
Scheduling and compiling rate-synchronous programs with end-to-end
latency constraints

Timothy Bourke

Inria Paris — PARKAS Team
École normale supérieure, PSL University

21 October 2025, Systèmes réactifs synchrones MPRI 2-23-1

Plan

Rate-Synchronous Model

The Rosace Example

Flowgraphs and Scheduling

End-to-end Latency

Code Generation

Avoiding Cycles during Sequencing

Scheduling Complications

Multi-threaded Scheduling

Conclusion

1 / 72

Context

• Standard practice: design an application
as a set of periodically executed tasks
that communicate through shared
variables.

• Read data from sensors via a bus,
compute through sequences of cyclic
tasks, and
write to actuators via the bus.

Airbus project “All-in-Lustre”
• Current system: task = Lustre node (≈ 5 000),

separate constraints on order and latency.

• Desired system: “All-in-Lustre”: compose nodes
into a single Lustre program with new features for
specifying periods and execution constraints.

• Generate sequential code for cyclic execution on a
single-processor platform.

• Base period = 5ms. Tasks at 10ms, 20ms, 40ms,
and 120ms.

• Tasks are already chopped up into small pieces.

2 / 72

Context

• Standard practice: design an application
as a set of periodically executed tasks
that communicate through shared
variables.

• Read data from sensors via a bus,
compute through sequences of cyclic
tasks, and
write to actuators via the bus.

Airbus project “All-in-Lustre”
• Current system: task = Lustre node (≈ 5 000),

separate constraints on order and latency.

• Desired system: “All-in-Lustre”: compose nodes
into a single Lustre program with new features for
specifying periods and execution constraints.

• Generate sequential code for cyclic execution on a
single-processor platform.

• Base period = 5ms. Tasks at 10ms, 20ms, 40ms,
and 120ms.

• Tasks are already chopped up into small pieces.

2 / 72

Slow flows

node read() returns (y:int);
node write(x:int) returns ();
node filter(x:int) returns (y:int);

node main() returns ()
var s0, s1, s2 , s3 : int :: 1/3;
let

s0 = read ();
s1 = filter(s0);
s2 = filter(s1);
s3 = s1 + s2;
() = write(s3);

tel

• Declare variables of rate 1/3 (period = 3)

• Calculate each one once every three cycles

• The 5 calculations here are synchronous
relative to the period
even if they are not necessarily simultaneous
relative to the base clock

• s3 = s1 + s2 is well clocked
since s1 :: 1/3, s2 :: 1/3, and s3 :: 1/3.

• Causality applies ‘across’ a period
and ‘within’ an instant: s0 → s1 → s2 → s3 → ()

$ presseail example1.ail -v --glpk --print

3 / 72

Slow flows

node read() returns (y:int);
node write(x:int) returns ();
node filter(x:int) returns (y:int);

node main() returns ()
var s0, s1, s2 , s3 : int :: 1/3;
let

s0 = read ();
s1 = filter(s0);
s2 = filter(s1);
s3 = s1 + s2;
() = write(s3);

tel

• Declare variables of rate 1/3 (period = 3)

• Calculate each one once every three cycles

• The 5 calculations here are synchronous
relative to the period
even if they are not necessarily simultaneous
relative to the base clock

• s3 = s1 + s2 is well clocked
since s1 :: 1/3, s2 :: 1/3, and s3 :: 1/3.

• Causality applies ‘across’ a period
and ‘within’ an instant: s0 → s1 → s2 → s3 → ()

$ presseail example1.ail --glpk --compile 1 --print

3 / 72

Slow flows

node read() returns (y:int);
node write(x:int) returns ();
node filter(x:int) returns (y:int);

node main() returns ()
var s0, s1, s2 , s3 : int :: 1/3;
let

s0 = read ();
s1 = filter(s0);
s2 = filter(s1);
s3 = s1 + s2;
() = write(s3);

tel

• Declare variables of rate 1/3 (period = 3)

• Calculate each one once every three cycles

• The 5 calculations here are synchronous
relative to the period
even if they are not necessarily simultaneous
relative to the base clock

• s3 = s1 + s2 is well clocked
since s1 :: 1/3, s2 :: 1/3, and s3 :: 1/3.

• Causality applies ‘across’ a period
and ‘within’ an instant: s0 → s1 → s2 → s3 → ()

$ presseail example1.ail --glpk --compile 1 --print

3 / 72

Slow flows

node read() returns (y:int);
node write(x:int) returns ();
node filter(x:int) returns (y:int);

node main() returns ()
var s0, s1, s2 , s3 : int :: 1/3;
let

s0 = read ();
s1 = filter(s0);
s2 = filter(s1);
s3 = s1 + s2;
() = write(s3);

tel

• Declare variables of rate 1/3 (period = 3)

• Calculate each one once every three cycles

• The 5 calculations here are synchronous
relative to the period
even if they are not necessarily simultaneous
relative to the base clock

• s3 = s1 + s2 is well clocked
since s1 :: 1/3, s2 :: 1/3, and s3 :: 1/3.

• Causality applies ‘across’ a period
and ‘within’ an instant: s0 → s1 → s2 → s3 → ()

$ presseail example1.ail --glpk --compile 1 --print

3 / 72

Changing speeds: 1

resource cpu : int

node filter(x : int)
returns (y : int);

node main(s0 : int)
returns (s4 : int)
var s1, s2 : int :: 1/3;

s3 : int :: 1/3 last = 0;
let

s1 = filter(s0 when (0 % 3));
s2 = filter(s1);
s3 = filter(s2);
s4 = current(s3 , (2 % 3));

tel

• x when c

» c is for ‘(sampling) choice’

» sub-sampling of a stream

» fast-to-slow rate change

• current(x, c)

» stutter stream elements

» must declare an initial last value

» slow-to-fast rate change

y = merge c x ((0 fby y) when not c)

$ presseail example2.ail --glpk --compile 1

4 / 72

ZOH

Fast-to-Slow
Transition

filters0 filter
s1

filter
s2

1/z

Slow-to-Fast
Transition

s3
s4

· · · when (0 % 3) · · ·

· · · current (2 % 3) · · ·

5 / 72

Changing speeds: 2

r = w when (i % n)
• (i % n): take the ith of every n elements.

• n is the rate of w relative to r
E.g., for w :: 1/4 and r :: 1/8, n is 2.

• It can be deduced from the clocks, but is
useful for readability.

• It implies a lower bound on the scheduling
of the equation.

r = current(w, (i % n))
• (i % n): repeat the initial last value i

times, then repeat each w value n times.

• n is the rate of r relative to w
E.g., for r :: 1/4 and w :: 1/8, n is 2.

• It implies an upper bound on the
scheduling of the equation.

• Write (? % n) if we don’t care when values are sampled/updated.

• The schedule decides when sampling/updating occur; fixed at compile time.

6 / 72

Changing speeds: 2

r = w when (i % n)
• (i % n): take the ith of every n elements.

• n is the rate of w relative to r
E.g., for w :: 1/4 and r :: 1/8, n is 2.

• It can be deduced from the clocks, but is
useful for readability.

• It implies a lower bound on the scheduling
of the equation.

r = current(w, (i % n))
• (i % n): repeat the initial last value i

times, then repeat each w value n times.

• n is the rate of r relative to w
E.g., for r :: 1/4 and w :: 1/8, n is 2.

• It implies an upper bound on the
scheduling of the equation.

• Write (? % n) if we don’t care when values are sampled/updated.

• The schedule decides when sampling/updating occur; fixed at compile time.

6 / 72

Changing speeds: 2

r = w when (i % n)
• (i % n): take the ith of every n elements.

• n is the rate of w relative to r
E.g., for w :: 1/4 and r :: 1/8, n is 2.

• It can be deduced from the clocks, but is
useful for readability.

• It implies a lower bound on the scheduling
of the equation.

r = current(w, (i % n))
• (i % n): repeat the initial last value i

times, then repeat each w value n times.

• n is the rate of r relative to w
E.g., for r :: 1/4 and w :: 1/8, n is 2.

• It implies an upper bound on the
scheduling of the equation.

• Write (? % n) if we don’t care when values are sampled/updated.

• The schedule decides when sampling/updating occur; fixed at compile time.

6 / 72

Rate-synchronous Model

α

α

3

One slow tick is synchronous with three fast ones.

α

α

2
α

4
• Calculations are synchronous relative to their periods

but not necessarily simultaneous relative to execution cycles

• The compiler assigns computations to phases, buffering values if necessary

7 / 72

Rate-synchronous Model

α

α

3

One slow tick is synchronous with three fast ones.

α

α

2
α

4
• Calculations are synchronous relative to their periods

but not necessarily simultaneous relative to execution cycles

• The compiler assigns computations to phases, buffering values if necessary
7 / 72

0 0 0 0 0 0 0 0 0
0 1 2 0 1 2 0 1 2

0 1 2 0 1 2 0 1 2
0 1 2 0 1 2 0 1 2

0 1 2 0 1 2 0 1 2
0 1 2 0 1 2 0 1 2

0 1 2 0 1 2 0 1 2
0 0 0 0 0 0 0 0 0

s0po:
s1po:

s1po:
s2po:

s2po:
s3po:

s3po:
s4po:

node main (s0 : int) returns (s4 : int)
var s1, s2 : int :: 1 / 3,

s3 : int :: 1 / 3 last = 0;
let

label(filter) phase(0 % 3) s1 = filter(s0 when (0 % 3));
label(filter_0) phase(1 % 3) s2 = filter(s1);
label(filter_1) phase(2 % 3) s3 = filter(s2);
label(s4_2) phase(0 % 1) s4 = current(s3 , (2 % 3));

tel
8 / 72

0 0 0 0 0 0 0 0 0
0 1 2 0 1 2 0 1 2

0 1 2 0 1 2 0 1 2
0 1 2 0 1 2 0 1 2

0 1 2 0 1 2 0 1 2
0 1 2 0 1 2 0 1 2

0 1 2 0 1 2 0 1 2
0 0 0 0 0 0 0 0 0

s0po:
s1po:

s1po:
s2po:

s2po:
s3po:

s3po:
s4po:

node main (s0 : int) returns (s4 : int)
var s1, s2 : int :: 1 / 3,

s3 : int :: 1 / 3 last = 0;
let

label(filter) phase(0 % 3) s1 = filter(s0 when (0 % 3));
label(filter_0) phase(1 % 3) s2 = filter(s1);
label(filter_1) phase(2 % 3) s3 = filter(s2);
label(s4_2) phase(0 % 1) s4 = current(s3 , (2 % 3));

tel
8 / 72

Overview: compilation using Integer Linear Programming (ILP)

.ail

flowgraph .lp .xml

.c
presseail

cplex

9 / 72

Overview: compilation using Integer Linear Programming (ILP)

.ail

flowgraph .lp .xml

.c
presseail

cplex

• Like Prelude
[

Forget, Boniol, Lesens, and Pagetti (2010):
A Real-Time Architecture Design Language
for Multi-Rate Embedded Control Systems

]
But, no WCET, no deadlines, no real-time tasks

• Rates expressed as 1/n of the base clock

9 / 72

http://dx.doi.org/10.1145/1774088.1774196
http://dx.doi.org/10.1145/1774088.1774196
http://dx.doi.org/10.1145/1774088.1774196

Overview: compilation using Integer Linear Programming (ILP)

.ail

flowgraph .lp .xml

.c
presseail

cplex

• Like Prelude
[

Forget, Boniol, Lesens, and Pagetti (2010):
A Real-Time Architecture Design Language
for Multi-Rate Embedded Control Systems

]
But, no WCET, no deadlines, no real-time tasks

• Rates expressed as 1/n of the base clock

• One or more step functions

• Called cyclically at the base rate

9 / 72

http://dx.doi.org/10.1145/1774088.1774196
http://dx.doi.org/10.1145/1774088.1774196
http://dx.doi.org/10.1145/1774088.1774196

Overview: compilation using Integer Linear Programming (ILP)

.ail

flowgraph .lp .xml

.c
presseail

cplex

• Like Prelude
[

Forget, Boniol, Lesens, and Pagetti (2010):
A Real-Time Architecture Design Language
for Multi-Rate Embedded Control Systems

]
But, no WCET, no deadlines, no real-time tasks

• Rates expressed as 1/n of the base clock

• One or more step functions

• Called cyclically at the base rate

• Vertex = equation

• Arc from producer to consumer

• Independent of source language

9 / 72

http://dx.doi.org/10.1145/1774088.1774196
http://dx.doi.org/10.1145/1774088.1774196
http://dx.doi.org/10.1145/1774088.1774196

Overview: compilation using Integer Linear Programming (ILP)

.ail

flowgraph .lp .xml

.c
presseail

cplex

• Like Prelude
[

Forget, Boniol, Lesens, and Pagetti (2010):
A Real-Time Architecture Design Language
for Multi-Rate Embedded Control Systems

