set of data-flow primitives

x x0 x1 x2 x3 x4 x5
y y0 y1 y2 y3 y4 y5

x+ y x0 + y0 x1 + y1 x2 + y2 x3 + y3 x4 + y4 x5 + y5
x fby y x0 y0 y1 y2 y3 y4

h 1 0 1 0 1 0

x′ = x when h x0 x2 x4
z z0 z1 z2

merge h x′ z x0 z0 x2 z1 x4 z2

Figure 3: A set of primitives interpreted as stream functions
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In the sequel, we shall sometimes write a sequence in a more traditional way. A sequence
u = (ui)i∈I , finite or not, is a set indexed by an initial segment I of N. I ⊆ N is an initial segment
when ∀n,m ∈ N. (n ∈ I) ∧ (m ≤ n)⇒ (m ∈ I).

For any subset A of N, there exists a strictly increasing, one-to-one function φA between an
initial segment IA of N and A. An operation that builds a sub-sequence from a sequence by picking
a subset of indices or merges two sequences to build another one corresponds to defining particular
φ functions. This picking does not have to be periodic, as in (u2i)i∈N that is made by taking one
element of u every two. It can depend on the value of streams. We shall see concrete examples in
the next section.

General properties of a CPO If D1 = (A1,≤1,⊥1) and D2 = (A2,≤2,⊥2) are two cpos, with
respective minimum elements ⊥1 and ⊥2, a function f : D1 → D2 is monotonic if and only if for
any x, x′ ∈ D1, x ≤1 x

′ ⇒ f(x) ≤2 f(x′). It is continuous if and only if for any chain C in D1,
f(sup(C)) = sup({f(d), d ∈ C}). Any continuous function f : D → D on a CPO D = (A,≤,⊥)
has a least fix point fix (f) = limn→∞(fn(⊥)), with f0(x) = x and fn+1(x) = f(fn(x)) (Kleene
theorem).

If A1 and A2 are CPOs, then (D1 ×D2,≤′,⊥′) is also a CPO, with D1 ×D2 being the set of
pairs (x1, x2) comprising an element x1 from D1 and an element x2 from D2, taking ⊥′ = (⊥1,⊥2)
as the minimum element and ≤′ such that (x1, x2) ≤′ (y1, y2)⇔ (x1 ≤1 y1) ∧ (x2 ≤2 y2). The set
D = (D1 7→ D2,≤′,⊥′) where D1 7→ D2 is the set of total continuous functions from D1 to D2,
with f ≤′ g ⇔ ∀s ∈ D1. f(s) ≤2 g(s) and ⊥′ = (λs.⊥2) is the minimum element, is also a CPO.

1.1.2 Application to Kahn Process Networks

Following the formulation in [21], a network is represented by a set of equations built according
to the two following rules:

• If x1, ..., xk are the input channels of the network fed with the sequences i1, ..., ik, add the
equations

{x1 = i1, . . . , xn = in}

• Interpret every node f with n input channels x1, ..., xn and p output channels x′1, ..., x
′
p as p

continuous functions over sequences and add the equations{
y′1 = f1(x1, ..., xn), . . . , y′p = fp(x1, ..., xn)

}
The example in Figure 1 is represented by the following set of equations, if p is the stream function
associated to process P ; 〈q1, q2〉 is associated to Q; m to M :

{y = p(x, r), z = q1(y), t = q2(y), r = m(t)}

Elementary nodes in the network are interpreted as continuous functions over sequences.
Monotonicity corresponds to the intuition that as a process reads more inputs, it can only produce
more outputs: it cannot contradict what has already been produced.

Since every node in a Kahn process network is a continuous function, a set of equations:

{x1 = f1(x1, ..., xn), ..., xn = fn(x1, ..., xn)}

has a minimal solution which is x∞1 , ..., x
∞
n = limj→∞(xj1, ..., x

j
n) where for all 1 ≤ i ≤ n, x0i = ε

and xj+1
i = fi(x

j
1, ..., x

j
n).

The primitives given in Figure 2 5 can be interpreted as stream functions as illustrated in
Figure 3. An important consequence of the interpretation of elementary nodes as continuous
functions is that any composition, where some variable may be made local, still defines a continuous
function. For the network in Figure 1, if the channels y, r and t are considered to be local, the
network can be interpreted as a continuous function f of the input x, such that the output z
satisfies z = f(x).

5The operator when can also be programmed directly by removing the else branch of a split. This operator is
itself a composition of two when.
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d ::= | let node f pat = e node definition
| let clock c = ce clock definition
| d d sequence of definitions

pat ::= x | (pat,...,pat) pattern

e ::= | i constant flow
| x flow variable
| (e,...,e) tuple
| geti(e) i-th component of a tuple
| e op e imported operator
| if e then e else e mux operator
| f e node application
| e where rec eqs local definitions
| e fby e initialized delay
| e when ce | e whenot ce sampling
| merge ce e e merging
| buffer e buffering

eqs ::= pat= e | eqs and eqs mutually recursive equations

ce ::= e clock expressions

Figure 4: Language kernel.

2 A Language of Streams and Stream Functions

We consider a first-order synchronous dataflow language reminiscent of Lustre and Lucid Syn-
chrone but extended with an explicit buffering operator. The syntax is given in Figure 4. A
program (d) is a sequence of definitions of stream functions called nodes and definitions of clock
names (c). The inputs of a node are described by a pattern (pat) and its body by an expres-
sion (e). The operators are the basic ones of Lucid Synchrone and their intuitive semantics is
detailed later. The expression e1 op e2 denotes the pointwise application of a binary operator;
if e1 then e2 else e3 is the pointwise application of a conditional; f e is the application of a node
f to an expression e; e1 fby e2 conses the head of e1 to e2 and thus corresponds to an initial-
ized delay; e when ce samples a stream e according to a boolean expression ce (whenot samples
when the expression is 0). We call this boolean expression a clock. The operator merge ce e1 e2
merges two streams according to a clock. Finally buffer e buffers e. We write e where rec eqs for
an expression defined by a collection of mutually recursive equations (eqs). The basic data-flow
primitives of this language kernel are those of Figure 2. For the language of clocks ce, we take any
boolean expression. We shall later consider particular cases of this language.

2.1 Denotational Semantics

We first give a denotational semantics based on possibly infinite sequences, following the inter-
pretation given by Kahn. In this setting, the operator buffer is simply the identity function.
We then define a synchronous semantics which characterises the evolution of the streams and the
contents of the buffers.

Notation for the semantics. We write ρ for an environment and ρ(x) for the value associated
to the variable x in the environment ρ. The environment ρ+[x← v] is the environment ρ to which
has been added the binding of x to v. The environment ρ + ρ′ is the environment that contains
the associations of the environment ρ and the associations of the environment ρ′ provided that no
single variable appears in both ρ and ρ′.
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op](v1.s1, v2.s2) = v.op](s1, s2) where v = op(v1, v2)
fby](v1.s1, s2) = v1.s2
when](v1.s1, 1.w) = v1.when

](s1, w)
when](v1.s1, 0.w) = when](s1, w)
whenot](v1.s1, 0.w) = v1.whenot

](s1, w)
whenot](v1.s1, 1.w) = whenot](s1, w)
merge](1.w, v1.s1, s2) = v1.merge

](w, s1, s2)
merge](0.w, s1, v2.s2) = v2.merge

](w, s1, s2)

Figure 5: Then Kahn semantics for the primitives

The interpretation of an expression e in an environment ρ is written [[e]]ρ. This notation will
also be used for the denotation of equations and declarations.

Finally, when presenting the interpretation of the primitives as stream functions, we shall use
the notation ] as an exponent to distinguish syntactic constructs from their interpretations.

2.1.1 A Kahn semantics

Every node declaration let node f pat = e is interpreted as a continuous function over sequences.
The Kahn semantics for the primitives of the language is given in Figure 5.

• op applies an imported operator pointwise on scalar values;

• fby is the unit delay; it appends the head of its first argument onto the value of its second
argument;6

• when is the sampling operator: it passes its input to its output only if the condition is true
(value 1) and otherwise does not produce any output;

• whenot is the complementary sampling operator which passes its input to its output only if
the second input is false (value 0) and otherwise does not produce any output;

• merge merges two input streams according to a boolean condition. It passes its first input
to its output when the boolean condition is true and the second input otherwise.

These definitions must be completed to deal with the empty sequence ε. All operators return ε if
one of their arguments is the empty sequence (ε is absorbing), except for the operator fby which
is such that fby](v.s, ε) = v.ε. We also have to deal with possible type errors. Several solutions
can be taken: (1) complete all the definitions by returning ε in case of a type error; (2) add a
special TypeError value to the set of streams and transmit this value; (3) define the semantics for
well-typed expressions only. For the sake of simplicity, we apply the first solution.