]
But, no WCET, no deadlines, no real-time tasks

• Rates expressed as 1/n of the base clock

• One or more step functions

• Called cyclically at the base rate

• Vertex = equation

• Arc from producer to consumer

• Independent of source language

• Data dependencies

• Load balancing

• End-to-end latency

9 / 72

http://dx.doi.org/10.1145/1774088.1774196
http://dx.doi.org/10.1145/1774088.1774196
http://dx.doi.org/10.1145/1774088.1774196

Aside: fby or last

x = c fby e;
P

⇓
var nx : T last = c

nx = e;
P{last nx/x}

• c fby e initialized unit delay / register / delay c e

• last x previous value of initialized variable
[Pouzet (2006): Lucid Synchrone, v. 3.
Tutorial and reference manual]

• Here: easier to work with last x

10 / 72

https://www.di.ens.fr/~pouzet/lucid-synchrone/lucid-synchrone-3.0-manual.pdf
https://www.di.ens.fr/~pouzet/lucid-synchrone/lucid-synchrone-3.0-manual.pdf

Rate-synchronous Model

fast :: 1 slow :: 1/3
vf

vs

node eg1() returns ()
var vf : int :: 1;

vs : int :: 1/3 last = 0;
n : int :: 1 last = 0;

let
n = (last n) + 1;
vf = n + current(vs, (2 % 3));
vs = (vf when (1 % 3)) + 5;

tel

vf 1 2 10 11 12 23 24 25 39 · · ·
n 1 2 3 4 5 6 7 8 9 · · ·

vs 7 17 30 · · ·

11 / 72

Rate-synchronous Model

fast :: 1 slow :: 1/3
vf

vs

node eg1() returns ()
var vf : int :: 1;

vs : int :: 1/3 last = 0;
n : int :: 1 last = 0;

let
n = (last n) + 1;
vf = n + current(vs, (2 % 3));
vs = (vf when (1 % 3)) + 5;

tel

vf 1 2 10 11 12 23 24 25 39 · · ·
n 1 2 3 4 5 6 7 8 9 · · ·

vs 7 17 30 · · ·

11 / 72

Rate-synchronous Model

fast :: 1 slow :: 1/3
vf

vs

node eg1() returns ()
var vf : int :: 1;

vs : int :: 1/3 last = 0;
n : int :: 1 last = 0;

let
n = (last n) + 1;
vf = n + current(vs, (2 % 3));
vs = (vf when (1 % 3)) + 5;

tel

vf 1 2 10 11 12 23 24 25 39 · · ·
n 1 2 3 4 5 6 7 8 9 · · ·

vs 7 17 30 · · ·

11 / 72

Rate-synchronous Model

fast :: 1 slow :: 1/3
vf

vs

node eg1() returns ()
var vf : int :: 1;

vs : int :: 1/3 last = 0;
n : int :: 1 last = 0;

let
n = (last n) + 1;
vf = n + current(vs, (2 % 3));
vs = (vf when (1 % 3)) + 5;

tel

vf 1 2 10 11 12 23 24 25 39 · · ·
n 1 2 3 4 5 6 7 8 9 · · ·

vs 7 17 30 · · ·

11 / 72

Rate-synchronous Model

fast :: 1 slow :: 1/3
vf

vs

node eg1() returns ()
var vf : int :: 1;

vs : int :: 1/3 last = 0;
n : int :: 1 last = 0;

let
n = (last n) + 1;
vf = n + current(vs, (2 % 3));
vs = (vf when (1 % 3)) + 5;

tel

vf 1 2 10 11 12 23 24 25 39 · · ·
n 1 2 3 4 5 6 7 8 9 · · ·

vs 7 17 30 · · ·

11 / 72

Rate-synchronous Model

fast :: 1 slow :: 1/3
vf

vs

node eg1() returns ()
var vf : int :: 1;

vs : int :: 1/3 last = 0;
n : int :: 1 last = 0;

let
n = (last n) + 1;
vf = n + current(vs, (2 % 3));
vs = (vf when (1 % 3)) + 5;

tel

vf 1 2 10 11 12 23 24 25 39 · · ·
n 1 2 3 4 5 6 7 8 9 · · ·

vs 7 17 30 · · ·

11 / 72

Rate-synchronous Model

fast :: 1 slow :: 1/3
vf

vs

node eg1() returns ()
var vf : int :: 1;

vs : int :: 1/3 last = 0;
n : int :: 1 last = 0;

let
n = (last n) + 1;
vf = n + current(vs, (2 % 3));
vs = (vf when (1 % 3)) + 5;

tel

vf 1 2 10 11 12 23 24 25 39 · · ·
n 1 2 3 4 5 6 7 8 9 · · ·

vs 7 17 30 · · ·

11 / 72

Syntax

T. Bourke, V. Bregeon, and M. Pouzet 1:3

2 A rate-synchronous model92

The first part of this section presents a variant of Lustre [29] with unit-fraction clocks. Unlike93

in similar programming languages [10, 15, 33, 45, 55], our clocks specify a rate without a94

phase. This is natural for real-time scheduling where release times may implement data95

dependencies [9 | 6, §3.5.2]. Our proposition is inspired by Prelude [22, 24] but restricts96

communication primitives and generates sequential code rather than real-time tasks.97

The last part of this section presents our version of ROSACE and the results of the98

scheduling and code generation techniques which are detailed in the remainder of the article.99

2.1 Syntax100

As in any Lustre-like language, a function is defined by a set of mutually recursive equations.101

eq ::= x = e | x ú = f (eú)102

e ::= c | x | ù e | e ü e | if e then e else e | last x
| x when s | (last x) when s | current(x, s)103

s ::= (c % c) | (? % c)104

p ::= (d ;)ú
105

d ::= resource x : ty
| node f ((x : ty ;)ú) returns ((x : ty ;)ú) requires ((x = c ;)ú)
| node f ((x : ty :: ck [last = c] ;)ú) returns ((x : ty :: ck [last = c] ;)ú)

var (x : ty :: ck [last = c] ;)ú let (((pragmas eq) | cst) ;)+ tel

106

pragmas ::= [label(x)] [phase(c % c)]107

cst ::= resource balance x
| resource x rel c
| latency (exists | forward | backward) rel c (x , x (, x)ú)

108

rel ::= <= | < | = | > | >=109

A balance constraint directs the scheduler to minimize, across cycles, di�erences in the sum110

of a given resource, like cpu. A resource constraint places a constant bound c on the sum111

of a resource, like busout, in a single cycle. A latency constraint sets a constant bound c112

on the end-to-end latency of one instance, or all forward or backward instances, of a chain.113

A chain is a sequence of equations, eq0, eq1, . . . , eqn≠1 where at least one of the variables114

defined at left of eqi appears in an expression at right of equation eqi+1.115

2.2 Semantics116

The focus here is not on programming languages, so we only outline the main principles.117

In a dataflow semantics [34], expressions are associated with sequences of values, equations118

associate variables to sequences, and functions map sequences to sequences. In a synchronous119

dataflow semantics [7], infinite sequences, or streams, are aligned. The idea is that they are120

calculated together over successive rounds. Streams are often presented in grids with rows121

for expressions and columns for rounds. Alignment may be shown in a grid by leaving gaps.122

In our model, slower streams are shown by placing their values in wider columns: they are123

synchronous at their rate and ‘simultaneous’ with multiple values of faster streams.124

Consider a simple example adapted from Forget [21, Figure 5.1] and sketched in Figure 1a.125

There is a fast component that executes every cycle and a slow one that executes every three126

cycles. We instantiate the two components below.127

ECRTS 2023

12 / 72

Valid programs are defined by clock typing

e1 :: 1/n e2 :: 1/n

e1 ⊕ e2 :: 1/n

x :: 1/n

last x :: 1/n

x :: 1/m

x when (·% n) :: 1/mn

x :: 1/mn

current(x , (·% n)) :: 1/m

• No phase offsets in clock types, unlike

» Prelude: rate(100, 0)[
Forget, Boniol, Lesens, and Pagetti (2010):
A Real-Time Architecture Design Language
for Multi-Rate Embedded Control Systems

]
» Lucy-n: (010), 00(00100)[

Cohen, Duranton, Eisenbeis, Pagetti, Plateau, and
Pouzet (2006): N-Synchronous Kahn networks: a re-
laxed model of synchrony for real-time systems

]
» 1-Synchronous: [0, 2][

Iooss, Pouzet, Cohen, Potop-Butucaru, Souyris, Bre-
geon, and Baufreton (2020): 1-Synchronous Pro-
gramming of Large Scale, Multi-Periodic Real-Time
Applications with Functional Degrees of Freedom

]
» Simulink: [Ts, To]

• Dataflow semantics: independent of phase offsets

• Generated code: phase offsets implement data
dependencies.

13 / 72

http://dx.doi.org/10.1145/1774088.1774196
http://dx.doi.org/10.1145/1774088.1774196
http://dx.doi.org/10.1145/1774088.1774196
http://dx.doi.org/10.1145/1111320.1111054
http://dx.doi.org/10.1145/1111320.1111054
http://dx.doi.org/10.1145/1111320.1111054
https://hal.inria.fr/hal-02495471
https://hal.inria.fr/hal-02495471
https://hal.inria.fr/hal-02495471
https://hal.inria.fr/hal-02495471

Valid programs are defined by clock typing

e1 :: 1/n e2 :: 1/n

e1 ⊕ e2 :: 1/n

x :: 1/n

last x :: 1/n

x :: 1/m

x when (·% n) :: 1/mn

x :: 1/mn

current(x , (·% n)) :: 1/m

• No phase offsets in clock types, unlike

» Prelude: rate(100, 0)[
Forget, Boniol, Lesens, and Pagetti (2010):
A Real-Time Architecture Design Language
for Multi-Rate Embedded Control Systems

]
» Lucy-n: (010), 00(00100)[

Cohen, Duranton, Eisenbeis, Pagetti, Plateau, and
Pouzet (2006): N-Synchronous Kahn networks: a re-
laxed model of synchrony for real-time systems

]
» 1-Synchronous: [0, 2][

Iooss, Pouzet, Cohen, Potop-Butucaru, Souyris, Bre-
geon, and Baufreton (2020): 1-Synchronous Pro-
gramming of Large Scale, Multi-Periodic Real-Time
Applications with Functional Degrees of Freedom

]
» Simulink: [Ts, To]

• Dataflow semantics: independent of phase offsets

• Generated code: phase offsets implement data
dependencies.

13 / 72

http://dx.doi.org/10.1145/1774088.1774196
http://dx.doi.org/10.1145/1774088.1774196
http://dx.doi.org/10.1145/1774088.1774196
http://dx.doi.org/10.1145/1111320.1111054
http://dx.doi.org/10.1145/1111320.1111054
http://dx.doi.org/10.1145/1111320.1111054
https://hal.inria.fr/hal-02495471
https://hal.inria.fr/hal-02495471
https://hal.inria.fr/hal-02495471
https://hal.inria.fr/hal-02495471

Related Work: Lucy-n

• Model
[
Cohen, Duranton, Eisenbeis, Pagetti, Plateau, and Pouzet (2006): N-
Synchronous Kahn networks: a relaxed model of synchrony for real-time systems

]
and language

[
Mandel, Plateau, and Pouzet (2010): Lucy-n:
a n-Synchronous extension of Lustre

]
• Flexible scheduling patterns (0010(010)) and buffering

• Notion of jitter with clock envelopes
[
Cohen, Mandel, Plateau, and Pouzet (2008): Abstrac-
tion of Clocks in Synchronous Data-flow Systems

]
• Sophisticated type-based analysis for causality and buffer sizes

• Less focus on code generation

Our work
• Less flexible scheduling

• Buffering is implicit and very limited

• Less clock typing, more causality

• Generate imperative code
14 / 72

http://dx.doi.org/10.1145/1111320.1111054
http://dx.doi.org/10.1145/1111320.1111054
http://dx.doi.org/10.1007/978-3-642-13321-3_17
http://dx.doi.org/10.1007/978-3-642-13321-3_17
http://dx.doi.org/10.1007/978-3-540-89330-1_17
http://dx.doi.org/10.1007/978-3-540-89330-1_17

Related Work: Iooss et al.

• “1-synchronous” programs
[

Iooss, Pouzet, Cohen, Potop-Butucaru, Souyris, Bregeon, and Baufre-
ton (2020): 1-Synchronous Programming of Large Scale, Multi-Periodic
Real-Time Applications with Functional Degrees of Freedom

]
• Two-element clocks: [phase, period]

(0k10n−k−1 or 0k(10n−1), where n is the period and 0 ≤ k < n is the phase

• Related to work on affine clocks

» [Curic (2005): Implementing Lustre Programs on Distributed Platforms
with Real-Time Constraints]

»
[
Smarandache, Gautier, and Le Guernic (1999): Validation of Mixed Signal-Alpha
Real-Time Systems through Affine Calculus on Clock Synchronisation Constraints

]
• Several operators: when, current, delay, delayfby, buffer, bufferfby

• Prototype in Heptagon: introduces (lots of) whens and merges

Our work
• Simpler clocks, fewer operators, implicit buffering

• Generate imperative code directly
15 / 72

https://hal.inria.fr/hal-02495471
https://hal.inria.fr/hal-02495471
https://hal.inria.fr/hal-02495471
http://dx.doi.org/10.1007/3-540-48118-4_22
http://dx.doi.org/10.1007/3-540-48118-4_22

Prelude: Multi-periodic Sync. Prog. [Forget, Boniol, Lesens, and Pagetti (2008): A
Multi-Periodic Synchronous Data-Flow Language]

• Language
[

Forget, Boniol, Lesens, and Pagetti (2010):
A Real-Time Architecture Design Language
for Multi-Rate Embedded Control Systems

]
and compiler

[
Pagetti, Forget, Boniol, Cordovilla, and
Lesens (2011): Multi-task implementation
of multi-periodic synchronous programs

]
• Extend Lustre with task periods/phases and WCET.

• Compose real-time primitives to express communication patterns.

• Generate and schedule a set of real-time tasks

» WCET, release times, deadlines

» Adapt existing scheduling algorithms to respect data dependencies

• “Don’t Care”
[
Wyss, Boniol, Forget, and Pagetti (2012): A Synchronous Language
with Partial Delay Specification for Real-Time Systems Programming

]
,

Let the compiler decide if c dc x (c fby? x) is

» c fby x

» x
16 / 72

http://dx.doi.org/10.1109/HASE.2008.47
http://dx.doi.org/10.1109/HASE.2008.47
http://dx.doi.org/10.1145/1774088.1774196
http://dx.doi.org/10.1145/1774088.1774196
http://dx.doi.org/10.1145/1774088.1774196
http://dx.doi.org/10.1007/s10626-011-0107-x
http://dx.doi.org/10.1007/s10626-011-0107-x
http://dx.doi.org/10.1007/s10626-011-0107-x
http://dx.doi.org/10.1007/978-3-642-35182-2_16
http://dx.doi.org/10.1007/978-3-642-35182-2_16

Stream-based Semantics

Je1 ⊕ e2K (i) = Je1K (i)⊕ Je2K (i)

Jlast xK (i) =

{
x -1 if i = 0
JxK (i − 1) otherwise

Jx when (s % n)K (i) = JxK (n · i + s)

Jcurrent(x , (s % n))K (i) =

{
x -1 if i < s

JxK (⌊i−s/n⌋) otherwise

• Recursive equations on streams: N → V

• x -1 is the initial last value

• No explicit presence or absence

• Cf. Prelude (tagged-signal model)

17 / 72

Declare and constrain resources

resource cpu : int

node read() returns (y:int);
node write(x:int) returns ();
node filter(x:int) returns (y:int)

requires (cpu = 4);

node main() returns ()
var s0, s1, s2 , s3 : int :: 1/3;
let

resource cpu <= 4;
s0 = read ();
s1 = filter(s0);
s2 = filter(s1);
s3 = filter(s2);
() = write(s3);

tel

• Declare named weights to represent resources
required per cycle

» Simple proxies for worst-case execution time

» Network bus accesses

• Use to constrain scheduling

• normally: resource balance cpu

Also: trade-off resource balancing against latency:
latency_chain forward <= 0 (s0 -> s1 -> s2 -> s3);

18 / 72

Declare and constrain resources

resource cpu : int

node read() returns (y:int);
node write(x:int) returns ();
node filter(x:int) returns (y:int)

requires (cpu = 4);

node main() returns ()
var s0, s1, s2 , s3 : int :: 1/3;
let

resource cpu <= 4;
s0 = read ();
s1 = filter(s0);
s2 = filter(s1);
s3 = filter(s2);
() = write(s3);

tel

• Declare named weights to represent resources
required per cycle

» Simple proxies for worst-case execution time

» Network bus accesses

• Use to constrain scheduling

• normally: resource balance cpu

Also: trade-off resource balancing against latency:
latency_chain forward <= 0 (s0 -> s1 -> s2 -> s3); 18 / 72

Direct Communications

r = f(w) r = f(last w)

fw r 1
z

Unit Delay

fw r

• Dw
f : Direct Write-before-read

(forward concomitance)

• Dependency constraint: p:w ≤ p:r

• 0 ≤ p:r − p:w

• Dr
b: Direct Read-before-write

(backward concomitance)

• Dependency constraint: p:r ≤ p:w

• 0 ≤ p:w − p:r

0 1 2 0 1 2
0 1 2 0 1 2

% 0 1 % 0 1

0 1 2 0 1 2
0 1 2 0 1 2

%2 3 %2 3

19 / 72

Rate Transitions

r = f(w when (1 % 3)) r = f(current(w, (1 % 3)))
(i % n): take value i of every n

(? % n): take any of every n values
(i % n): i initial values, then repeat n times

ZOH

Fast-to-Slow
Transition

fw r
1/z

Slow-to-Fast
Transition

fw r

• /n f : Fast-to-slow
(forward concomitance)

• ∗n f | ∗n b | ∗n ?: Slow-to-fast
(forward or backward concomitance)

0 1 2 0 1 2 0 1 2
0 1 2 3 4 5 6 7 8

0 % 3 1 % 3 2 % 3

0 1 2 3 4 5 6 7 8
0 1 2 0 1 2 0 1 2

branch 0 branch 1 branch 2

20 / 72

Macro-scheduling using Integer Linear Programming (ILP)

Usual Workflow
1. $ presseail example2.ail --write-lp example2.lp

writes the scheduling constraints to a file
2. Call cplex
3. $ presseail example2.ail --read-sol example2.sol --compile 1

reads the solution and generates code

Testing simple examples
• $ presseail example2.ail --glpk --compile 1

21 / 72

Macro-scheduling using Integer Linear Programming (ILP)

Usual Workflow
1. $ presseail example2.ail --write-lp example2.lp

writes the scheduling constraints to a file
2. Call cplex
3. $ presseail example2.ail --read-sol example2.sol --compile 1

reads the solution and generates code

Testing simple examples
• $ presseail example2.ail --glpk --compile 1

21 / 72

Minimize
rmax.equ

Subject to
pw.def0.filter: pw.0.filter + pw.1.filter + pw.2.filter = 1
pw.def1.filter: 2 pw.2.filter + pw.1.filter - p.filter = 0
...
depd.wr.p.read.p.filter_5: p.filter - p.read >= 0
...
rbnd.cpu_8: 5 pw.0.filter_1 + 5 pw.0.filter_0 + 5 pw.0.filter <= 8
rbnd.cpu_7: 5 pw.1.filter_1 + 5 pw.1.filter_0 + 5 pw.1.filter <= 8
rbnd.cpu_6: 5 pw.2.filter_1 + 5 pw.2.filter_0 + 5 pw.2.filter <= 8

Bounds General
0 <= p.read < 3 p.read p.filter ...
0 <= p.filter < 3 Binary
... pw.0.read pw.1.read pw.2.read pw.0.filter ...

End 22 / 72

Plan

Rate-Synchronous Model

The Rosace Example

Flowgraphs and Scheduling

End-to-end Latency

Code Generation

Avoiding Cycles during Sequencing

Scheduling Complications

Multi-threaded Scheduling

Conclusion

23 / 72

The ROSACE Case Study [Pagetti, Saussié, Gratia, Noulard, and Siron (2014): The ROSACE Case
Study: From Simulink Specification to Multi/Many-Core Execution]

elevator

engine

dynamics q_filter

az_filter

h_filter

vz_filter

va_filter

alt_hold

vz_control

va_control

elevator
deflection

engine
thrust

altitude

vert.
acc.

pitch
rate

vert.
speed

true
airspeed

altitude command

vert.
speed
command

airspeed command

elevator
deflection
command

throttle
command

200Hz 100Hz 50Hz 24 / 72

http://oatao.univ-toulouse.fr/11522/1/Siron_11522.pdf
http://oatao.univ-toulouse.fr/11522/1/Siron_11522.pdf

The ROSACE Case Study [Pagetti, Saussié, Gratia, Noulard, and Siron (2014): The ROSACE Case
Study: From Simulink Specification to Multi/Many-Core Execution]

elevator

engine

dynamics q_filter

az_filter

h_filter

vz_filter

va_filter

alt_hold

vz_control

va_control

elevator
deflection

engine
thrust

altitude

vert.
acc.

pitch
rate

vert.
speed

true
airspeed

altitude command

vert.
speed
command

airspeed command

elevator
deflection
command

throttle
command

200Hz 100Hz 50Hz 24 / 72

http://oatao.univ-toulouse.fr/11522/1/Siron_11522.pdf
http://oatao.univ-toulouse.fr/11522/1/Siron_11522.pdf

The ROSACE Case Study [Pagetti, Saussié, Gratia, Noulard, and Siron (2014): The ROSACE Case
Study: From Simulink Specification to Multi/Many-Core Execution]

elevator

engine

dynamics q_filter

az_filter

h_filter

vz_filter

va_filter

alt_hold

vz_control

va_control

elevator
deflection

engine
thrust

altitude

vert.
acc.

pitch
rate

vert.
speed

true
airspeed

altitude command

vert.
speed
command

airspeed command

elevator
deflection
command

throttle
command

200Hz 100Hz 50Hz

resource ops : int
node alt_hold (h_c , h_f : float) returns (vz_c : float) requires (ops = 201);
...
const H200 : rate = 1 / 2 (* base clock = 400Hz *)
const H100 : rate = 1 / 4
const H50 : rate = 1 / 8
const H10 : rate = 1 / 40

node assemblage1(h_c : float :: H10 last = 0.; (* altitude command *)
va_c : float :: H10 last = 0.) (* airspeed command *)

returns (d_th_c : float :: H50 last = 1.6402; (* throttle command *)
d_e_c : float :: H50 last = 0.0186) (* elevator deflection command *)

var h_f : float :: H100; (* altitude *)
vz_c : float :: H50; (* vertical speed command *)
...

let
h_f = h_filter(h when (? % 2));

vz_c = alt_hold(current(h_c , (? % 5)), h_f when (? % 2));
...
resource balance ops;
latency assemblage exists <= 2

(dynamics , h_filter , alt_hold , vz_control , elevator);
tel

24 / 72

http://oatao.univ-toulouse.fr/11522/1/Siron_11522.pdf
http://oatao.univ-toulouse.fr/11522/1/Siron_11522.pdf

The ROSACE Case Study [Pagetti, Saussié, Gratia, Noulard, and Siron (2014): The ROSACE Case
Study: From Simulink Specification to Multi/Many-Core Execution]

elevator

engine

dynamics q_filter

az_filter

h_filter

vz_filter

va_filter

alt_hold

vz_control

va_control

elevator
deflection

engine
thrust

altitude

vert.
acc.

pitch
rate

vert.
speed

true
airspeed

altitude command

vert.
speed
command

airspeed command

elevator
deflection
command

throttle
command

200Hz 100Hz 50Hz 24 / 72

http://oatao.univ-toulouse.fr/11522/1/Siron_11522.pdf
http://oatao.univ-toulouse.fr/11522/1/Siron_11522.pdf

node assemblage(h_c , va_c : float rate (100, 0))
returns (d_th_c , d_e_c : float)
var vz_c : float;

d_e , th, h, az , va, q, vz : float;
vz_f , va_f , h_f , az_f , q_f : float;

let
(* 200Hz *)
d_e = elevator(d_e_c *^ 4);
th = engine(d_th_c *^ 4);
(va , az , q, vz, h) = dynamics (1.6402 fby th, 0.0186 fby d_e);
(* 100Hz *)
h_f = h_filter(h /^ 2);

az_f = az_filter(az /^ 2); ...
(* 50Hz *)
vz_c = alt_hold(h_c *^ 5, h_f /^ 2);
d_e_c = vz_control(vz_c , vz_f /^ 2, q_f ^/ 2,

az_f /^ 2);
d_th_c = va_control(va_c *^ 5, va_f /^ 2,

q_f /^ 2, vz_f /^ 2);

(* dynamics -> h_filter -> alt_hold -> vz_control -> elevator <= 2 *)
(* scheduled as real -time tasks with WCET , precedence , deadlines *)

tel 25 / 72

node assemblage(h_c , va_c : float :: 1/40 last = 0.)
returns (d_th_c , d_e_c : float :: 1/8 last = (1.6402 , 0.0186))
var vz_c : float :: 1/8;

d_e , th, h, az , va, q, vz : float :: 1/2;
vz_f , va_f , h_f , az_f , q_f : float :: 1/4;

let
(* 200Hz = 1/2 *)
d_e = elevator(current(d_e_c , (? % 4)));
th = engine(current(d_th_c , (? % 4)));
(va , az , q, vz, h) = dynamics(th , d_e);
(* 100Hz = 1/4 *)
h_f = h_filter(h when (? % 2));

az_f = az_filter(az when (? % 2)); ...
(* 50Hz = 1/8 *)
vz_c = alt_hold(current(h_c , (? % 5)), h_f when (? % 2));
d_e_c = vz_control(vz_c , vz_f when (? % 2), q_f when (? % 2),

az_f when (? % 2));
d_th_c = va_control(current(va_c , (? % 5)), va_f when (? % 2),

q_f when (? % 2), vz_f when (? % 2));

latency exists <= 2 (dynamics , h_filter , alt_hold , vz_control , elevator);
resource balance ops;

tel 26 / 72

Compilation: Model ⇒ Scheduling ⇒ Generated Code

h_f = h_filter(h when (? % 2));
vz_c = alt_hold(current(h_c , (? % 5)),

h_f when (? % 2));

h_filter alt_holdh_f

h_c

h
v_z_c

100Hz = 1/4
50Hz = 1/8

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7

p:h_filter=

p:alt_hold=

27 / 72

Compilation: Model ⇒ Scheduling ⇒ Generated Code

h_f = h_filter(h when (? % 2));
vz_c = alt_hold(current(h_c , (? % 5)),

h_f when (? % 2));

h_filter alt_holdh_f

h_c

h
v_z_c

100Hz = 1/4
50Hz = 1/8

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7

p:h_filter=

p:alt_hold=

27 / 72

Compilation: Model ⇒ Scheduling ⇒ Generated Code

h_f = h_filter(h when (? % 2));
vz_c = alt_hold(current(h_c , (? % 5)),

h_f when (? % 2));

h_filter alt_holdh_f

h_c

h
v_z_c

100Hz = 1/4
50Hz = 1/8

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7

p:h_filter=

p:alt_hold=

static int c_30 = 0;

void step0()
{

if (c_30 % 2 == 0) {
if (c_30 % 4 == 2) {

h_filter (); // ***
...