All the primitives are monotonic and continuous [10].
The semantics of expressions of the language is defined in Figure 6. The definition uses the

interpretations of the primitives given previously. We write [[e]]ρ to denote the value of e in the
environment ρ. We ensure that the language is first order by using two distinct namespaces: one
that maps local variables to (stream) values or tuples of values, and a second that maps global
variables to functions. The environment ρ is thus a pair (ρs, ρn) where ρs associates a value to
every free variable of e and ρn associates a value to every function. Letting Vars denote the set of
variable names and Varn the set of node names, we have

Stream(T ) = T∞ sequences
V = Stream(T1) + · · ·+ Stream(Tn) + V × · · · × V values for local variables
ρs : Vars → V local environment
ρn : Varn → (V → V ) global environment

6It corresponds to the A operator of [21]. The fby operator was introduced in Lucid [2] and used in [10].
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[[i]]ρ = i.[[i]]ρ

[[x]]ρ = ρs(x)

[[(e1,...,en)]]ρ = ([[e1]]ρ, ..., [[en]]ρ)

[[geti(e)]]ρ = si if [[e]]ρ = (s1, ..., sn)

[[e1 op e2]]ρ = op]([[e1]]ρ, [[e2]]ρ)

[[f e]]ρ = ρn(f) [[e]]ρ

[[e where rec eqs]]ρ = [[e]]ρ+ρ′ where ρ′ = ([[eqs]]ρ, ∅)
[[e1 fby e2]]ρ = fby]([[e1]]ρ, [[e2]]ρ)

[[e when ce]]ρ = when]([[e]]ρ, [[ce]]
ce

ρ )

[[e whenot ce]]ρ = whenot]([[e]]ρ, [[ce]]
ce

ρ )

[[merge ce e1 e2]]ρ = merge]([[ce]]
ce

ρ , [[e1]]ρ, [[e2]]ρ)

[[e]]
ce

ρ = [[e]]ρ

[[buffer e]]ρ = [[e]]ρ

Figure 6: The Kahn semantics for the language expressions

If ρ = (ρs, ρn) and ρ′ = (ρ′s, ρ
′
n) then ρ+ ρ′ = (ρs + ρ′s, ρn + ρ′n). We write ρ+ [z ← v] to add the

association z ← v in the appropriate part of the pair ρ.
The interpretation of e where rec eqs uses the interpretation of the set of equations eqs as

the supplementary environment. If eqs is x1 = e1 and · · · and xk = ek, its interpretation is an
environment that associates every variable xi with the interpretation of ei:

[[x1 = e1 and · · · and xk = ek]]ρ = [x1 ← x1
], . . . , xk ← xk

]]
where x1

], . . . , xk
] = fix

(
λs1, . . . , sk. [[e1]]ρ+[x1←s1,...,xk←sk], . . . , [[ek]]ρ+[x1←s1,...,xk←sk]

)
The interpretation of the operators when, whenot and merge uses the interpretation of their

clock argument ce. In this basic language, we consider that a clock expression can be any boolean
expression, hence [[ce]]ρ = [[e]]ρ. In the second part of these notes, we introduce a dedicated
sublanguage of boolean expressions.

The operation buffer copies its input into its output, possibly delaying it. Since the Kahn
semantics is unable to express timing, the interpretation here is simply the identity function.

The semantics of a program is defined as follows:

[[let node f x = e]]ρ = ρ+ [f ← (λs. [[e]]ρ+[x←s])]

[[let clock c = ce]]ρ = ρ+ [c← [[ce]]
ce

ρ ]

[[d1 d2]]ρ = [[d2]]ρ+ρ1 where ρ1 = [[d1]]ρ

The evaluation of a program d having f as the main node in an environment where the input
stream is I is defined by:

ρn(f) I where (ρs, ρn) = [[d]](∅,∅)

2.1.2 Reformulating the Kahn semantics using sequences

The semantics can also be formulated using the notation (ui)i∈N with N ⊆ N being an initial
section of N, that is, a sequence. If A ⊆ N, there exists a one-to-one function φA between an
initial section IA and A.

8



lift0
](v) = (u)n∈N with ∀n ∈ N. un = v

lift1
](op)((un)n∈N ) = (vn)n∈N with ∀n ∈ N. vn = op(un)

lift2
](op)((un)n∈N , (vn)n∈N ) = (wn)n∈N with ∀n ∈ N.wn = op(un, vn)

fby]((un)n∈N , (vn)n∈N ) = (wn)n∈N with w0 = u0

and ∀n ∈ N\{0}. wn = vn−1

If (hn)n∈N is a boolean sequence, define Nh and Nh as a partition of N :

Nh = {k ∈ N | hk = 1} and Nh = {k ∈ N | hk = 0}

The filter operator when and complement merge are defined in the following way:

when]((un)n∈N , (hn)n∈N ) = (vn)n∈INh
with vn = uφNh

(n)

merge]((hn)n∈N , (un)n∈INh
, (vn)n∈IN

h
) = (wn)n∈N with wn = un if n ∈ Nh

and wn = vn if n ∈ Nh

A set of equations over sequences becomes a set of mutually recursive functions, from natural
numbers to values. Figure 7 gives a possible implementation in OCaml.

We use the functions index and cumul which are, respectively, the index and cumulative
functions, written I and O in [25]. If h is a boolean stream, O(h)(n) is the sum of 1s up to index
n; I(h)(n) is the index of the nth 1 in h.

O(h)(n) =

n∑
i=0

h(i) I(h)(n) = min ({k ∈ N | Oh(k) = n})

This implementation, however, only addresses sequences that are total over N. Trying to compute
index(x when (constant false)) for any n results in a stack overflow. This is no surprise since
the domain of when can be finite. We shall see later how this problem can be addressed.

Moreover, even in the case where all sequences are infinite, the implementation is extremely
inefficient. While it is useful for reasoning about programs, it is not a practical implementation.
Indeed, the value of a sequence x at instant n is computed recursively, possibly back to index 0,
with no reuse of previously computed values. It is possible, though, to program the initial Kahn
semantics almost directly using infinite data structures and lazy evaluation.

2.1.3 An Implementation in Haskell with Lazy Data-structures

The definitions in Figure 5 can be implemented with potentially infinite data structures and
lazy evaluation. Figure 8 gives an implementation in Haskell. For example,

plusl x y = lift2 (+) x y

minusl x y = lift2 (-) x y

-- integers greaters than n

from n =

let nat = n `fby` (plusl nat (constant 1)) in nat

-- a resettable counter

reset_counter res input =

let output = ifthenelse res (constant 0) v

v = ifthenelse input

(pre 0 (plusl output (constant 1)))

(pre 0 output)

in output
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(* signal as sequences, i.e., functions from natural numbers to values *)

type 'a sequence = int -> 'a

let const v n = v

let extend f x n = (f(n)) (x(n))

let notl x n = extend (const (fun x -> not x)) x n

let plusl x y n = extend (extend (const (fun x y -> x + y)) x) y n

let andl x y n = extend (extend (const (fun x y -> x && y)) x) y n

let pre v x n = if n = 0 then v else x(n-1)

let fby x y n = if n = 0 then x 0 else y(n-1)

(* cumulative and index functions *)

let rec cumul(h)(n) = (if h(n) then 1 else 0) +

(if n = 0 then 0 else cumul(h)(n-1))

let rec index(h)(n) = index_aux(h)(0)(n)

and index_aux(h)(i)(n) =

if h(i) then if n = 1 then i else index_aux(h)(i+1)(n-1)

else index_aux(h)(i+1)(n)

(* filtering and merge *)

let whenc x h n = x(index(h)(n+1))

let merge h x y n = if h(n) then x(cumul(h)(n)) else y(cumul(notl h)(n))

(* Fixpoint operator *)

let fix : ('a sequence -> 'a sequence) -> 'a sequence =

fun n -> let rec o n = f o n in o n

(* Examples *)

let half () = let rec half n = pre false (notl half) n in half

let from v =

let rec f n = pre 0 (plusl f (const 1)) n in f

let incr v x n = pre v (plusl x (const 1)) n

let from v = fix (incr 0)

(* Deadlock / infinite loop *)

let id x n = x n

let deadlock n = fix id n

(* to test, type [deadlock 42] *)

let deadlock n =

let x = const true in

whenc x (const false) n

(* non synchronous *)

(* see how long it is to compute unbounded 10000 ! *)

let unbounded =

let x = const true in

let h = half () in

andl (whenc x h) x

(* the bottom element *)

let rec eps n = eps n

Figure 7: An implementation of sequences as functions in OCaml
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module Streams where

data ST a = Cons a (ST a) deriving Show

-- lifting constants

constant x = Cons x (constant x)

-- pointwise application

extend (Cons f fs) (Cons x xs) = Cons (f x) (extend fs xs)

lift2 f xs ys = extend (extend (constant f) xs) ys

-- delays

(Cons x xs) `fby` y = Cons x y

pre x y = Cons x y

-- sampling

(Cons x xs) `when` (Cons True cs) = (Cons x (xs `when` cs))

(Cons x xs) `when` (Cons False cs) = xs `when` cs

merge (Cons True c) (Cons x xs) y = Cons x (merge c xs y)

merge (Cons False c) x (Cons y ys) = Cons y (merge c x ys)

Figure 8: A Haskell implementation with (lazy) lists

-- a periodic clock

every n =

let o = reset_counter (pre 0 o = plusl n (constant 1)) (constant True)

in o

filter n top = top `when` (every n)

hour_minute_second top =

let second = filter (constant 10) top in

let minute = filter (constant 60) second in

let hour = filter (constant 60) minute in

hour, minute, second

Yet, we have essentially just written Lustre functions that pass the compilation checks. The
two following functions cannot be written in Lustre. The first one computes the sequence (on)n∈IN
from an input (xn)n∈N such that o2n = xn and o2n+1 = xn.