}
} else {

...
}
switch (c_30) {
case 2: va_control (); break;
case 6: alt_hold (); // ***

vz_control ();
break;

}
c_30 = (c_30 + 1) % 8;

}
27 / 72

Compilation: Model ⇒ Scheduling ⇒ Generated Code

h_f = h_filter(h when (? % 2));
vz_c = alt_hold(current(h_c , (? % 5)),

h_f when (? % 2));

h_filter alt_holdh_f

h_c

h
v_z_c

100Hz = 1/4
50Hz = 1/8

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7

p:h_filter=

p:alt_hold=

• Source: dataflow semantics
• Target: C code implicitly writing and reading

static variables

static int c_30 = 0;

void step0()
{

if (c_30 % 2 == 0) {
if (c_30 % 4 == 2) {

h_filter (); // ***
...

}
} else {

...
}
switch (c_30) {
case 2: va_control (); break;
case 6: alt_hold (); // ***

vz_control ();
break;

}
c_30 = (c_30 + 1) % 8;

}
27 / 72

Compilation: Model ⇒ Scheduling ⇒ Generated Code

h_f = h_filter(h when (? % 2));
vz_c = alt_hold(current(h_c , (? % 5)),

h_f when (? % 2));

h_filter alt_holdh_f

h_c

h
v_z_c

100Hz = 1/4
50Hz = 1/8

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7

p:h_filter=

p:alt_hold=

• Source: dataflow semantics
• Target: C code implicitly writing and reading

static variables

static int c_30 = 0;

void step0()
{

if (c_30 % 2 == 0) {
if (c_30 % 4 == 2) {

h_filter (); // ***
...

}
} else {

...
}
switch (c_30) {
case 2: va_control (); break;
case 6: alt_hold (); // ***

vz_control ();
break;

}
c_30 = (c_30 + 1) % 8;

}

f (concomitance)

27 / 72

Compilation: Model ⇒ Scheduling ⇒ Generated Code

h_f = h_filter(h when (? % 2));
vz_c = alt_hold(current(h_c , (? % 5)),

h_f when (? % 2));

h_filter alt_holdh_f

h_c

h
v_z_c

100Hz = 1/4
50Hz = 1/8

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7

p:h_filter=

p:alt_hold=

• Source: dataflow semantics
• Target: C code implicitly writing and reading

static variables

static int c_30 = 0;

void step0()
{

if (c_30 % 2 == 0) {
if (c_30 % 4 == 2) {

h_filter (); // ***
...

}
} else {

...
}
switch (c_30) {
case 2: va_control (); break;
case 6: alt_hold (); // ***

vz_control ();
break;

}
c_30 = (c_30 + 1) % 8;

}
27 / 72

Compilation: Model ⇒ Scheduling ⇒ Generated Code

h_f = h_filter(h when (? % 2));
vz_c = alt_hold(current(h_c , (? % 5)),

h_f when (? % 2));

h_filter alt_holdh_f

h_c

h
v_z_c

100Hz = 1/4
50Hz = 1/8

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7

p:h_filter=

p:alt_hold=

• Source: dataflow semantics
• Target: C code implicitly writing and reading

static variables

static int c_30 = 0;

void step0()
{

switch (c_30) {
case 2: va_control (); break;
case 6: alt_hold (); // ***

vz_control ();
break;

}
if (c_30 % 2 == 0) {

if (c_30 % 4 == 2) {
h_filter (); // ***
...

}
} else {

...
}
c_30 = (c_30 + 1) % 8;

}
27 / 72

Compilation: Model ⇒ Scheduling ⇒ Generated Code

h_f = h_filter(h when (? % 2));
vz_c = alt_hold(current(h_c , (? % 5)),

h_f when (? % 2));

h_filter alt_holdh_f

h_c

h
v_z_c

100Hz = 1/4
50Hz = 1/8

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7

p:h_filter=

p:alt_hold=

• Source: dataflow semantics
• Target: C code implicitly writing and reading

static variables

static int c_30 = 0;

void step0()
{

switch (c_30) {
case 2: va_control (); break;
case 6: alt_hold (); // ***

vz_control ();
break;

}
if (c_30 % 2 == 0) {

if (c_30 % 4 == 2) {
h_filter (); // ***
...

}
} else {

...
}
c_30 = (c_30 + 1) % 8;

}

b (concomitance)

27 / 72

Plan

Rate-Synchronous Model

The Rosace Example

Flowgraphs and Scheduling

End-to-end Latency

Code Generation

Avoiding Cycles during Sequencing

Scheduling Complications

Multi-threaded Scheduling

Conclusion

28 / 72

Flowgraphs

elevator

engine

dynamics q_filter

az_filter

h_filter

vz_filter

va_filter

alt_hold

vz_control

va_control

Dw
f

Dw
f

/2 f

/2 f

/2 f

/2 f

/2 f

/2 f

Dw
f/2 f

/2 f

/2 f/2 f

/2 f

/2 f

∗4 b

∗4 b

1/2 (200Hz) 1/4 (100Hz) 1/8 (50Hz)

• Generate flowgraph from program

» r = w + 1 becomes w → r

» r = last w + 1 also becomes w → r

• Annotate edges with

» Rate-transitions and data dependencies

» Concomitance: order within cycle

• Analyze the graph to identify cycles
(strongly-connected components)

• Eliminate cycles

» Changing the concomitance

» Dropping data dependencies

latency exists <= 2 (dynamics , h_filter , alt_hold , vz_control , elevator);

29 / 72

Flowgraphs

elevator

engine

dynamics q_filter

az_filter

h_filter

vz_filter

va_filter

alt_hold

vz_control

va_control

Dw
f

Dw
f

/2 f

/2 f

/2 f

/2 f

/2 f

/2 f

Dw
f/2 f

/2 f

/2 f/2 f

/2 f

/2 f

∗4 b

∗4 b

1/2 (200Hz) 1/4 (100Hz) 1/8 (50Hz)

• Generate flowgraph from program

» r = w + 1 becomes w → r

» r = last w + 1 also becomes w → r

• Annotate edges with

» Rate-transitions and data dependencies

» Concomitance: order within cycle

• Analyze the graph to identify cycles
(strongly-connected components)

• Eliminate cycles

» Changing the concomitance

» Dropping data dependencies

latency exists <= 2 (dynamics , h_filter , alt_hold , vz_control , elevator);
29 / 72

Flowgraphs

elevator

engine

dynamics q_filter

az_filter

h_filter

vz_filter

va_filter

alt_hold

vz_control

va_control

Dw
f

Dw
f

/2 f

/2 f

/2 f

/2 f

/2 f

/2 f

Dw
f/2 f

/2 f

/2 f/2 f

/2 f

/2 f

∗4 b

∗4 b

1/2 (200Hz) 1/4 (100Hz) 1/8 (50Hz)

• Generate flowgraph from program

» r = w + 1 becomes w → r

» r = last w + 1 also becomes w → r

• Annotate edges with

» Rate-transitions and data dependencies

» Concomitance: order within cycle

• Analyze the graph to identify cycles
(strongly-connected components)

• Eliminate cycles

» Changing the concomitance

» Dropping data dependencies

latency exists <= 2 (dynamics , h_filter , alt_hold , vz_control , elevator);
29 / 72

Flowgraphs

elevator

engine

dynamics q_filter

az_filter

h_filter

vz_filter

va_filter

alt_hold

vz_control

va_control

Dw
f

Dw
f

/2 f

/2 f

/2 f

/2 f

/2 f

/2 f

Dw
f/2 f

/2 f

/2 f/2 f

/2 f

/2 f

∗4 b

∗4 b

1/2 (200Hz) 1/4 (100Hz) 1/8 (50Hz)

• Generate flowgraph from program

» r = w + 1 becomes w → r

» r = last w + 1 also becomes w → r

• Annotate edges with

» Rate-transitions and data dependencies

» Concomitance: order within cycle

• Analyze the graph to identify cycles
(strongly-connected components)

• Eliminate cycles

» Changing the concomitance

» Dropping data dependencies

latency exists <= 2 (dynamics , h_filter , alt_hold , vz_control , elevator);
29 / 72

Flowgraphs

elevator

engine

dynamics q_filter

az_filter

h_filter

vz_filter

va_filter

alt_hold

vz_control

va_control

Dw
f

Dw
f

/2 f

/2 f

/2 f

/2 f

/2 f

/2 f

Dw
f/2 f

/2 f

/2 f/2 f

/2 f

/2 f

∗4 b

∗4 b

1/2 (200Hz) 1/4 (100Hz) 1/8 (50Hz)

• Generate flowgraph from program

» r = w + 1 becomes w → r

» r = last w + 1 also becomes w → r

• Annotate edges with

» Rate-transitions and data dependencies

» Concomitance: order within cycle

• Analyze the graph to identify cycles
(strongly-connected components)

• Eliminate cycles

» Changing the concomitance

» Dropping data dependencies

latency exists <= 2 (dynamics , h_filter , alt_hold , vz_control , elevator);
29 / 72

Flowgraphs

elevator

engine

dynamics q_filter

az_filter

h_filter

vz_filter

va_filter

alt_hold

vz_control

va_control

Dw
f

Dw
f

/2 f

/2 f

/2 f

/2 f

/2 f

/2 f

Dw
f/2 f

/2 f

/2 f/2 f

/2 f

/2 f

∗4 b

∗4 b

1/2 (200Hz) 1/4 (100Hz) 1/8 (50Hz)

• Generate flowgraph from program

» r = w + 1 becomes w → r

» r = last w + 1 also becomes w → r

• Annotate edges with

» Rate-transitions and data dependencies

» Concomitance: order within cycle

• Analyze the graph to identify cycles
(strongly-connected components)

• Eliminate cycles

» Changing the concomitance

» Dropping data dependencies

latency exists <= 2 (dynamics , h_filter , alt_hold , vz_control , elevator);
29 / 72

Flowgraphs

elevator

engine

dynamics q_filter

az_filter

h_filter

vz_filter

va_filter

alt_hold

vz_control

va_control

Dw
f

Dw
f

/2 f

/2 f

/2 f

/2 f

/2 f

/2 f

Dw
f/2 f

/2 f

/2 f/2 f

/2 f

/2 f

∗4 b

∗4 b

1/2 (200Hz) 1/4 (100Hz) 1/8 (50Hz)

• Generate flowgraph from program

» r = w + 1 becomes w → r

» r = last w + 1 also becomes w → r

• Annotate edges with

» Rate-transitions and data dependencies

» Concomitance: order within cycle

• Analyze the graph to identify cycles
(strongly-connected components)

• Eliminate cycles

» Changing the concomitance

» Dropping data dependencies

latency exists <= 2 (dynamics , h_filter , alt_hold , vz_control , elevator);
29 / 72

Flowgraph links

x eqw
Dw

f−−→ eqr

last x eqw
Dr

b−→ eqr

unconstrained eqw
D?

f−→ eqr

x when (·% n) eqw
/n f−−→ eqr

(last x) when (·% n) eqw

L/n b−−→ eqr

current(x , (·% n)) eqw
∗n f−−→ eqr (by default)

eqw
∗n b−−→ eqr (if ‘fast-first’)

current(last x , (·% n)) forbidden

30 / 72

Schedule

ops phase
elevator 98 1% 2 (p:e)
engine 82 0% 2

dynamics 1174 1% 2 (p:d)
h_filter 38 2% 4 (p:h)
az_filter 37 2% 4

q_filter 37 2% 4

vz_filter 37 2% 4

va_filter 38 2% 4

alt_hold 201 6% 8 (p:a)
vz_control 88 6% 8 (p:v)
va_control 90 2% 8

• Our ROSACE implementation

» Cycle period = 2.5 ms (400 Hz)

» Allow load balancing of fastest components (200Hz)

» The ops resource estimates the computations required

• Assign each component a phase relative to its period
(in terms of base cycles)

• Balance ops per cycle

• Respect end-to-end latency

latency exists <= 2 (dynamics , h_filter , alt_hold , vz_control , elevator);
latency exists <= 2 (d, h, a, v, e);

31 / 72

Schedule

ops phase
elevator 98 1% 2 (p:e)
engine 82 0% 2

dynamics 1174 1% 2 (p:d)
h_filter 38 2% 4 (p:h)
az_filter 37 2% 4

q_filter 37 2% 4

vz_filter 37 2% 4

va_filter 38 2% 4

alt_hold 201 6% 8 (p:a)
vz_control 88 6% 8 (p:v)
va_control 90 2% 8

0 1 0 1 0 1 0 1

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
0 1 0 1 0 1 0 1

p:d=

p:h=

p:a=

p:v=
p:e=

$

Σ = 4 Σ = 6 Σ = 8 Σ = 2

latency exists <= 2 (dynamics , h_filter , alt_hold , vz_control , elevator);
latency exists <= 2 (d, h, a, v, e);

31 / 72

Plan

Rate-Synchronous Model

The Rosace Example

Flowgraphs and Scheduling

End-to-end Latency

Code Generation

Avoiding Cycles during Sequencing

Scheduling Complications

Multi-threaded Scheduling

Conclusion

32 / 72

Minimum Pairwise Latency: same period

Direct communication: r = w

0 1 2 0 1 2
0 1 2 0 1 2

p:w :
p:r :

r, w :: 1/3
p:w = 1
p:r = 2
lat. = 1

latency: 2 1 0 2 1 0

• eqw
Dw

f−−→ eqr

• Write-before-read: p:w ≤ p:r

• 0 ≤ p:r − p:w < period

Delayed communication: r = last w

0 1 2 0 1 2
0 1 2 0 1 2

p:w :
p:r :

r, w :: 1/3
p:w = 1
p:r = 0
lat. = 2

latency: 3 2 1 3 2 1

• eqw
Dr

b−→ eqr

• Read-before-write: p:r ≤ p:w

• 0 < p:r − p:w + period ≤ period

Unconstrained communication (r = last? w)
• eqw

D?
f−→ eqr : (p:r − p:w + period(w)) mod period(w)

• eqw
D?

b−→ eqr : ((p:r − p:w + period(w)− 1) mod period(w)) + 1

33 / 72

Minimum Pairwise Latency: same period

Direct communication: r = w

0 1 2 0 1 2
0 1 2 0 1 2

p:w :
p:r :

r, w :: 1/3
p:w = 1
p:r = 2
lat. = 1

latency: 2 1 0 2 1 0

• eqw
Dw

f−−→ eqr

• Write-before-read: p:w ≤ p:r

• 0 ≤ p:r − p:w < period

Delayed communication: r = last w

0 1 2 0 1 2
0 1 2 0 1 2

p:w :
p:r :

r, w :: 1/3
p:w = 1
p:r = 0
lat. = 2

latency: 3 2 1 3 2 1

• eqw
Dr

b−→ eqr

• Read-before-write: p:r ≤ p:w

• 0 < p:r − p:w + period ≤ period

Unconstrained communication (r = last? w)
• eqw

D?
f−→ eqr : (p:r − p:w + period(w)) mod period(w)

• eqw
D?

b−→ eqr : ((p:r − p:w + period(w)− 1) mod period(w)) + 1

33 / 72

Minimum Pairwise Latency: same period

Direct communication: r = w

0 1 2 0 1 2
0 1 2 0 1 2

p:w :
p:r :

r, w :: 1/3
p:w = 1
p:r = 2
lat. = 1

latency: 2 1 0 2 1 0

• eqw
Dw

f−−→ eqr

• Write-before-read: p:w ≤ p:r

• 0 ≤ p:r − p:w < period

Delayed communication: r = last w

0 1 2 0 1 2
0 1 2 0 1 2

p:w :
p:r :

r, w :: 1/3
p:w = 1
p:r = 0
lat. = 2

latency: 3 2 1 3 2 1

• eqw
Dr

b−→ eqr

• Read-before-write: p:r ≤ p:w

• 0 < p:r − p:w + period ≤ period

Unconstrained communication (r = last? w)
• eqw

D?
f−→ eqr : (p:r − p:w + period(w)) mod period(w)

• eqw
D?

b−→ eqr : ((p:r − p:w + period(w)− 1) mod period(w)) + 1
33 / 72

Minimum Pairwise Latency: fast-to-slow

r = w when (? % 3) eqw
/n f−→ eqr (p:r − p:w) mod period(w)

0 1 2 0 1 2 0 1 2
0 1 2 3 4 5 6 7 8

p:w :
p:r :

w :: 1/3
r :: 1/9

p:w = 1
p:r = 6
lat. = 2latency:

0 % 3 1 % 3 2 % 3

% 0 1 2 0 1 2 0 1

r = (last e) when (0 % 3) eqw

L/n b−−→ eqr

((period(w) + p:r − p:w − 1) mod period(w)) + 1

0 1 2 0 1 2 0 1 2
0 1 2 3 4 5 6 7 8

p:w :
p:r :

w :: 1/3
r :: 1/9

p:w = 1
p:r = 7
lat. = 3latency:

0 % 3 1 % 3 2 % 3

2 3 1 2 3 1 2 3 %

34 / 72

Minimum Pairwise Latency: fast-to-slow

r = w when (? % 3) eqw
/n f−→ eqr (p:r − p:w) mod period(w)

0 1 2 0 1 2 0 1 2
0 1 2 3 4 5 6 7 8

p:w :
p:r :

w :: 1/3
r :: 1/9

p:w = 1
p:r = 6
lat. = 2latency:

0 % 3 1 % 3 2 % 3

% 0 1 2 0 1 2 0 1

r = (last e) when (0 % 3) eqw

L/n b−−→ eqr

((period(w) + p:r − p:w − 1) mod period(w)) + 1

0 1 2 0 1 2 0 1 2
0 1 2 3 4 5 6 7 8

p:w :
p:r :

w :: 1/3
r :: 1/9

p:w = 1
p:r = 7
lat. = 3latency:

0 % 3 1 % 3 2 % 3

2 3 1 2 3 1 2 3 %

34 / 72

Minimum Pairwise Latency: slow-to-fast

r = current(w, (1 % 3)) eqw
∗n f−−→ eqr

((branch · period(r) + period(w) + p:r − p:w − 1) mod period(w)) + 1

0 1 2 3 4 5 6 7 8
0 1 2 0 1 2 0 1 2

p:w :
p:r :

w :: 1/9
r :: 1/3

p:w = 4
p:r = 2
lat. = 1, 4latency:

2 % 3 1 % 3

branch 0

2 % 3 1 % 3

branch 1

2 % 3 1 % 3

branch 2

4 5 6 7 0 1 2 3 4

r = current(last w, (? % 3))?
• Not allowed. Not enough ‘memories’.

• Must be normalized to
r = current(t, (? % 3));
t = last w;

35 / 72

Minimum Pairwise Latency: slow-to-fast

r = current(w, (1 % 3)) eqw
∗n f−−→ eqr

((branch · period(r) + period(w) + p:r − p:w − 1) mod period(w)) + 1

0 1 2 3 4 5 6 7 8
0 1 2 0 1 2 0 1 2

p:w :
p:r :

w :: 1/9
r :: 1/3

p:w = 4
p:r = 2
lat. = 1, 4latency:

2 % 3 1 % 3

branch 0

2 % 3 1 % 3

branch 1

2 % 3 1 % 3

branch 2

4 5 6 7 0 1 2 3 4

r = current(last w, (? % 3))?
• Not allowed. Not enough ‘memories’.

• Must be normalized to
r = current(t, (? % 3));
t = last w;

35 / 72

End-to-End Latency: the wrong way

• Define pairwise latencies for each link type.

• Chain them together into a sequence.

• Difficult to handle branching and dead ends.

• Difficult to explain.

• Complicated formulas.

• There’s a better way. . .

36 / 72

Constraining End-to-end Latency

0 1 0 1 0 1 0 1

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
0 1 0 1 0 1 0 1

p:d=

p:h=

p:a=

p:v=
p:e=

$

Σ = 4 Σ = 6 Σ = 8 Σ = 2

0 1 0 1 0 1 0 1

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
0 1 0 1 0 1 0 1

$

Σ = 4 Σ = 6 Σ = 8 Σ = 2

37 / 72

Constraining End-to-end Latency

0 1 0 1 0 1 0 1

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
0 1 0 1 0 1 0 1

p:d=

p:h=

p:a=

p:v=
p:e=

$

Σ = 4 Σ = 6 Σ = 8 Σ = 2

0 1 0 1 0 1 0 1

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
0 1 0 1 0 1 0 1

$

Σ = 4 Σ = 6 Σ = 8 Σ = 2

37 / 72

Constraining End-to-end Latency

0 1 0 1 0 1 0 1

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
0 1 0 1 0 1 0 1

p:d=

p:h=

p:a=

p:v=
p:e=

$

Σ = 4 Σ = 6 Σ = 8 Σ = 2

(View online at https://www.tbrk.org/dataflow/showlatency) 38 / 72

https://www.tbrk.org/dataflow/showlatency/?chain=chain%20rosace%0Adynamics%20::%201%20%2F%202%20@%201;%0Ah_filter%20=%20dynamics%20when%20(%3F%20%25%202)%20@%202;%0Aalt_hold%20=%20h_filter%20when%20(%3F%20%25%202)%20@%206;%0Avz_control%20=%20alt_hold%20@%206;%0Aelevator%20=%20current%20(vz_control,%20(%3F%20%25%204))%20%2FCoB%20@%201;%0Alatency%20exists%20%3C=%202

Constraining End-to-end Latency

0 1 0 1 0 1 0 1

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
0 1 0 1 0 1 0 1

p:d=

p:h=

p:a=

p:v=
p:e=

$

Σ = 4 Σ = 6 Σ = 8 Σ = 2

d

h

a

v

e

/2 f

/2 f

Dw
f

∗4 b

(View online at https://www.tbrk.org/dataflow/showlatency) 38 / 72

https://www.tbrk.org/dataflow/showlatency/?chain=chain%20rosace%0Adynamics%20::%201%20%2F%202%20@%201;%0Ah_filter%20=%20dynamics%20when%20(%3F%20%25%202)%20@%202;%0Aalt_hold%20=%20h_filter%20when%20(%3F%20%25%202)%20@%206;%0Avz_control%20=%20alt_hold%20@%206;%0Aelevator%20=%20current%20(vz_control,%20(%3F%20%25%204))%20%2FCoB%20@%201;%0Alatency%20exists%20%3C=%202

Constraining End-to-end Latency

0 1 0 1 0 1 0 1

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
0 1 0 1 0 1 0 1

p:d=

p:h=

p:a=

p:v=
p:e=

$

Σ = 4 Σ = 6 Σ = 8 Σ = 2

d

h

a

v

e

/2 f

/2 f

Dw
f

∗4 b

i:d = 0 i:d = 1 i:d = 2 i:d = 3

0 ≤ i:d < 4

0 ≤ i:h < 2

0 ≤ i:a < 1

0 ≤ i:v < 1

0 ≤ i:e < 4

(View online at https://www.tbrk.org/dataflow/showlatency) 38 / 72

https://www.tbrk.org/dataflow/showlatency/?chain=chain%20rosace%0Adynamics%20::%201%20%2F%202%20@%201;%0Ah_filter%20=%20dynamics%20when%20(%3F%20%25%202)%20@%202;%0Aalt_hold%20=%20h_filter%20when%20(%3F%20%25%202)%20@%206;%0Avz_control%20=%20alt_hold%20@%206;%0Aelevator%20=%20current%20(vz_control,%20(%3F%20%25%204))%20%2FCoB%20@%201;%0Alatency%20exists%20%3C=%202

Constraining End-to-end Latency

0 1 0 1 0 1 0 1

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
0 1 0 1 0 1 0 1

p:d=

p:h=

p:a=

p:v=
p:e=

$

Σ = 4 Σ = 6 Σ = 8 Σ = 2

d

h

a

v

e

/2 f

/2 f

Dw
f

∗4 b

i:d = 0 i:d = 1 i:d = 2 i:d = 3

0 ≤ i:d < 4

0 ≤ i:h < 2

0 ≤ i:a < 1

0 ≤ i:v < 1

0 ≤ i:e < 4

0 ≤ latd,h < 2
2 · i:d + p:d + latd,h = 4 · i:h + p:h

(View online at https://www.tbrk.org/dataflow/showlatency) 38 / 72

https://www.tbrk.org/dataflow/showlatency/?chain=chain%20rosace%0Adynamics%20::%201%20%2F%202%20@%201;%0Ah_filter%20=%20dynamics%20when%20(%3F%20%25%202)%20@%202;%0Aalt_hold%20=%20h_filter%20when%20(%3F%20%25%202)%20@%206;%0Avz_control%20=%20alt_hold%20@%206;%0Aelevator%20=%20current%20(vz_control,%20(%3F%20%25%204))%20%2FCoB%20@%201;%0Alatency%20exists%20%3C=%202