-- the half clock

half = (constant True) `fby` notl half

-- double its input

stutter x =

o = merge half x ((pre 0 o) when notl half) in o

This is an example of an oversampling function: its internal rate is faster than the rate of its
input. This program can be implemented in bounded memory and time. But the Lustre compiler
rejects oversampling functions. Another example of an oversampling function is one that computes
the root of an input x using the Newton method.7 It mimics an internal while loop.

un = un−1/2 + x/2un−1 u1 = x

7This example is due to Paul Le Guernic and was originally written in Signal.
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eps = constant 0.001

`div` = lift2 (\x y -> x div y)

`minus` = lift2 (\x y -> x - y)

`lessthan` = (lift2 (\x y -> x <= y)

root input =

let ic = merge ok input ((pre 0.0 ic) `when` (notl ok))

uc = ((pre 0.0 uc) `div` (constant 2.0)) `plusl`

(ic `div` ((constant 2.0) `times` (pre 0.0 uc)))

ok = (constant true) `->`

((uc `minus` (pre 0.0 uc)) `lessthan` eps

output = uc `when` ok

in output

Of course, there are many other valid programs that cannot be written in Lustre, in particular
those that exploit the expressiveness of Haskell and its type system, like the possibility to write
higher order functions. Some of them are clearly not real-time, that is, they cannot be implemented
into code that run in bounded time and memory; but some are. The language Lucid Synchrone [31]
explored this research direction.

Appendix ?? define an OCaml implementation of streams as lazy data-structures. The code
may appear less elegant because of the explicit play with lazyness (through operators lazy/force.
Yet, it has the advantage to be more explicit.

2.1.4 Completing Streams with an Explitit Silent Element

In the above two encodings — a stream either implemented as a function from natural numbers to
values or as a lazy data-structure — there is no explicit representation of the bottom stream, that
is, the minimum element for the prefix order. It is usually noted ε. ε is the stream that stuck, i.e.,
that deadlocks. A classic way to represent ε explicitly as a stream is to complete the set of stream
with a special constructor, say Eps so that ε becomes the solution of the equation ε = Eps(ε).
Eps can be interpreted as “not yet”. This approach was used in [29], with bottom represented
as Eps∞. We follow this latter notation. A similar approach was used in [8]. The set of present
values was extended with a special value noted Fail to model a deadlock (or bottom value at
the current instant) with Fail being absorbing. This way, the bottom element over streams is
represented by the infinite stream Fail∞. We define streams in the following way:

data Stream a = Cons a (Stream a) | Eps a

eps = Cons Eps eps -- bottom element on streams

one = Cons 1 one

We adapt the definition of the data-flow primitives accordingly in Fig 9
The new definitions for when and merge are now guarded. At every instant, they either produce

a “cons” or an “epsilon”. Yet, the operator fix which computes the least fix-point of a function
is not a total function, e.g., fix tl will loop infinitely. Can we define a constructive definition of
the least fixpoint, that is, given f of the right type, always returns its leas fixpoint?

We do not resist to write the same definitions in OCaml and in Coq! For the later, the fixpoint
construction should be adapted so that it is constructive, that is, fix must be a total function
which, given f computes its least fix-point. The two implementations are given in Appendix ??
for the OCaml code and Appendix ?? for the Coq version.

We shall see, however, that the encoding a stream as a lazy data-structure hides two difficult
issues: deadlocks and unboundedness of buffers.

2.1.5 Where are the monsters?

Causality monsters In the above encoding, a stream is represented as a lazy data structure.
Laziness, however, allows streams to be built in a strange manner. The following definitions are
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module Streams where

data Stream a = Cons !a (Stream a) | Eps (Stream a)

extend (Cons f fs) (Cons x xs) = Cons (f x) (extend fs xs)

extend (Eps fs) (Eps xs) = Eps (extend fs xs)

extend (Eps fs) xs = Eps (extend fs xs)

extend fs (Eps xs) = Eps (extend fs xs)

pre x xs = Cons x xs

(Cons x xs) `fby` ys = pre x xs

xs `when` (Eps(cs)) = Eps(xs `when` cs)

(Eps(xs)) `when` cs = Eps(xs `when` cs)

(Cons x xs) `when` (Cons c cs) =

if c then (Cons x (xs `when` cs)) else (Eps (xs `when` cs))

merge (Eps cs) xs ys = Eps(merge cs xs ys)

merge cs (Eps xs) ys = Eps(merge cs xs ys)

merge (Cons True cs) (Cons x xs) ys = Cons x (merge cs xs ys)

merge (Cons False cs) xs (Cons y ys) = Cons y (merge cs xs ys)

let tl (Eps x) = Eps (tl x)

let tl (Cons _ x) = x

fix f = let rec o = Eps(f o) in o

Figure 9: A Haskell implementation with lazy lists with an explicit epsilon element
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perfectly valid and produce infinite streams for one, x and output.

hd (Cons x y) = x

tl (Cons x y) = y

next = tl

incr (Cons x y) = Cons (x+1) (incr y)

one = Cons 1 one

x = Cons (if hd(tl(tl(tl(x)))) == 5 then 3 else 4) (Cons 1 (Cons 2 (Cons 3 one)))

output = Cons (hd(tl(tl(tl(x))))) (Cons (hd(tl(tl(x)))) (Cons (hd(x)) x))

The values are x = 4 : 1 : 2 : 3 : 1 : · · · and output = 3 : 2 : 4 : 3 : 2 : 4 : · · · . Streams are
implemented as an inductive data structure, x and output are computed sequentially:

• x0 = ⊥, x1 = ⊥ : 1 : 2 : 3 : one, x2 = 4 : 1 : 2 : 3 : one.

• output0 = ⊥, output1 = 3 : 2 : 4 : · · ·

Another example:8

next x = tl x

nat = zero `fby` (incr nat)

ifn n x y = if n <= 9 then (Cons (hd(x)) (ifn (n+1) (tl(x)) (tl(y)))) else y

if9 x y = ifn 0 x y

x = if9 (incr (next x)) nat

The output stream (computed by Haskell) is x = 20 : 19 : 18 : 17 : 16 : 15 : 14 : 13 : 12 : 11 :
10 : 11 : 12 : 13 : 14 : 15 : · · · 9

Are these reasonable programs? Streams are constructed in a reverse manner from the future
to the past. They do not obey the intuition that we have of causality issue, that is, streams must
be constructed from left to right. This is because the structural order between streams allows to
fill in the holes in any order, e.g.:

(⊥ : ⊥) ≤ (⊥ : ⊥ : ⊥ : ⊥) ≤ (⊥ : ⊥ : 2 : ⊥) ≤ (⊥ : 1 : 2 : ⊥) ≤ (0 : 1 : 2 : ⊥)

Note that it is possible to build streams with intermediate holes, that is, with undefined values in
the middle, from which one can build other streams without holes:

half = 0 : ⊥ : 0 : ⊥ : · · ·

fail = fail

half = Cons 0 (Cons fail half)

fill x = Cons (hd(x)) (fill (tl(tl x)))

ok = fill half

The definition of streams in Figure 8 follows the structural order between data structures,
which is also the order between functions: ⊥ ≤struct v and the structure (v : w) is less defined
than (v′ : w′) when v is less defined than v′ and w is less defined than w′: (v : w) ≤struct (v′ :
w′) ⇔ v ≤struct v

′ ∧ w ≤struct w
′. It does not model the intuition of causality that values in the

stream must be computed from left to right. The prefix order is thus preferable, that is, ⊥ ≤ x
and v : x ≤ v : y ⇔ x ≤ y.

8This example is due to Paul Caspi [4]
9We print x:xs instead of Cons x xs.
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module Streams where

-- only consider streams where the head is always a value (not bot)

data ST a = Cons !a (ST a) deriving Show

constant x = Cons x (constant x)

extend (Cons f fs) (Cons x xs) = Cons (f x) (extend fs xs)

(Cons x xs) `fby` y = Cons x y

(Cons x xs) `when` (Cons True cs) = (Cons x (xs `when` cs))

(Cons x xs) `when` (Cons False cs) = xs `when` cs

merge (Cons True c) (Cons x xs) y = Cons x (merge c xs y)

merge (Cons False c) x (Cons y ys) = Cons y (merge c x ys)

Figure 10: A Haskell implementation with streams that enforces the prefix order between streams

Remark: This order can be adapted to functions from natural numbers to values, allowing to
have intermediate holes in results [4].

(x ≤′ y)⇔ (∀n ∈ N. x(n) ≤ y(n)⇒ ∀m ≥ n. x(m) = ⊥)

For example, the following sequence is ordered:

⊥ ≤ (1.⊥) ≤ (1.⊥.2.⊥) ≤ (1.⊥.2.⊥.3.⊥)

Under the prefix ordering, all the previous strange programs denote ⊥.

Causal function: A function from streams to streams, is said to be causal when it is monotonic
for the prefix order. This definition may seem too permissive as the function next (or tl), given
below and presented like the following is considered to be causal.

∀n ∈ N. next(x)(n) = x(n+ 1)

Indeed, the operator next can be programmed and is perfectly valid (up to syntactic details) in
Lucid Synchrone (and also Lucy-n), for example.

let node next x = x when (false fby true)

We shall see in the next section how the use of such functions must nonetheless be constrained.
Possibly non-causal streams can be proscribed by forbidding values of the form ⊥.x. Figure 10

gives a simple modification of the previous definitions in Haskell. The annotation !a forces the
first argument of the stream constructor Cons to be strict, that is, to evaluate to a value. Now all
the previous strange, non-causal programs have value ⊥.

Some “synchrony” monsters Another kind of strange behavior can occur. Consider the input
sequence x = (xi)i∈IN and the function even such that even(x) = (x2i)i∈IN . Define the equation
y = x& even(x). It should define the sequence (xi &x2i)i∈IN . In Haskell, given the definitions of
Figure 10, we have:

even (Cons x (Cons y xs)) = Cons x (even xs)

and_gate (Cons x xs) (Cons y ys) = Cons (x && y) (and xs ys)

Figure 11 depicts the corresponding Kahn network. The fork on the left implicitly represents a
simple duplication operator. Even though the even and & blocks are finite-memory processes, the
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Figure 11: A non synchronous example

composition cannot be executed in bounded memory. As time goes by, the size of the FIFO of the
bottom line increases and must eventually overflow.

In real-time applications, sucha compositions must be statically rejected. Moreover, all the
synchronization is hidden in communication channels. Finally, even in the case where the overall
memory can be statically bounded, our Haskell encoding needs a complicated runtime system, with
allocation and deallocation of intermediate stream values at every step and a garbage collector.
There are no real surprises here. The Kahn semantics models neither time nor the resources
necessary to synchronise values. If bounded FIFOs are explicitly managed, their size has to be
determined, and this can lead to possible deadlocks.

2.1.6 Clocked Streams

To account for precise synchronisations between nodes, we introduce a new semantics in which the
use of data-flow primitives is restricted. We shall consider that all streams progress synchronously,
each producing at global steps either a standard value or the special explicit value abs denoting
that a value is absent, that is, not yet present. The size and content of buffers is also made explicit.

AbsStreamT defines the set of clocked sequences made of values from the set Tabs = T +{abs}.

Tabs = T + {abs}
AbsStream(T ) = (Tabs)∞

It is a sequence of present and absent values that can be represented in Haskell as follows.

data maybe a = Present a | Absent

data AbsStream a = ST (maybe a)

The clock of a sequence s is a boolean sequence that indicates when a value is present. For that,
we define the function clock between clocked sequences and boolean sequences:

bool = {0, 1}
C lock = bool∞

clock(ε) = ε

clock(abs.x) = 0.clock(x)

clock(v.x) = 1.clock(x)

We now make the link between the clock and the set of present/absent values more precise by
defining:

ClockedStream(T )(c) = {s | s ∈ (T abs)∞ ∧ clock(s) ≤ c}

For a boolean sequence c, ClockedStream(T )(c) is the set of sequences with clock c. It is prefix
closed: if s is a prefix of s′ with clock c, that is, s′ ∈ ClockedStream(T )(c), s ∈ ClockedStream(T )(c).

The synchronous semantics is defined by reinterpreting the basic primitives over clocked se-

quences. We can replay the Kahn semantics in Section 2.1.1. It is defined by [[e]]
abs

ρ which computes
the value of e in an environment ρ = (ρs, ρn). The set of values is replaced by:

V = AbsStream(T1) + · · ·+ AbsStream(Tn) + V × · · · × V values for local variables
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const](i, 1.w) = i.const](i, w)
const](i, 0.w) = abs.const](i, w)

op](abs.s1, abs.s2) = abs.op](s1, s2)
op](v1.s1, v2.s2) = v.op](s1, s2) where v = op(v1, v2)

fby](abs.s1, abs.s2) = abs.fby](s1, s2)
fby](v1.s1, v2.s2) = v1.fby1

](v2, s1, s2)
fby1](v, abs.s1, abs.s2) = abs.fby1](v, s1, s2)
fby1](v, v1.s1, v2.s2) = v.fby1](v2, s1, s2)

when](abs.s1, abs.w) = abs.when](s1, w)
when](v1.s1, 1.w) = v1.when

](s1, w)
when](v1.s1, 0.w) = abs.when](s1, w)
whenot](abs.s1, abs.w) = abs.whenot](s1, w)
whenot](v1.s1, 0.w) = v1.whenot

](s1, w)
whenot](v1.s1, 1.w) = abs.whenot](s1, w)

merge](abs.w, abs.s1, abs.s2) = abs.merge](w, s1, s2)
merge](1.w, v1.s1, abs.s2) = v1.merge

](w, s1, s2)
merge](0.w, abs.s1, v2.s2) = v2.merge

](w, s1, s2)

buffer](v.s, n, abs.s1, 1.w) = v.buffer](s, n+ 1, s1, w)
buffer](v.s, n, v1.s1, 1.w) = v.buffer](s.v1, n, s1, w)
buffer](ε, n, v1.s1, 1.w) = v1.buffer

](ε, n, s1, w)
buffer](s, n, abs.s1, 0.w) = abs.buffer](s, n, s1, w)
buffer](s, n, v1.s1, 0.w) = abs.buffer](s.v1, n− 1, s1, w) if n > 0

Figure 12: The clocked semantics for the primitives

The semantics of expressions, equations and global definitions is essentially unchanged. What
changes is the interpretation of primitives on which we concentrate now.

In the following, we write ε for the empty sequence; v for a present value and abs for an absent
value. Hence, v.s denotes a clocked sequence whose head is present and abs.s denotes a sequence
whose head is absent.

The interpretation over clocked sequences for the primitives of the language is summarised in
Figure 12. We start with the simplest operators, the generator of a constant sequence from a
scalar value and the operator to lift a scalar function pointwise over input sequences.

To give a clocked semantics for the constant generator, we need an extra argument to determine
whether the current value is present or not, that is:

const](i, 1.w) = i.const](i, w)
const](i, 0.w) = abs.const](i, w)

Thus, const](i, w) defines a constant stream with clock w, that is, clock(const](i, w)) = w.
Consider now the semantics of s + s′, for example. At least two situations can occur. If the

two inputs are absent, we propagate the absent on the output. If the two inputs are present, we
output the sum of the two.

op](abs.s1, abs.s2) = abs.op](s1, s2)
op](v1.s1, v2.s2) = v.op](s1, s2) where v = op(v1, v2)

It is tempting to add:
op](abs.s1, v2.s2) = abs.op](s1, v2.s2)
op](v1.s1, abs.s2) = abs.op](v1.s1, s2)
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to complete with the default rule for absent values as in the initial Kahn semantics. A benefit of
having added an absent value to the set of instantaneous values is that we no longer need to deal
with both finite and infinite sequences. The empty sequence is simply represented as the infinite
sequence absω and finite sequences are simply completed to infinite ones by suffixing them with
absω. The synchronous monsters, however, have not been eradicated!

The synchronous aspect comes from the absence of certain definitions. For example, there
is no definition to evaluate op](v1.s1, abs.s2) nor op](abs.s1, v2.s2), that is, both inputs must be
simulataneously present or absent. Otherwise, one of them should be buffered.

2.1.7 Dealing with partial definitions: the clock calculus

What happens when one element is present and the other is absent? One idea is to statically
reject these cases by requiring + to have the following type:

(+) : ∀cl : C lock.ClockedStream(int)(cl)× ClockedStream(int)(cl)→ ClockedStream(int)(cl)

In words, (+) expects its input streams to be on the same clock cl and guarantees to produce its
output on that clock. These conditions are expressed in the form of a type that must be verified
statically. This idea is exploited in [8] by defining clocked sequences in Coq as a coinductive
dependent type: the type constraint for (+) and other operators, and the clock constraints for
expressions, equations and functions are performed directly by the Coq type checker.

Remark 2.1 (Two type systems versus a single one). There has been long debate about whether
the so-called clock calculus for Lustre, Scade 6, Lucid Synchrone and Signal should merge both
classical type information about data and presence/absence information. For Lustre and Signal,
the clock calculus was not expressed as a type system and was applied after (classical) static typing.
Separating the two, we have two signatures for (+), computed by two different type systems:

(+) : int× int→ int type signature
(+) : ∀cl . cl × cl → cl clock signature

For Lucid Synchrone,10 we also decided to separate the type system for data from that for clocks;
the compiler thus calculates the two types given above. One of the reasons is that the compiler
implements two other type systems, one that ensures the absence of instantaneous loops and
another that analyses uses of the uninitialised delay pre. After much trial and error, we found
it simpler to implement the various systems separately. Moreover, typing occurs sequentially
(datatypes, clocks, causality, initialization) so that the information produced by earlier passes is
reused by later ones. In particular, the skeleton for types is used to simplify the inference of clock
types, causality types and initialization types.

Nonetheless, having several type systems adds useless redundancy in the implementation. It
also complicates the formulation of correctness properties. Each of the systems precludes a partic-
ular kind of error. It also adds redundancy in interfaces, for example, if one wants to declare a data
structure or function that requires a specific clock type. The debate is unfinished. In his thesis [17]
and paper [18], Guatto follows an alternative approach that mixes regular type information and
clock information, where the clocks express a form of modality in the spirit of guarded types.

In the following, we only consider clock types. Let us consider the case of the unit delay fby.

fby](abs.s1, abs.s2) = abs.fby](s1, s2)
fby](v1.s1, v2.s2) = v1.fby1

](v2, s1, s2)
fby1](v, abs.s1, abs.s2) = abs.fby1](v, s1, s2)
fby1](v, v1.s1, v2.s2) = v.fby1](v2, s1, s2)

Here again, the arguments and the result of the fby operator must have the same clock. A
fby is a two-state machine: while its two arguments are initially absent, it returns an absent

10https://www.di.ens.fr/~pouzet/lucid-synchrone/
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value and remains in the initial state (fby]). When both are present, it returns the value of its
first argument and enters the steady state (fby1]) which stores the previous value of its second
argument, emitting it whenever both arguments are present.

(fby) : ∀cl : C lock. cl × cl → cl clock signature

Remark 2.2 (Is fby length preserving?). It may be surprising to consider that fby is a length
preserving function. In particular, if its second argument is empty but not the first one, it is able
to return a value. But if its first argument is the empty sequence, its output is also empty.