Constraining End-to-end Latency

0 1 0 1 0 1 0 1

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
0 1 0 1 0 1 0 1

p:d=

p:h=

p:a=

p:v=
p:e=

$

Σ = 4 Σ = 6 Σ = 8 Σ = 2

d

h

a

v

e

/2 f

/2 f

Dw
f

∗4 b

i:d = 0 i:d = 1 i:d = 2 i:d = 3

0 ≤ i:d < 4

0 ≤ i:h < 2

0 ≤ i:a < 1

0 ≤ i:v < 1

0 ≤ i:e < 4

0 ≤ latd,h < 2
2 · i:d + p:d + latd,h = 4 · i:h + p:h

0 ≤ lath,a < 4
4 · i:h + p:h + lath,a = 8 · i:a+ p:a

(View online at https://www.tbrk.org/dataflow/showlatency) 38 / 72

https://www.tbrk.org/dataflow/showlatency/?chain=chain%20rosace%0Adynamics%20::%201%20%2F%202%20@%201;%0Ah_filter%20=%20dynamics%20when%20(%3F%20%25%202)%20@%202;%0Aalt_hold%20=%20h_filter%20when%20(%3F%20%25%202)%20@%206;%0Avz_control%20=%20alt_hold%20@%206;%0Aelevator%20=%20current%20(vz_control,%20(%3F%20%25%204))%20%2FCoB%20@%201;%0Alatency%20exists%20%3C=%202

Constraining End-to-end Latency

0 1 0 1 0 1 0 1

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
0 1 0 1 0 1 0 1

p:d=

p:h=

p:a=

p:v=
p:e=

$

Σ = 4 Σ = 6 Σ = 8 Σ = 2

d

h

a

v

e

/2 f

/2 f

Dw
f

∗4 b

i:d = 0 i:d = 1 i:d = 2 i:d = 3

0 ≤ i:d < 4

0 ≤ i:h < 2

0 ≤ i:a < 1

0 ≤ i:v < 1

0 ≤ i:e < 4

0 ≤ latd,h < 2
2 · i:d + p:d + latd,h = 4 · i:h + p:h

0 ≤ lath,a < 4
4 · i:h + p:h + lath,a = 8 · i:a+ p:a

(View online at https://www.tbrk.org/dataflow/showlatency) 38 / 72

https://www.tbrk.org/dataflow/showlatency/?chain=chain%20rosace%0Adynamics%20::%201%20%2F%202%20@%201;%0Ah_filter%20=%20dynamics%20when%20(%3F%20%25%202)%20@%202;%0Aalt_hold%20=%20h_filter%20when%20(%3F%20%25%202)%20@%206;%0Avz_control%20=%20alt_hold%20@%206;%0Aelevator%20=%20current%20(vz_control,%20(%3F%20%25%204))%20%2FCoB%20@%201;%0Alatency%20exists%20%3C=%202

Constraining End-to-end Latency

0 1 0 1 0 1 0 1

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
0 1 0 1 0 1 0 1

p:d=

p:h=

p:a=

p:v=
p:e=

$

Σ = 4 Σ = 6 Σ = 8 Σ = 2

d

h

a

v

e

/2 f

/2 f

Dw
f

∗4 b

i:d = 0 i:d = 1 i:d = 2 i:d = 3

0 ≤ i:d < 4

0 ≤ i:h < 2

0 ≤ i:a < 1

0 ≤ i:v < 1

0 ≤ i:e < 4

0 ≤ latd,h < 2
2 · i:d + p:d + latd,h = 4 · i:h + p:h

0 ≤ lath,a < 4
4 · i:h + p:h + lath,a = 8 · i:a+ p:a

0 ≤ lata,v < 8
8 · i:a+ p:a+ lata,v = 8 · i:v + p:v

(View online at https://www.tbrk.org/dataflow/showlatency) 38 / 72

https://www.tbrk.org/dataflow/showlatency/?chain=chain%20rosace%0Adynamics%20::%201%20%2F%202%20@%201;%0Ah_filter%20=%20dynamics%20when%20(%3F%20%25%202)%20@%202;%0Aalt_hold%20=%20h_filter%20when%20(%3F%20%25%202)%20@%206;%0Avz_control%20=%20alt_hold%20@%206;%0Aelevator%20=%20current%20(vz_control,%20(%3F%20%25%204))%20%2FCoB%20@%201;%0Alatency%20exists%20%3C=%202

Constraining End-to-end Latency

0 1 0 1 0 1 0 1

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
0 1 0 1 0 1 0 1

p:d=

p:h=

p:a=

p:v=
p:e=

$

Σ = 4 Σ = 6 Σ = 8 Σ = 2

d

h

a

v

e

/2 f

/2 f

Dw
f

∗4 b

i:d = 0 i:d = 1 i:d = 2 i:d = 3

0 ≤ i:d < 4

0 ≤ i:h < 2

0 ≤ i:a < 1

0 ≤ i:v < 1

0 ≤ i:e < 4

0 ≤ latd,h < 2
2 · i:d + p:d + latd,h = 4 · i:h + p:h

0 ≤ lath,a < 4
4 · i:h + p:h + lath,a = 8 · i:a+ p:a

0 ≤ lata,v < 8
8 · i:a+ p:a+ lata,v = 8 · i:v + p:v

0 < latv,e ≤ 8 wrapv,e ∈ {0, 1}
8 · i:v + p:v + latv,e − 8 · wrapv,e

= 2 · i:e + p:e

(View online at https://www.tbrk.org/dataflow/showlatency) 38 / 72

https://www.tbrk.org/dataflow/showlatency/?chain=chain%20rosace%0Adynamics%20::%201%20%2F%202%20@%201;%0Ah_filter%20=%20dynamics%20when%20(%3F%20%25%202)%20@%202;%0Aalt_hold%20=%20h_filter%20when%20(%3F%20%25%202)%20@%206;%0Avz_control%20=%20alt_hold%20@%206;%0Aelevator%20=%20current%20(vz_control,%20(%3F%20%25%204))%20%2FCoB%20@%201;%0Alatency%20exists%20%3C=%202

Constraining End-to-end Latency

0 1 0 1 0 1 0 1

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
0 1 0 1 0 1 0 1

p:d=

p:h=

p:a=

p:v=
p:e=

$

Σ = 4 Σ = 6 Σ = 8 Σ = 2

d

h

a

v

e

/2 f

/2 f

Dw
f

∗4 b

i:d = 0 i:d = 1 i:d = 2 i:d = 3

0 ≤ i:d < 4

0 ≤ i:h < 2

0 ≤ i:a < 1

0 ≤ i:v < 1

0 ≤ i:e < 4

0 ≤ latd,h < 2
2 · i:d + p:d + latd,h = 4 · i:h + p:h

0 ≤ lath,a < 4
4 · i:h + p:h + lath,a = 8 · i:a+ p:a

0 ≤ lata,v < 8
8 · i:a+ p:a+ lata,v = 8 · i:v + p:v

0 < latv,e ≤ 8 wrapv,e ∈ {0, 1}
8 · i:v + p:v + latv,e − 8 · wrapv,e

= 2 · i:e + p:e

(View online at https://www.tbrk.org/dataflow/showlatency)

0 1 0 1 0 1 0 1

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
0 1 0 1 0 1 0 1

$

38 / 72

https://www.tbrk.org/dataflow/showlatency/?chain=chain%20rosace%0Adynamics%20::%201%20%2F%202%20@%201;%0Ah_filter%20=%20dynamics%20when%20(%3F%20%25%202)%20@%202;%0Aalt_hold%20=%20h_filter%20when%20(%3F%20%25%202)%20@%206;%0Avz_control%20=%20alt_hold%20@%206;%0Aelevator%20=%20current%20(vz_control,%20(%3F%20%25%204))%20%2FCoB%20@%201;%0Alatency%20exists%20%3C=%202

Constraining End-to-end Latency

0 1 0 1 0 1 0 1

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
0 1 0 1 0 1 0 1

p:d=

p:h=

p:a=

p:v=
p:e=

$

Σ = 4 Σ = 6 Σ = 8 Σ = 2

d

h

a

v

e

/2 f

/2 f

Dw
f

∗4 b

i:d = 0 i:d = 1 i:d = 2 i:d = 3

0 ≤ i:d < 4

0 ≤ i:h < 2

0 ≤ i:a < 1

0 ≤ i:v < 1

0 ≤ i:e < 4

0 ≤ latd,h < 2
2 · i:d + p:d + latd,h = 4 · i:h + p:h

0 ≤ lath,a < 4
4 · i:h + p:h + lath,a = 8 · i:a+ p:a

0 ≤ lata,v < 8
8 · i:a+ p:a+ lata,v = 8 · i:v + p:v

0 < latv,e ≤ 8 wrapv,e ∈ {0, 1}
8 · i:v + p:v + latv,e − 8 · wrapv,e

= 2 · i:e + p:e

(View online at https://www.tbrk.org/dataflow/showlatency) 38 / 72

https://www.tbrk.org/dataflow/showlatency/?chain=chain%20rosace%0Adynamics%20::%201%20%2F%202%20@%201;%0Ah_filter%20=%20dynamics%20when%20(%3F%20%25%202)%20@%202;%0Aalt_hold%20=%20h_filter%20when%20(%3F%20%25%202)%20@%206;%0Avz_control%20=%20alt_hold%20@%206;%0Aelevator%20=%20current%20(vz_control,%20(%3F%20%25%204))%20%2FCoB%20@%201;%0Alatency%20exists%20%3C=%202

Constraining End-to-end Latency

0 1 0 1 0 1 0 1

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
0 1 0 1 0 1 0 1

p:d=

p:h=

p:a=

p:v=
p:e=

$

Σ = 4 Σ = 6 Σ = 8 Σ = 2

d

h

a

v

e

/2 f

/2 f

Dw
f

∗4 b

i:d = 0 i:d = 1 i:d = 2 i:d = 3

0 ≤ i:d < 4

0 ≤ i:h < 2

0 ≤ i:a < 1

0 ≤ i:v < 1

0 ≤ i:e < 4

0 ≤ latd,h < 2
2 · i:d + p:d + latd,h = 4 · i:h + p:h

0 ≤ lath,a < 4
4 · i:h + p:h + lath,a = 8 · i:a+ p:a

0 ≤ lata,v < 8
8 · i:a+ p:a+ lata,v = 8 · i:v + p:v

0 < latv,e ≤ 8 wrapv,e ∈ {0, 1}
8 · i:v + p:v + latv,e − 8 · wrapv,e

= 2 · i:e + p:e

latd,h + lath,a + lata,v + latv,e ≤ 2

(View online at https://www.tbrk.org/dataflow/showlatency) 38 / 72

https://www.tbrk.org/dataflow/showlatency/?chain=chain%20rosace%0Adynamics%20::%201%20%2F%202%20@%201;%0Ah_filter%20=%20dynamics%20when%20(%3F%20%25%202)%20@%202;%0Aalt_hold%20=%20h_filter%20when%20(%3F%20%25%202)%20@%206;%0Avz_control%20=%20alt_hold%20@%206;%0Aelevator%20=%20current%20(vz_control,%20(%3F%20%25%204))%20%2FCoB%20@%201;%0Alatency%20exists%20%3C=%202

Chains of constraints

latency forward/backward ≤ B (. . . ,w , r , . . .)

For each link w
s,c−−→ r ,

0 ≤ i:r < hp/period(r)

0 ≤ latw ,r < L for c = f
0 < latw ,r ≤ L for c = b

{
where L = period(r) if forward

and L = period(w) if backward

0 ≤ wrapw ,r ≤ 1
if forward and s ̸∈ {Dw, ∗n}
or if backward and s ̸∈ {Dw, /n}

period(w) · i:w + p:w + latw ,r − hp · wrapw ,r = period(r) · i:r + p:r .

• Each intermediate instance is both a reader
and a writer, and thus constrained by two
equations.

• forward: attach chains from the top

• backward: attach chains to the bottom

39 / 72

Chains of constraints

latency forward/backward ≤ B (. . . ,w , r , . . .)

For each link w
s,c−−→ r ,

0 ≤ i:r < hp/period(r)

0 ≤ latw ,r < L for c = f
0 < latw ,r ≤ L for c = b

{
where L = period(r) if forward

and L = period(w) if backward

0 ≤ wrapw ,r ≤ 1
if forward and s ̸∈ {Dw, ∗n}
or if backward and s ̸∈ {Dw, /n}

period(w) · i:w + p:w + latw ,r − hp · wrapw ,r = period(r) · i:r + p:r .

• Each intermediate instance is both a reader
and a writer, and thus constrained by two
equations.

• forward: attach chains from the top

• backward: attach chains to the bottom

39 / 72

Chains of constraints

latency forward/backward ≤ B (. . . ,w , r , . . .)

For each link w
s,c−−→ r ,

0 ≤ i:r < hp/period(r)

0 ≤ latw ,r < L for c = f
0 < latw ,r ≤ L for c = b

{
where L = period(r) if forward

and L = period(w) if backward

0 ≤ wrapw ,r ≤ 1
if forward and s ̸∈ {Dw, ∗n}
or if backward and s ̸∈ {Dw, /n}

period(w) · i:w + p:w + latw ,r − hp · wrapw ,r = period(r) · i:r + p:r .