The clock type signature does not express that the output at instant n does not depend on the
second input at instant n. Hence, both the following two equations are well clocked:

x = x+ 1 or x = 0 fby (x+ 1)

The causality information could be embedded in the clock type system as in [26], in the case
of a simple Lustre-like language (or systems with guarded types) but this calls either for adding
subtyping constraints or explicit conversions. This make the clock calculus more complicated or
leads to programs, in the case of a Lustre-like language, that are inelegant and not very modular.

In Lustre, Scade 6 and Lucid Synchrone, the detection of instantaneous dependences is ensured
by the causality analysis, which is performed after the clock calculus. The consequence is that
some valid programs cannot be written. The Signal language mixes clock inference and causality
analysis [1].

We now consider the filtering (sampling) operator when and the combination operator merge.

when](abs.s1, abs.w) = abs.when](s1, w)
when](v1.s1, 1.w) = v1.when

](s1, w)
when](v1.s1, 0.w) = abs.when](s1, w)
whenot](abs.s1, abs.w) = abs.whenot](s1, w)
whenot](v1.s1, 0.w) = v1.whenot

](s1, w)
whenot](v1.s1, 1.w) = abs.whenot](s1, w)

merge](abs.w, abs.s1, abs.s2) = abs.merge](w, s1, s2)
merge](1.w, v1.s1, abs.s2) = v1.merge

](w, s1, s2)
merge](0.w, abs.s1, v2.s2) = v2.merge

](w, s1, s2)

The result of the sampling operator when is present only when its first input is present and the
sampling condition is present and true. The definition of merge says that the first branch must
be present and the second must be absent when the condition is true; the first branch must be
absent and the second present when the condition is false. Again, some rules are lacking. What
is the clock of the result?

We need to define an operator on clocks.

cl on c = ε if cl = ε or c = ε
(1.cl) on (1.c) = 1.(cl on c)
(1.cl) on (0.c) = 0.(cl on c)
(0.cl) on (abs.c) = 0.(cl on c)

Using it, the clock type of when and merge can be expressed as:

when : ∀cl .∀x : cl .∀c : cl . cl on c
merge : ∀cl .∀c : cl .∀x : cl on c.∀y : cl on (not c). cl

The first signature says that, for any clock cl , if the first input of when is x and it has clock cl , the
second input c has clock cl , then the result of x when c has clock cl on c. The rule for whenot is
similar. The signature for merge says that if the first input c has clock cl, the second input x has
clock cl on c and third input y has clock cl on (not c), then the result of merge c x y has clock cl .
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The last operator we consider is the buffer. As for the definition of const, the production or
not of a value by the operator buffer depends on the environment. The definition is given in
Figure 12. The first parameter (s) of the operator is the contents of the buffer, the second (n)
is the number of places remaining in the buffer, the third is the input stream, and the fourth is
the clock (w) of the output. The semantics only gives a meaning to programs that use bounded
buffers. The operator returns a value when the output clock is 1, provided that there is at least
one stored value or an input value, and it stores input values as they arrive, provided that the
number of remaining places is greater than zero. Moreover, it is not possible to store a value when
the buffer is full, nor to pop a value when the buffer is empty.

The rule must be completed to deal with the empty sequence ε. As for the Kahn semantics,
the operators op], when], whenot] and merge] return ε if one of their argument is ε: ε is absorbing.
The definitions for the operators fby and buffer applied to at least one ε argument are:

fby](ε, s2) = ε
fby](v1.s1, ε) = v1.ε
fby](abs.s1, ε) = abs.ε

fby1](ε, s1, s2) = ε
fby1](v, ε, s2) = v.ε
fby1](v, s1, ε) = v.ε

buffer](s, n, ε, w) = ε

All these functions on clocked streams are continuous. In particular, the function buffer] is
monotonic: given a memory s and a number of remaining cells n (two parameters which are not
inputs of the program), for any pair of inputs (s1, w) and (s′1, w

′) such that s1 ≤ s′1 and w ≤ w′,
we have buffer](s, n, s1, w) ≤ buffer](s, n, s′1, w

′). Continuity follows because buffer] is length
preserving.

The semantics is not directly defined on the language kernel but on a slight variation where
each constant takes an extra argument specifying the clock of its result. The buffer operator also
takes extra arguments: one giving the clock of its input — when a value must be pushed, —
another giving the clock of its output — when a value must be popped, — and another for the
size of the buffer. The following translation defines the passage from the source language:

i −→ const(i, w)
buffer (e) −→ buffer (n, e′, w) where e −→ e′

The semantics for expressions, equations and programs are defined in the same way as for the
Kahn semantics, except for constants and the buffer for which we take:

[[const(i, w)]]
abs

ρ = const](i, w)

[[buffer(n, e, w)]]
abs

ρ = buffer](ε, n, [[e]]
abs

ρ , w)

These operators produce or not according to the operators that consume their output. This
is why we add an extra argument giving the expected clock of the result. Moreover the buffer

operator is initialized with an empty memory (written ε). The maximum size n of this memory is
synthesized by the clock calculus and passed as an extra argument.

Checking Synchrony The example given in Figure 11 is now wrongly typed according to the
composition of operator typing rules. Let half be the infinite periodic sequence 1.0.1.0 . . . = (1.0).
To fulfil the typing rule for pointwise function applications, the expression x&(x when half ) is
only correct if the clock of x, say cl , equals the clock of x when half , that is cl on half . This is
impossible and this program must thus be rejected. The compiler for Lucid Synchrone [31] emits
the error message:

let node even x = x when half

let node non_synchronous x = x & (even x)

^^^^^^^^^^^^

This expression has clock 'a on half,

but is used with clock 'a
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In the kernel language we consider, every stream s is associated to a boolean sequence or clock
with value 1 at the instants where s is present and 0 otherwise. Two streams can be composed
(e.g., added together) without any buffer when their clocks are equal. This is essentially a typing
problem [11]. As we mentionned, it was later formulated as a shallow embedding in Coq, showing
that clock type verification could be implemented by Coq type verification.

The successive versions of Lucid Synchrone experimented with different extensions of the initial
type system. We realised that having a powerful equivalence between expressions when comparing
clock types c on e1 and c′ on e2 was not very useful. In version 2, we experimented with a very
simple clock calculus reminiscent of the simple ML type system with polymorphism but extended
with the rule of Laufer and Odersky [23] for existential quantification [14]. This was the basis of
the clock calculus used in the Scade 6 language.

The clock calculus is not only used to reject programs. Once the clock calculus is performed,
every expression is annotated with a clock type. Those clocks are then used to generate efficient
imperative code, in particular to factorise control structures by grouping computations that are
activated on the same clock.

Remark 2.3 (Embedding the clock calculus in ML). It seems possible to do a shallow embedding
of a language of streams similar to the one considered in these course notes, with an encoding of
both the dynamic semantics and the static clock constraints by using the Generalized Abstract
Data Types (GADTs) of OCaml. We do not know if such an experiment has been completed.

In essence, the rule for typing an expression e1 + e2 is:

H ` e1 : ck H ` e2 : ck

H ` e1 + e2 : ck

This rule states that under the typing environment H, if e1 has type ck and if e2 has type ck,
then e1 + e2 has type ck. Recall that a clock type for a stream is of the form:

ck :: α | ck on e

where α is a clock variable and e is a boolean expression. In the synchronous case, ck1 on e1 =
ck2 on e2 if ck1 = ck2 and e1 = e2. Equality of types ensures equality of clocks. Hence, the
composition of two flows of the same type can be defined without buffering.

2.2 From synchrony to n-synchrony

In Lustre and its relatives, two input streams can be composed with a point-wise operator only
when they have the same clock. This ensures that no buffer is need for the composition. This is
quite constraining for video applications that are easy to describe as a Kahn process networks. If
a buffer is needed, a synchronous compiler is of any help: the place where to put the buffer, its
size, its input and output clock of the buffer must be determined by the programmer.

Consider for example a Picture-in-Picture as depicted in figure 13 which incrusts an image
into another one. This kind of system is well modeled as a Kahn process network but the manual
computation of buffer sizes is mostly manual and difficult to determine.

The PiP takes a high definition image (1920×1080 pixels), downscales it into and small defini-
tion image (720×480 pixels); it takes an other high definition image and merges it with the small
definition one. The downscaler introduces a delay, hence a buffer is needed for the second image.
We would like that this size be computed automatically as well as the delay (latency) for the first
pixer of the output image to come up.

Can we compose non strictly synchronous streams provided their clocks are closed from each
other? Can we allow for the communication between systems which are “almost” synchronous,
e.g., for modeling bounded jittering or bounded delays? Can we relax the clocking rule to give
more freedom to the compiler so that it can generate more efficient code, translate into regular
synchronous code if necessary?
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Figure 13: Picture in Picture

The n-synchronous model [12] relaxes the classical constraints of a synchronous language like to
allow for the composition of streams whose clocks are not equal but can be synchronized through
the introduction of a bounded buffer. It is obtained by relaxing the clock calculus with a subtyping
rule. If a stream x with type ck can be consumed later with type ck′ using a bounded buffer, we
shall say that ck is a subtype of ck′ and we write ck <:<:<: ck′. This allow to type a synchronous
language extended with a buffer construct which indicates the points where the subtyping rule
should be applied.

H ` e : ck ck <:<:<: ck′

H ` buffer e : ck′

In terms of sequences of values, buffer e is equivalent to e but it may delay its input using a
bounded buffer. The buffer construct gives more freedom to the designer while preserving an
execution in bounded memory.

Here, we consider a simple definition for <:<:<: allowing to compare two types if they are of the
form α on w1 and α on w2 only, with w1 <: w2. w1 and w2 are two boolean expressions.

Definition 2.1 (Ultimately periodic clocks). We consider a particular clock language ce that
define ultimately periodic boolean sequences only:

ce ::= c | u(v)
u ::= ε | 0.u | 1.u
v ::= 0 | 1 | 0.v | 1.v

It can be a variable name (c) or a periodic word (u(v)) made of a finite prefix (u) followed by the
infinite repetition of a binary word (v). For example, (10) defines the half sequence 101010 . . .

2.2.1 Clock Adaptability

Here is the intuition of adaptability: a clock w1 is adaptable to clock w2 if any stream with clock
w1 can be consumed with clock w2 up to the insertion of a bounded buffer.

To properly define this relation, we introduce the cumulative function of a binary word: for any
binary word w, Ow(i) counts the number of 1s up to the index i. Figure 14 shows the cumulative
functions of w1 = (11010) and w2 = 0(00111).

Definition 2.2 (Elements and Cumulative Function of w).
Let w = b.w′ with b ∈ {0, 1}. We write w[i] for the i-th element of w:

w[1]
def
= b

∀i > 1. w[i]
def
= w′[i− 1]

We write Ow for the cumulative function of w:

Ow(0)
def
= 0

∀i ≥ 1.Ow(i)
def
=

{
Ow(i− 1) if w[i] = 0

Ow(i− 1) + 1 if w[i] = 1

22



Instants

N
om

b
re

d
e

u
n
s

161514131211109876543210

11

10

9

8

7

6

5

4

3

2

1

0

Ow1

Ow2

Figure 14: Cumulative functions for w1 = (11010) and w2 = 0(00111).

Adaptability is the conjunction of two relations: precedence and synchronizability. Precedence
ensures that there is no read in an empty buffer, that is at each instant, more values have been
written than read in the buffer. Synchronizability ensures that the number of values present in
the buffer during the execution is bounded.

Definition 2.3 (Synchronizability ./, Precedence �, Adaptability <:).

w1 ./ w2
def⇔ ∃b1, b2 ∈ Z,∀i ≥ 0. b1 ≤ Ow1

(i)−Ow2
(i) ≤ b2

w1 � w2
def⇔ ∀i > 0.Ow1

(i) ≥ Ow2
(i)

w1 <: w2
def⇔ w1 � w2 ∧ w1 ./ w2

In Figure 14, w1 ./ w2 since the vertical distance between the two curves is bounded and
w1 � w2 since the curve Ow1

is always above the one of Ow2
.

Buffer Size. Consider a buffer with an input clock w1 and output clock w2. For every instant
i, the number of elements present in the buffer is:

sizei(w1, w2) = Ow1
(i)−Ow2

(i)

A negative value means that there were more reads than writes and this case should not appear.
A sufficient size for the buffer is the maximal number of values present in the buffer during the
execution:

size(w1, w2) = max
i≥1

(Ow1
(i)−Ow2

(i))

Thus, if w1 is adaptable to w2, a stream with clock w1 can be safely consumed on the clock w2

by insertion of a bounded buffer. Otherwise, the size of the buffer may be infinite.
The purpose of the extended clock calculus is to check that bounds exist for buffer sizes and to

compute them. To this aim, subtyping constraints have to be solved and it can be done for clock
that are ultimately periodic (see 2.1) [12].

To reduce the algorithmic complexity of constraint resolutions and deal with non periodic
clocks, it is possible to reason with clock envelopes. These clock envelopes are sets of concrete
clocks which are not necessarily periodic. They can model various features that exist in embedded
systems such as bounded jittering, logical execution time (lower and upper bounds on the numbers
of atomic steps done by a process), latencies (between when an input data is read and a output is
produced), scheduling resources (a process is activated a certain number of time during a period)
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Figure 15: Envelopes of w1 and w2.

and the communication through buffers. Said differently, an envelope is an over abstraction of the
exact clocks of the system. Hence, instead of comparing two exact clocks, we compare envelopes.

The abstraction introduced in [13] consists in reasoning on sets of clocks (or envelopes) defined
by an asymptotic rate and two shifts bounding the potential delay with respect to this rate. It
was made more precise (in the sense that it over approximates less) in [25]. Then, subtyping
constraints can be replaced by linear constraints on those rates and shifts, and solved with a tool
such as Glpk. We only give here an intuition of this abstraction. It was implemented for a language
called Lucy-n that includes an explicit buffer construction and whose syntax and semantics is
exactly that of the language introduced in 2. On several examples such as the Picture in Picture,
the over-estimation due to the abstraction is small with respect to the exact solution.

2.2.2 Abstraction of Binary Words

The idea behind abstraction is to reason on sets of binary words. An abstraction bounds the cu-
mulative function of a set of words by two linear curves with the same slope. Thus, the abstraction
of an infinite binary word w keeps only the asymptotic proportion r of 1s in w and two values
b0 and b1 which give the minimum and maximum shift of 1s in w compared to r. This abstract
information is called an envelope and noted 〈b0, b1〉 (r).

Definition 2.4 (Concretization).

concr
(〈
b0, b1

〉
(r)
) def

=

{
w | ∀i ≥ 1, ∧

w[i] = 1 ⇒ Ow(i) ≤ r × i+ b1

w[i] = 0 ⇒ Ow(i) ≥ r × i+ b0

}
with b0, b1, r ∈ Q and 0 ≤ r ≤ 1.

The words w1 = (11010) and w2 = 0(00111) seen previously are respectively in envelopes
a1 =

〈
0, 45
〉 (

3
5

)
and a2 =

〈
− 9

5 ,−
3
5

〉 (
3
5

)
shown in Figure 15. In chronograms, an abstract value

〈b0, b1〉 (r) is represented by two lines ∆1 : r × i+ b1 and ∆0 : r × i+ b0 that bound the cumula-
tive functions of a set of binary words. The definition states that any rising edge must be below
the line ∆1 (solid line) and any absence of a rising edge must be above the line ∆0 (dashed line).

For the set of words defined by an envelope to be non-empty, the line ∆1 must be above the
line ∆0. At each instant, there must be a discrete value between the two lines. It is the case if
the distance between them respects the following constraint.

Proposition 2.1 (Non-empty envelope).

∀a =

〈
k0

`
,
k1

`

〉(n
`

)
.
k1

`
− k0

`
≥ 1− 1

`
⇒ concr (a) 6= ∅
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The abstraction of a periodic binary word can be computed automatically.

Definition 2.5 (Abstraction of a Periodic Word).

Let p = u(v) a periodic binary word. We define abs (p)
def
= 〈b0, b1〉 (r) with:

r = rate(p) = |v|1
|v|

b0 = mini=1..|u|+|v| with p[i]=0 (Op(i)− r × i)
b1 = maxi=1..|u|+|v| with p[i]=1 (Op(i)− r × i)

where |u| is the length of u and |u|1 its number of 1s.

The asymptotic rate r corresponds to the ratio between the number of 1s in the periodic
pattern and its length. To compute b0 and b1, the word must be traversed. The shift b0 is the
minimum difference when a 0 occurs between the number of 1s seen at instant i and the ideal
value r × i. The shift b1 is the maximal difference between these values when a 1 occurs.

The interest of the abstraction is to reduce the complexity of exact computations and decisions
on binary words by transforming them into arithmetic manipulations on rational numbers. For
example, the computation of on on envelopes only needs three multiplications and two additions:

Definition 2.6 (on∼ Operator). Let b01 ≤ 0 and b02 ≤ 0.11 We define:

〈 b01 , b11 〉 ( r1 )
on∼ 〈 b02 , b12 〉 ( r2 )
def
= 〈 b01 × r2 + b02 , b

1
1 × r2 + b12 〉 ( r1 × r2 )

The elements of w1 on w2 are the elements of w1 filtered by the elements of w2. The rate of 1
in w1 on w2 is thus the product of the rate of w1 and the one of w2. When w1 is sampled by w2,
its shifts are multiplied by r2. The shifts of w2 are added to those of w1.

All the proofs on algebraic properties of binary sequences and abstractions have been done
in Coq [25] and are available publicly. Full proofs on paper are available in the PhD. thesis of
Florence Plateau [30].

3 Conclusion

In these course notes, we considered a simple first-order functional language that manipulates
streams and functions that transform streams into streams. This language is reminiscent of the
language Lustre invented by Caspi and Halbwachs, which was the basis for the development of the
industrial language and environment SCADE, now regularly used in the development of critical
control software, as well as the academic language Lucid Synchrone.

We showed that this language corresponds to a particular kind of Kahn process network that
can be executed synchronously. This is expressed by associating a clock to every stream to indicate
when the current value is present or not. Stream functions must then fullfil certain static rules to
ensure that when a value is expected to be present (or absent), it is indeed present (or absent).
Clocks can be understood as types and the associated static constraints as typing constraints
in a type system with dependent types. Finally, we relax the synchronous constraint to allow
communications through bounded buffers by adding sub-typing rules for when buffers are used.
A relaxed clock calculus can infer the size of these communication buffers.

These course notes are far from exhaustive. In particular, they do not detail the actual clock
calculus for the language, and notably the restrictions made in both Lucid Synchrone and SCADE
about clock equality. In these two languages, the clock language ce is limited essentially to names
so that clock equality reduces to name equality. These notes also sweep under the carpet the
important question of causality. E.g., equations like x = x or x = x + 1 are perfectly valid

11We can always lose precision on the envelopes to satisfy this condition. More details are given in [30].
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from a clock calculus point-of-view but must be rejected because x depends instantaneously on
itself and no sequential code can be generated: we say that x is not causal. The detection of
instantaneous loops or dependencies can also be handled by static typing. Finally, these notes did
not address the important question of generating sequential code. Clocks are also fundamental to
code generation [16]. The clock constraints can be interpreted as dedicated techniques to ensure
the perfect fusion of all the intermediate streams.
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A Some examples

Question A.1 (Reasonning about processes). As motivated by Kahn in [21], the denotational
interpretation of processes as stream function can be used to reason and prove properties about
stateful systems. Consider the example in Figure 16.