• Each intermediate instance is both a reader
and a writer, and thus constrained by two
equations.

• forward: attach chains from the top

• backward: attach chains to the bottom
39 / 72

Showlatency demo

https://www.di.ens.fr/~bourke/showlat/showlatency.html

40 / 72

End-to-End Latency

Task B

first in last in

a: firstÆ first

b: firstÆ last

c: last Æ first

d: last Æ last

Task A

Task C

first out

input interval

last out
output interval

Figure 7. Example with Task Schedule and Several End-to-End Semantics

We finally have to do this for all possible timed paths,
and we obtain the set of all reachable timed paths TPreach:

TPreach = {�!tp 2 Nn | reach(
�!
tp)} (9)

Together with Equation 1, we can now determine the
maximum latency over all reachable paths:

�LL(p) = max{�(
�!
tp) | �!tp 2 TPreach} (10)

The superscript LL indicates the “last-to-last” semantics
which is explained in the next section.

4 Other End-to-End Semantics

In the preceding section, we have identified key prop-
erties of data reachability within register communication
paths, and we have provided a first end-to-end calculation.
This so far presented delay calculation follows the seman-
tics of “maximum data age”. This section introduces ex-
tensions that allow covering also other semantics, based on
reachability functions introduced above.

Generally speaking there are four different semantics
possible in an over-/under-sampling situation. These possi-
bilities are illustrated in Figure 7. The input and output in-
tervals illustrate the time span in which input changes have
an impact on the delay and output data is actually becom-
ing available. The so far introduced “max age” semantics
corresponds to the “last-to-last” paths from that figure. The
formulation “last-to-last” refers to the fact that it considers
the delay between the last input (that is not overwritten) un-
til the last output (even in case of duplicates). In the next
paragraphs, we extend the formal framework to cover also
the remaining three semantics.

4.1 Last-to-First

In this case, we are seeking the maximum delay of
all non-overwritten (“last”) inputs until the non-duplicate
(“first”) output of the path. This is a bit more complex that
the above mentioned calculation, because we must ignore
all timed paths that lead to later (non-first) duplicates of
other paths with the same start instance. With respect to
Figure 6, this applies to timed path H and D, which produce
duplicate of path A data.

Simply speaking, the set of all non-duplicate, reachable
timed paths TPfirst is that sub-set of all reachable timed path
TPreach for which no timed path exists that shares the same
start instance of the first task and has an earlier end instance
of the last task.

TPfirst = {�!tp 2 TPreach |
¬9

�!
tp0 2 TPreach : tp01 = tp1 ^ tp0n < tpn} (11)

The maximum “last-to-first” timed path delay �LF is
given by:

�LF (p) = max{�(
�!
tp) | �!tp 2 TPfirst} (12)

4.2 First-to-Last and First-to-First

So far, we have considered semantics where the last non-
overwritten input is considered, i.e. that input that actually
travels through the path. Now, we will consider also inputs
that are overwritten. This is important in situations where
we are interested in the delay that system needs to react to
value changes at the input that can arrive asynchronously

[
Feiertag, Richter, Nordlander, and Jonsson (2008): A Compo-
sitional Framework for End-to-End Path Delay Calculation of
Automotive Systems under Different Path Semantics

] [
Girault, Prévot, Quinton, Henia, and Sordon (2018): Im-
proving and Estimating the Precision of Bounds on the
Worst-Case Latency of Task Chains

]
, . . .

41 / 72

https://www.diva-portal.org/smash/get/diva2:1003533/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:1003533/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:1003533/FULLTEXT01.pdf
http://dx.doi.org/10.1109/TCAD.2018.2861016
http://dx.doi.org/10.1109/TCAD.2018.2861016
http://dx.doi.org/10.1109/TCAD.2018.2861016

Plan

Rate-Synchronous Model

The Rosace Example

Flowgraphs and Scheduling

End-to-end Latency

Code Generation

Avoiding Cycles during Sequencing

Scheduling Complications

Multi-threaded Scheduling

Conclusion

42 / 72

Manipulating flow graphs

Before scheduling

1. Construct flow graph from program
2. Remove potential cycles by flipping the concomitance
3. Use to generate ILP constraints (causality, end-to-end latency)

After scheduling: convert to dependency graph

1. Drop edges between equations that cannot execute in any phase.
2. Flip the cobackward (b) edges.
3. Use with standard algorithm to schedule equations within a step function.

43 / 72

ROSACE example: flow graph → dependency graph

ops phase
elevator 98 1% 2

engine 82 0% 2

dynamics 1174 1% 2

h_filter 38 2% 4

az_filter 37 2% 4

q_filter 37 2% 4

vz_filter 37 2% 4

va_filter 38 2% 4

alt_hold 201 6% 8

vz_control 88 6% 8

va_control 90 2% 8

elevator

engine

dynamics q_filter

az_filter

h_filter

vz_filter

va_filter

alt_hold

vz_control

va_control

Dw
f

Dw
f

/2 f

/2 f

/2 f

/2 f

/2 f

/2 f

Dw
f/2 f

/2 f

/2 f/2 f

/2 f

/2 f

∗4 b

∗4 b

1/2 (200Hz) 1/4 (100Hz) 1/8 (50Hz)

• Remove all edges between equations that can never execute in the same phase.

• Reverse edges whose concomitance is b.

44 / 72

ROSACE example: flow graph → dependency graph

ops phase
elevator 98 1% 2

engine 82 0% 2

dynamics 1174 1% 2

h_filter 38 2% 4

az_filter 37 2% 4

q_filter 37 2% 4

vz_filter 37 2% 4

va_filter 38 2% 4

alt_hold 201 6% 8

vz_control 88 6% 8

va_control 90 2% 8

elevator

engine

dynamics q_filter

az_filter

h_filter

vz_filter

va_filter

alt_hold

vz_control

va_control

Dw
f

Dw
f

/2 f

/2 f

/2 f

/2 f

/2 f

/2 f

Dw
f/2 f

/2 f

/2 f/2 f

/2 f

/2 f

∗4 b

∗4 b

1/2 (200Hz) 1/4 (100Hz) 1/8 (50Hz)

• Remove all edges between equations that can never execute in the same phase.

• Reverse edges whose concomitance is b.
44 / 72

ROSACE example: flow graph → dependency graph

ops phase
elevator 98 1% 2

engine 82 0% 2

dynamics 1174 1% 2

h_filter 38 2% 4

az_filter 37 2% 4

q_filter 37 2% 4

vz_filter 37 2% 4

va_filter 38 2% 4

alt_hold 201 6% 8

vz_control 88 6% 8

va_control 90 2% 8

elevator

engine

dynamics q_filter

az_filter

h_filter

vz_filter

va_filter

alt_hold

vz_control

va_control

Dw
f

Dw
f

/2 f

/2 f

/2 f

/2 f

/2 f

/2 f

Dw
f/2 f

/2 f

/2 f/2 f

/2 f

/2 f

∗4 b

∗4 b

1/2 (200Hz) 1/4 (100Hz) 1/8 (50Hz)

• Remove all edges between equations that can never execute in the same phase.

• Reverse edges whose concomitance is b.
44 / 72

ROSACE example: generated code
static int c = 0;
static float h_c = 0, d_th_c = 1.6402 , d_e_c = 0.0186 , ...;
static float vz_c , ..., q_f;

void step0()
{

if (c % 2 == 0) {
engine ();
if (c % 4 == 2) {

vz_filter (); h_filter (); va_filter (); q_filter (); az_filter ();
}

} else {
elevator (); dynamics ();

}
switch (c) {
case 2: va_control (); break;
case 6: alt_hold (); vz_control (); break;
}
c = (c + 1) % 8;

} 45 / 72

Code generation

Generalize the clock-directed scheme
[

Biernacki, Colaço, Hamon, and Pouzet
(2008): Clock-directed modular code gen-
eration for synchronous data-flow languages

]
• --compile n generates n step functions

» For the ith step function, stepi , List .filter_map equations by phase offset.

» Generate dependency graph ignoring variables not in stepi
—macro-scheduling guarantees they will already have been calculated.

» Micro-schedule equations in stepi w.r.t. dependencies and phase offset/rate.

• Generate multiple Obc step methods, buffer values in state variables.

• Optimize the Obc by joining adjacent case statements.

46 / 72

https://www.di.ens.fr/~pouzet/bib/lctes08a.pdf
https://www.di.ens.fr/~pouzet/bib/lctes08a.pdf
https://www.di.ens.fr/~pouzet/bib/lctes08a.pdf

Code generation: 2

Specialized case construct

case (state(c_3) mod 3) {
0: { skip }
1: { state(s2) := filter(state(s1)) }
2: { skip }
else undefined

};
case (state(c_3) mod 3) {

0: { state(s1) := filter(s0) }
1: { skip }
2: { skip }
else undefined

};

⇒
case (state(c_3) mod 3) {

0: { state(s1) := filter(s0) }
1: { state(s2) := filter(state(s1)) }
2: { skip }
else undefined

};

47 / 72

Code generation: 2

The ‘else undefined’ simplifies optimisation under (implicit) invariants

case (state(c_3) mod 24) {
7: { state(x) := read_real() }
23: { y := read_real() }
else undefined }

⇒
if (state(c_3) mod 24 = 7) {

state(x) := read_real()
} else {

y := read_real()
}

case (state(c_3) mod 24) {
7: { state(x) := read_real() }
15: { skip }
23: { y := read_real() }
else undefined }

⇒
case (state(c_3) mod 24) {

7: { state(x) := read_real() }
15: { skip }
23: { y := read_real() }
else undefined }

47 / 72

Plan

Rate-Synchronous Model

The Rosace Example

Flowgraphs and Scheduling

End-to-end Latency

Code Generation

Avoiding Cycles during Sequencing

Scheduling Complications

Multi-threaded Scheduling

Conclusion

48 / 72

More Information

Scheduling and Compiling Rate-Synchronous

Programs with End-To-End Latency Constraints

Timothy Bourke #

Inria Paris, France

Ecole normale supérieure, PSL University, CNRS, Paris, France

Vincent Bregeon #

Airbus Operations S.A.S., Toulouse, France

Marc Pouzet #

Ecole normale supérieure, PSL University, CNRS, Paris, France

Inria Paris, France

Abstract

We present an extension of the synchronous-reactive model for specifying multi-rate systems. A

set of periodically executed components and their communication dependencies are expressed in a

Lustre-like programming language with features for load balancing, resource limiting, and specifying

end-to-end latencies. The language abstracts from execution time and phase offsets. This permits

simple clock typing rules and a stream-based semantics, but requires each component to execute

within an overall base period. A program is compiled to a single periodic task in two stages.

First, Integer Linear Programming is used to determine phase offsets using standard encodings

for dependencies and load balancing, and a novel encoding for end-to-end latency. Second, a code

generation scheme is adapted to produce step functions. As a result, components are synchronous

relative to their respective rates, but not necessarily simultaneous relative to the base period. This

approach has been implemented in a prototype compiler and validated on an industrial application.

2012 ACM Subject Classification Computer systems organization → Real-time languages; Computer

systems organization → Embedded software

Keywords and phrases synchronous-reactive, integer linear programming, code generation

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2023.1

1 Introduction

Embedded control software is often designed as a set of components that each repeatedly

sample inputs, compute a transition function, and update outputs. Such components must

be scheduled so as to share processor resources while respecting timing and communication

requirements. Scheduling determines how data propagates along chains of components from

sensor acquisitions, through successive computations, to corresponding actuator emissions.

The end-to-end latencies of such chains are crucial to overall system performance.

We characterize and extend an approach for developing avionics software based on the

synchronous-reactive languages Lustre [29] and Scade [13]. Our application model comprises

(i) a set of components whose execution rates are specified as unit fractions (1/n) of a base rate,

and (ii) a graph of data flow between components. The Worst-Case Execution Time (WCET)

of each component must be less than the base period. This is a significant restriction, but

one that is acceptable for safety-critical avionics applications. The implementation target is

one or more sequential step functions called cyclically to, in turn, call individual component

step functions. Data is exchanged by reading and writing static variables.

Besides providing a way to specify real-time behavior, execution rates allow implementa-

tions to balance requirements and resources. For example, in the absence of other constraints,

a component at rate 1/3 can be scheduled to run every 3 cycles with any of the phases 0, 1,

© Timothy Bourke, Vincent Bregeon, and Marc Pouzet;

licensed under Creative Commons License CC-BY 4.0

35th Euromicro Conference on Real-Time Systems (ECRTS 2023).