• Propose an interpretation for processes p, q, m and main as continuous functions. Propose
an alternative implementation of the network that use, for example, the primitives given in
Figure 2. How would you prove it equivalent to the initial one?

• What does it change to remove line (* init *)?

• Prove that the program main is non blocking, i.e, if input x is an infinite stream, z is an
infinite stream. It can be done with a length argument, taking |ε| = 0 and |v.s| = 1 + |s|.

• Propose a sequential, equivalent implementation of main, made of a single elementary process
with an input channel x and output channel z.

B Appendix

B.1 An Implementation of Lazy Streams in OCaml

The definition of primitives is given in Figures 17,18 and 19.

C Streams with an Explicit Silent Element in OCaml

D Streams with an Explicit Silent Element in Coq
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type 'a buff = { push: 'a -> unit; pop: unit -> 'a }

let buffer () =

let b = Queue.create () in

let t = Mutex.create () in

let push v = Mutex.lock t; Queue.push v b; Mutex.unlock t in

let pop () = Mutex.lock t; Queue.pop b; Mutex.unlock t in

{ push = push; pop = pop }

(* Process P *)

let process_p x r y () =

y.push 0; (* init *)

let memo = ref 0 in

while true do

let v = x.pop () in

let w = r.pop () in

memo := if v then 0 else !memo + w;

y.push !memo

done

(* Process Q *)

let process_q y t z () =

while true do

let v = y.pop () in

t.push v; z.push v

done

(* Process R *)

let process_m t r () =

while true do

let v = t.pop () in

r.push (v + 1)

done

(* Put them in parallel. *)

let main x z () =

let r = buffer () in

let y = buffer () in

let t = buffer () in

ignore (Thread.create (process_p x r y) ());

ignore (Thread.create (process_q y t z) ());

ignore (Thread.create (process_m t r) ())

Figure 16: A simple implementation of KPN with threads in OCaml

29



(* A stream is a lazy data-structure *)

type 'a lazy_stream = 'a stream Lazy.t

and 'a stream = | Cons : 'a * 'a lazy_stream -> 'a stream

type ('a, 'b) system = 'a lazy_stream -> 'b lazy_stream

(* Constant generation *)

let rec const : 'a -> 'a lazy_stream = fun v -> lazy (Cons(v, const v))

(* Combinatorial function lifting *)

let rec extend :

('a -> 'b) lazy_stream -> 'a lazy_stream -> 'b lazy_stream =

fun fs xs ->

lazy

(match Lazy.force fs, Lazy.force xs with

| Cons(f, fs), Cons(x, xs) ->

Cons(f x, extend fs xs))

(* Unit delay *)

let pre : 'a -> 'a lazy_stream -> 'a lazy_stream =

fun v xs -> lazy (Cons(v, xs))

(* Initialized delay. The fby operator comes from the old Lucid language *)

let rec fby : 'a lazy_stream -> 'a lazy_stream -> 'a lazy_stream =

fun xs ys ->

match Lazy.force xs with

| Cons(v, _) -> pre v ys

(* Initialization. [e1 -> e2] written here [e1 --> e2] *)

(* [e1 -> e2] is a shortcut for [if (true fby false) then e1 else e2] *)

let (-->) : 'a lazy_stream -> 'a lazy_stream -> 'a lazy_stream =

fun xs ys -> mux (fby (const true) (const false)) xs ys

(* stream of pairs and pairs of streams *)

let pair : 'a lazy_stream * 'b lazy_stream -> ('a * 'b) lazy_stream =

fun (xs, ys) ->

extend (extend (const (fun x y -> (x, y))) xs) ys

let plus1 xs = extend (const (fun x -> x + 1)) xs

let fst xs = extend (const (fun (x, _) -> x)) xs

let snd xs = extend (const (fun (_, y) -> y)) xs

let notl xs = extend (const (fun x -> not x)) xs

let andl xs ys = extend (extend (const (fun x y -> x && y)) xs) ys

let eql xs ys = extend (extend (const (fun x y -> x = y)) xs) ys

let mux cs xs ys =

extend (extend (extend

(const (fun c x y -> if c then x else y)) cs) xs) ys

let plusl xs ys = extend (extend (const (fun x y -> x + y)) xs) ys

Figure 17: An OCaml implementation of lazy streams

30



(* Filtering a stream. Operator introduced in Lustre. Noted [whenc] here *)

(* because [when] is a keyword in OCaml *)

let rec whenc : 'a lazy_stream -> bool lazy_stream -> 'a lazy_stream =

fun xs cs ->

lazy

(match Lazy.force xs, Lazy.force cs with

| Cons(x, xs), Cons(c, cs) ->

if c then Cons(x, whenc xs cs) else Lazy.force (whenc xs cs))

let when_not x c = whenc x (notl c)

(* Union of two streams. [merge] was introduced by Kahn in 74 *)

let rec merge : bool lazy_stream -> 'a lazy_stream ->

'a lazy_stream -> 'a lazy_stream =

fun cs xs ys ->

lazy

(match Lazy.force cs with

| Cons(true, cs) ->

(match Lazy.force xs with

Cons(x, xs) -> Cons(x, merge cs xs ys))

| Cons(false, cs) ->

(match Lazy.force ys with

Cons(y, ys) -> Cons(y, merge cs xs ys)))

(* Least fix-point operator for streams *)

let fix: ('a lazy_stream -> 'a lazy_stream) -> 'a lazy_stream =

fun f -> let rec y = lazy (Lazy.force (f y)) in

y

let fix2:

('a lazy_stream * 'b lazy_stream ->

'a lazy_stream * 'b lazy_stream) ->

'a lazy_stream * 'b lazy_stream =

fun f ->

let xy = fix (fun xy -> pair (f (fst xy, snd xy))) in

fst xy, snd xy

(* A representation of bottom (divergence) *)

(* [Lazy.force eps] raises exception CamlinternalLazy.Undefined. *)

let rec eps = lazy (Lazy.force eps)

let bot = eps

Figure 18: An OCaml implementation of lazy streams
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(* examples *)

(* 1. half *)

let half1 () =

let f = fun x -> notl (pre false x) in

fix f

let half2 () =

let f = fun x -> (pre true (notl x)) in

fix f

(* 2. natural numbers *)

let from v =

let f = fun x -> pre v (plusl x (const 1)) in

fix f

(*- integration: integr(x')(n) = sum_{i = 0}^n(x'(i)) *)

let integr: (int, int) system =

fun x' -> fix (fun o -> plusl x' (pre 0 o))

let zero =

let f = fun x -> pre 0 x in

fix f

(* 2. unbounded memory. *)

(* run [out print_bool max_int (unbounded ())] *)

(* and see who allocated memory grows *)

let unbounded () =

let t = const true in

let h = half1 () in

andl t (whenc t h)

(* 3. Causality loop *)

let deadlock1 () =

let deadlock = fix (fun x -> x) in

deadlock

let deadlock2 () =

let deadlock = fix (fun x -> plusl x (const 1)) in

deadlock

(* 3. N-synchrony [read e.g., paper at POPL'06] *)

(* This example cannot be writting in Lustre/Scade/Lucid Synchrone *)

(* yet, it executes in bounded memory (with a buffer of size 1 *)

(* t = 0 1 2 3 4 5 6 7 8 9 ...

*-t when h = 0 2 4 6 8 9 ...

*-t whenot h = 1 3 5 7 9 ...

*-result = 1 5 9 13 17 ... *)

let n_synchrony () =

let t = from 0 in

let h = half1 () in

plusl (whenc t (notl h)) (whenc t h)

(* auxiliary functions *)

let rec list_of n xs =

if n = 0 then []

else match Lazy.force xs with

| Cons(x, xs) -> x :: (list_of (n-1) xs)

Figure 19: An OCaml implementation of lazy streams
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type 'a lazy_stream = 'a stream Lazy.t

and 'a stream =

| Eps :

'a lazy_stream -> 'a stream

| Cons :

'a * 'a lazy_stream -> 'a stream

let rec eps = lazy (Eps(eps))

(* Constant generation *)

let rec const: 'a -> 'a lazy_stream = fun v -> lazy (Cons(v, const v))

let rec extend : ('a -> 'b) lazy_stream -> 'a lazy_stream -> 'b lazy_stream =

fun fs xs ->

lazy

(match Lazy.force fs, Lazy.force xs with

| Eps(fs), Eps(xs) ->

(* This case is subsumed by the last two. Yet we add it *)

(* purposely because only the last two reveil that inputs *)

(* are (implicitely) buffered when one is present only *)

Eps(extend fs xs)

| Cons(f, fs), Cons(x, xs) -> Cons(f x, extend fs xs)

| Eps(fs), _ -> Eps(extend fs xs)

| _, Eps(xs) -> Eps(extend fs xs))

(* Unit delay *)

let pre : 'a -> 'a lazy_stream -> 'a lazy_stream =

fun v xs -> lazy (Cons(v, xs))

Figure 20: An OCaml implementation of lazy streams with Silent
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(* Initialized delay. The fby operator comes from the old Lucid language *)

let rec fby : 'a lazy_stream -> 'a lazy_stream -> 'a lazy_stream =

fun xs ys ->

match Lazy.force xs with

| Eps(xs) -> lazy (Eps(fby xs ys))

| Cons(v, _) -> pre v ys

(* stream of pairs and pairs of streams *)

let pair (xs, ys) =

extend (extend (const (fun x y -> (x, y))) xs) ys

let fst xs = extend (const (fun (x, _) -> x)) xs

let snd xs = extend (const (fun (_, y) -> y)) xs

let notl xs = extend (const (fun x -> not x)) xs

let andl xs ys = extend (extend (const (fun x y -> x && y)) xs) ys

let plusl xs ys = extend (extend (const (fun x y -> x + y)) xs) ys

let rec whenc xs cs =

lazy

(match Lazy.force xs, Lazy.force cs with

| Eps(xs), Eps(cs) ->

Eps(whenc xs cs)

| Cons(x, xs), Cons(c, cs) ->

if c then Cons(x, whenc xs cs) else Eps(whenc xs cs)

| Eps(xs), _ -> Eps(whenc xs cs)

| _, Eps(cs) -> Eps(whenc xs cs))

Figure 21: An OCaml implementation of lazy streams with Silent

let rec merge cs xs ys =

lazy

(match Lazy.force cs, Lazy.force xs, Lazy.force ys with

| Eps(cs), Eps(xs), Eps(ys) -> Eps(merge cs xs ys)

| Cons(true, cs), Cons(x, xs), _ ->

Cons(x, merge cs xs ys)

| Cons(false, cs), _, Cons(y, ys) ->

Cons(y, merge cs xs ys)

| Eps(cs), _, _ ->

Eps(merge cs xs ys)

| Cons _, Eps(xs), _ -> Eps(merge cs xs ys)

| Cons _, _, Eps(ys) -> Eps(merge cs xs ys))

(* Least fix-point operator for streams *)

let fix f =

let rec y = lazy (Eps(f y)) in

y

let fix2 f =

let xy = fix (fun xy -> pair (f (fst xy, snd xy))) in

fst xy, snd xy

Figure 22: An OCaml implementation of lazy streams with Silent
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(* a constructive fix-point *)

(* ask for the [j-th] element of [xs]; upto [n] *)

let rec ask_option xs j n =

(* return the j-ith value of [xs], with j<=n if it is present;

*- None otherwise *)

if n = 0 then None

else

match Lazy.force xs with

| Eps(xs) -> ask_option xs j (n-1)

| Cons(x, xs) -> if j = 0 then Some(x) else ask_option xs (j-1) (n-1)

(* Least fix-point *)

let lfp f =

let rec lfp v j n =

let v = f v in

let vn = ask_option v j n in

lazy

(match vn with

| None -> Eps(lfp v j (n+1))

| Some(vn) -> Cons(vn, lfp v (j+1) (n+1))) in

lfp eps 0 0

Figure 23: An OCaml implementation of lazy streams with Silent
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From Coq Require Import Extraction.

Set Implicit Arguments.

Require Import Coq.Init.Datatypes.

Require Import List.

Import ListNotations.

CoInductive Stream ( A : Type ) : Type :=

| Eps : Stream A -> Stream A

| Cons : A -> Stream A -> Stream A.

(* bottom/epsilon element on streams *)

CoFixpoint bot (A : Type) : Stream A := Eps (bot A).

(* The case operator was used by Ch. Paulin in his paper of 2009] *)

(* not sure it is really useful *)

CoFixpoint case {A B : Type}

(f : A -> Stream A -> Stream B) : Stream A -> Stream B :=

fun s =>

match s with

| Eps s => Eps (case f s)

| Cons a s => f a s

end.

CoFixpoint const {A : Type} (a : A) : Stream A := Cons a (const a).

(* the tail of a stream *)

Definition next {A : Type} : Stream A -> Stream A := case (fun a s => s).

Definition fby {A : Type} : Stream A -> Stream A -> Stream A :=

fun X Y => case (fun a X => Cons a (next Y)) X.

(* Unit delay *)

Definition pre {A : Type} : A -> Stream A -> Stream A :=

fun v xs => Cons v xs.

Figure 24: A Coq implementation of lazy streams with Silent
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CoFixpoint extend {A B : Type } :

Stream (A -> B) -> Stream A -> Stream B :=

fun fs xs =>

match fs, xs with

| (Eps fs), (Eps xs) =>

(* This case is subsumed by the last two. Yet we add it *)

(* purposely because only the last two reveil that inputs *)

(* are (implicitely) buffered when one is present only *)

Eps (extend fs xs)

| (Cons f fs), (Cons x xs) => Cons (f x) (extend fs xs)

| (Eps fs), _ => Eps (extend fs xs)

| _, (Eps xs) => Eps (extend fs xs)

end.

CoFixpoint when {A : Type } :

Stream A -> Stream bool -> Stream A :=

fun xs cs =>

match xs, cs with

| Eps(xs), Eps(cs) =>

Eps(when xs cs)

| (Cons x xs), (Cons c cs) =>

if c then Cons x (when xs cs) else Eps(when xs cs)

| Eps(xs), _ => Eps(when xs cs)

| _, Eps(cs) => Eps(when xs cs)

end.

CoFixpoint merge {A : Type } :

Stream bool -> Stream A -> Stream A -> Stream A :=

fun cs xs ys =>

match cs, xs, ys with

| Eps(cs), Eps(xs), Eps(ys) => Eps(merge cs xs ys)

| (Cons true cs), (Cons x xs), _ =>

Cons x (merge cs xs ys)

| (Cons false cs), _, (Cons y ys) =>

Cons y (merge cs xs ys)

| Eps(cs), _, _ =>

Eps(merge cs xs ys)

| Cons _ _, Eps(xs), _ => Eps(merge cs xs ys)

| Cons _ _, _, Eps(ys) => Eps(merge cs xs ys)

end.

Figure 25: A Coq implementation of lazy streams with Silent
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(* Constructive fixpoint operation *)

(* As we cannot define lim_{n->infty}(f^n(eps)), we use *)

(* a diagonal argument. Intuitively, build the stream such that element *)

(* of index j is the jth-element of f^n(eps) with j <= n *)

(* n defines the diagonal *)

(* This fix point expect [f] to be monotonous/continuous in order to have *)

(* [lfp(f) <= f(lfp(f))] and [f(lfp(f)) <= lfp(f)] with [<=] the Kahn order *)

Fixpoint ask_option { A : Type } (xs : Stream A) (j : nat) (n : nat) : option A :=

(* return the j-ith value of [xs], with j<=n if it is present;

*- None otherwise *)

match n with

| 0 => None

| S n =>

match xs with

| Eps(xs) => ask_option xs j n

| Cons x xs =>

match j with

| 0 => Some(x)

| S j => ask_option xs j n

end

end

end.

CoFixpoint lfpaux { A : Type } (f : Stream A -> Stream A) (v : Stream A)

(j : nat) (n : nat) : Stream A :=

let v := f v in

let vn := ask_option v j n in

match vn with

| None => Eps(lfpaux f v j (n+1))

| Some(vn) => Cons vn (lfpaux f v (j+1) (n+1))

end.

Definition lfp { A : Type } (f : Stream A -> Stream A) := lfpaux f (bot A) 0 0.

(* stream of pairs and pairs of streams *)

Definition pair { A B : Type } : Stream A -> Stream B -> Stream (A * B) :=

fun xs ys =>

extend (extend (const (fun x y => (x, y))) xs) ys.

Definition fst { A B : Type } : Stream (A * B) -> Stream A :=

fun xs => extend (const (fun x => fst x)) xs.

Definition snd { A B : Type } : Stream (A * B) -> Stream B :=

fun xs => extend (const (fun x => snd x)) xs.

Definition notl : Stream bool -> Stream bool :=

fun xs => extend (const (fun x => negb x)) xs.

Definition andl : Stream bool -> Stream bool -> Stream bool :=

fun xs ys => extend (extend (const (fun x y => andb x y)) xs) ys.

Definition plusl : Stream nat -> Stream nat -> Stream nat :=

fun xs ys => extend (extend (const (fun x y => x + y)) xs) ys.

Figure 26: A Coq implementation of lazy streams with Silent
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Definition half0 :=

let f := fun x => notl (pre false x) in

lfp f.

Definition half1 :=

let f := fun x => (pre true (notl x)) in

lfp f.

(* 2. nat *)

Definition pre_incr v x := pre v (plusl x (const 1)).

Definition from v :=

let f := pre_incr v in

lfp f.

(* 2. unbounded memory *)

Definition unbounded :=

let t := const true in

let h := half0 in

andl t (when t h).

(* 3. Causality loop *)

Definition deadlock1 { A : Type } : Stream A :=

let deadlock := lfp (fun x => x) in

deadlock.

Definition deadlock2 :=

let deadlock := lfp (fun x => plusl x (const 1)) in

deadlock.

(* 3. N-synchrone *)

Definition n_synchrone :=

let t := from 0 in

let h := half0 in

plusl (when t (notl h)) (when t h).

Fixpoint list_of { A : Type } (n : nat) (xs : Stream A) :=

match n with

| 0 => []

| S n =>

match xs with

| Eps(xs) => None :: (list_of n xs)

| Cons x xs => Some(x) :: (list_of n xs)

end

end.

Eval vm_compute in (list_of 100 (deadlock1)).

Eval vm_compute in (list_of 100 (n_synchrone)).

Eval vm_compute in (list_of 100 (unbounded)).

Eval vm_compute in (list_of 1000 (from 0)).

Eval vm_compute in (list_of 100 (half0)).

Eval vm_compute in (list_of 100 (half1)).

Figure 27: A Coq implementation of lazy streams with Silent
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