Editor: Alessandro V. Papadopoulos; Article No. 1; pp. 1:1–1:22

Leibniz International Proceedings in Informatics

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

ECRTS 2023 Article
• Details of language and ILP encoding

• Encoding for end-to-end latency constraints

• Adapt clock-directed modular code generation[
Biernacki, Colaço, Hamon, and Pouzet (2008): Clock-directed mod-
ular code generation for synchronous data-flow languages

]
• Decide concomitance before ILP scheduling

TCRS 2024 article
• Decide concomitance during ILP scheduling

• Extra constraints to avoid cycles in sequencing

• The fast first convention to avoid cycles

49 / 72

https://www.di.ens.fr/~pouzet/bib/lctes08a.pdf
https://www.di.ens.fr/~pouzet/bib/lctes08a.pdf

More Information

Scheduling and Compiling Rate-Synchronous

Programs with End-To-End Latency Constraints

Timothy Bourke #

Inria Paris, France

Ecole normale supérieure, PSL University, CNRS, Paris, France

Vincent Bregeon #

Airbus Operations S.A.S., Toulouse, France

Marc Pouzet #

Ecole normale supérieure, PSL University, CNRS, Paris, France

Inria Paris, France

Abstract

We present an extension of the synchronous-reactive model for specifying multi-rate systems. A

set of periodically executed components and their communication dependencies are expressed in a

Lustre-like programming language with features for load balancing, resource limiting, and specifying

end-to-end latencies. The language abstracts from execution time and phase offsets. This permits

simple clock typing rules and a stream-based semantics, but requires each component to execute

within an overall base period. A program is compiled to a single periodic task in two stages.

First, Integer Linear Programming is used to determine phase offsets using standard encodings

for dependencies and load balancing, and a novel encoding for end-to-end latency. Second, a code

generation scheme is adapted to produce step functions. As a result, components are synchronous

relative to their respective rates, but not necessarily simultaneous relative to the base period. This

approach has been implemented in a prototype compiler and validated on an industrial application.

2012 ACM Subject Classification Computer systems organization → Real-time languages; Computer

systems organization → Embedded software

Keywords and phrases synchronous-reactive, integer linear programming, code generation

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2023.1

1 Introduction

Embedded control software is often designed as a set of components that each repeatedly

sample inputs, compute a transition function, and update outputs. Such components must

be scheduled so as to share processor resources while respecting timing and communication

requirements. Scheduling determines how data propagates along chains of components from

sensor acquisitions, through successive computations, to corresponding actuator emissions.

The end-to-end latencies of such chains are crucial to overall system performance.

We characterize and extend an approach for developing avionics software based on the

synchronous-reactive languages Lustre [29] and Scade [13]. Our application model comprises

(i) a set of components whose execution rates are specified as unit fractions (1/n) of a base rate,

and (ii) a graph of data flow between components. The Worst-Case Execution Time (WCET)

of each component must be less than the base period. This is a significant restriction, but

one that is acceptable for safety-critical avionics applications. The implementation target is

one or more sequential step functions called cyclically to, in turn, call individual component

step functions. Data is exchanged by reading and writing static variables.

Besides providing a way to specify real-time behavior, execution rates allow implementa-

tions to balance requirements and resources. For example, in the absence of other constraints,

a component at rate 1/3 can be scheduled to run every 3 cycles with any of the phases 0, 1,

© Timothy Bourke, Vincent Bregeon, and Marc Pouzet;

licensed under Creative Commons License CC-BY 4.0

35th Euromicro Conference on Real-Time Systems (ECRTS 2023).

Editor: Alessandro V. Papadopoulos; Article No. 1; pp. 1:1–1:22

Leibniz International Proceedings in Informatics

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

1

Lustre, fast first and fresh

Timothy Bourke and Marc Pouzet

Abstract—The rate-synchronous model formalizes an indus-

trial approach for composing Lustre nodes that execute at

different rates. Such programs are compiled to cyclic sequential

code in two steps. First, an Integer Linear Program is solved to

assign each component to a phase relative to its period. Second,

the corresponding step functions are ordered for execution

within a cycle of the generated code. By default, programs

are deterministic: for any valid schedule, the generated code

calculates the values decreed by the source dataflow semantics at

the specified rates. In practice, though, specifying precise values

in the source program is sometimes unnecessary, impracticable,

and overly constraining. In this case, the ILP constraints can

be relaxed, though not necessarily completely, and their solution

decides which dataflow semantics applies. Care is still required

to ensure that code generation remains deterministic.

Index Terms—Time-Centric Reactive Software, Dataflow Syn-

chronous Programming.

I. INTRODUCTION

A Lustre [1] program comprises a hierarchy of nodes,

which are functions that map streams of input values to

streams of output values. Within a node, a set of equations

defines the values of local and output signals using a simple

expression language. Equivalently, a node is specified by a

dataflow graph whose directed arcs are labelled by signal

names and whose vertexes specify computations. Nodes are

given a synchronous semantics so that they can be compiled

to code that executes in bounded time and memory. This is

usually taken to mean that (i) all streams advance at the same

rate so that one cycle of the generated code samples one value

of each input and calculates one value of each output, and

(ii) all calculations complete within a cycle, so that if the

worst-case execution time (WCET) of the generated code is

less than its execution period then correct timing behavior is

ensured. Within a node, it is possible to sample a signal x

on an arbitrary boolean signal b, written x when b, and

thereby to specify slower computations. For example, given

y = f(x when b), the node f is applied to a filtered sub-

stream, which is realized in the generated code by introducing

nested conditionals so that y is only updated in cycles where b

is true: if (b) { y = f(x); }. A type system [2] ensures

that variables are only read in cycles where they are written,

and thus also that buffering is unnecessary.

A recent article [3] proposed a variation of Lustre that

formalizes a long-standing practice at Airbus. After recalling

the details of the proposed rate-synchronous language, we

will focus on its nondeterministic aspects and make some new

observations on the treatment of cycles during scheduling and

compilation.

T. Bourke is with Inria and ENS, PSL University, CNRS, Paris, France.

M. Pouzet is with ENS, PSL University, CNRS, Paris, France and Inria.

Manuscript received TODO, 2024; revised TODO, 2024.

ZOH

Fast-to-Slow
Transition

f1s0
f2

s1 f3
s2

1/z

Slow-to-Fast
Transition

s3 s4

Fig. 1. Block diagram of 3-function pipeline.

II. A DETERMINISTIC RATE-SYNCHRONOUS LANGUAGE

The rate-synchronous language was originally motivated by

a flight control and guidance system comprising approximately

5000 nodes and over 120 000 named signals. The language’s

goal was to allow the nodes to be instantiated within a single

main node by providing constructions for specifying execution

rates and resource constraints. The Prelude language [4], [5]

was developed with the same goal and targets a set of tasks for

execution by a real-time scheduler. In contrast, rate-synchrony

abstracts from WCET and signal phases, and focuses on

statically-scheduled sequential code generation.

a) Example: To illustrate the language, consider the

simple system sketched in figure 1 using a syntax inspired by

Simulink.1 An input signal s0 is resampled at a slower rate,

and then processed by three successive filters f1, f2, and f3,

before being buffered as the output signal s4. Suppose that the

filters are to run three times slower than the base rate of the

system. The fast-to-slow rate transition must then choose one

of every three values to pass to f1. Similarly, the slow-to-fast

transition must propagate an initial value zero, one, or two

times before repeating each of its input values three times. In

our extension of Lustre, we could write

s1 = f1(s0 when (0 % 3));

s2 = f2(s1);

s3 = f3(s2);

s4 = current(s3, (2 % 3));

where we have chosen to sample the first of every three values

of s0; and to produce s4 by propagating an initial value two

times and then repeating every value of s3 three times.

If we set s0 = 1, 2, . . . and fi(x) = x+ 10, and declare s3

with an initial last value of 0, then the behavior of the system

can be visualized by the grid below.

s0 1 2 3 4 5 6 7 8 9 · · ·

s1 11 14 17 · · ·

s2 21 24 27 · · ·

s3 31 34 37 · · ·

s4 0 0 31 31 31 34 34 34 37 · · ·

Significantly, the width of the columns in the grid varies with

the execution rate of the corresponding signal. Each value

of s1, s2, and s3 is conceptually synchronous with three values

1https://www.mathworks.com/help/simulink/slref/ratetransition.html

0000–0000/00$00.00 © 2024 IEEE

ECRTS 2023 Article
• Details of language and ILP encoding

• Encoding for end-to-end latency constraints

• Adapt clock-directed modular code generation[
Biernacki, Colaço, Hamon, and Pouzet (2008): Clock-directed mod-
ular code generation for synchronous data-flow languages

]
• Decide concomitance before ILP scheduling

TCRS 2024 article
• Decide concomitance during ILP scheduling

• Extra constraints to avoid cycles in sequencing

• The fast first convention to avoid cycles
49 / 72

https://www.di.ens.fr/~pouzet/bib/lctes08a.pdf
https://www.di.ens.fr/~pouzet/bib/lctes08a.pdf

Direct Communications

r = f(w) r = f(last w)

fw r 1
z

Unit Delay

fw r

p:w < p:r + ccw ,r{
p:w ≤ p:r if ccw ,r = 1 (forward)
p:w < p:r if ccw ,r = 0 (backward)

p:r + ccw ,r ≤ p:w{
p:r < p:w if ccw ,r = 1 (forward)
p:r ≤ p:w if ccw ,r = 0 (backward)

0 1 2 0 1 2
0 1 2 0 1 2

% 0 1 % 0 1

0 1 2 0 1 2
0 1 2 0 1 2

%2 3 %2 3

50 / 72

Rate Transitions

r = f(w when (1 % 3)) r = f(current(w, (1 % 3)))
(i % n): take value i of every n

(? % n): take any of every n values
(i % n): i initial values, then repeat n times

ZOH

Fast-to-Slow
Transition

fw r
1/z

Slow-to-Fast
Transition

fw r

i · period(w) + p:w < p:r + ccw ,r

≤ (i + 1) · period(w) + p:w

(i − 1) · period(r) + p:r ≤ p:w − ccw ,r

< i · period(r) + p:r

0 1 2 0 1 2 0 1 2
0 1 2 3 4 5 6 7 8

0 % 3 1 % 3 2 % 3

0 1 2 3 4 5 6 7 8
0 1 2 0 1 2 0 1 2

branch 0 branch 1 branch 2

51 / 72

Cycles
s1 = f1(s0 when (? % 3), s4 when (? % 3));
s2 = f2(s1);
s3 = f3(s2);
s4 = current(s3 , (? % 3));

f1

f2

w:f
(s1)

f3

w:f
(s2)

s4_0

*3:f
(s3)

/3:f
(s4)

• Every flow has forward
concomitance (:f)

• If all equations are
scheduled in the same
phase, then code
generation fails because it
cannot break the cycle.

52 / 72

Cycles
s1 = f1(s0 when (? % 3), s4 when (? % 3));
s2 = f2(s1);
s3 = f3(s2);
s4 = current(s3 , (? % 3));

f1

f2

w:f
(s1)

f3

w:f
(s2)

s4_0

*3:f
(s3)

/3:f
(s4)

• Every flow has forward
concomitance (:f)

• If all equations are
scheduled in the same
phase, then code
generation fails because it
cannot break the cycle.

52 / 72

Cycles: excluding via ILP Encodings

Classic encodings: see, e.g., [Baharev, Schichl, Neumaier, and Achterberg (2021): An
Exact Method for the Minimum Feedback Arc Set Problem] §3

An Exact Method for the Minimum Feedback Arc Set Problem 1.4:7

of v causes the graph to become disconnected.) After these simplifications, a depth-first search
(DFS) is performed on each component to identify a (hopefully large) acyclic subgraph D; the arcs
not inD form a feedback arc set F . The cardinality of F is further reduced by a local search heuristic
that works on consecutive subgraphs.

Heuristics for the closely related linear ordering problem. Finally, the reader is referred to the
heuristics for the linear ordering problem, which are discussed in great detail in the work of Marti
and Reinelt [81].

3 EXACT METHODS
The published exact methods include (a) dynamic programming (e.g., [101, 112]), (b) custom branch
and bound methods (or smart enumeration with special exclusion rules; e.g., [37, 46, 64, 89, 92]),
and (c) integer programming formulations. The latter will be reviewed in the following sections
in detail, since the present work focuses on an approach based on integer programming.

3.1 Integer Programming Formulation with Triangle Inequalities
We seek a minimum cost ordering π ∗ of the nodes ofG = (V ,E). Let ci, j denote the cost associated
with the directed arc (i, j) ∈ E, and let ci, j = 0 if (i, j) ! E. If the cardinality of the feedback arc set
is to be minimized, then for each (i, j) ∈ E we have ci, j = 1. If the weighted minimum feedback
arc set problem is to be solved, then all ci, j associated with a directed arc equal the weight of the
corresponding arc (i, j). Furthermore, for all i, j ∈ V , i " j, let the binary variables yi, j associated
with a given ordering π encode the following: Let yi, j = 0 if node i precedes j in π , and let yi, j = 1
otherwise. Any ordering π uniquely determines a corresponding y. This results in the following
integer programming formulation:

min
y

n∑

j=1

!"#
j−1∑

k=1
ck, jyk, j +

n∑

ℓ=j+1
cℓ, j (1 − yj, ℓ)$%&

subject to
yi, j + yj,k − yi,k ≤ 1, 1 ≤ i < j < k ≤ n
−yi, j − yj,k + yi,k ≤ 0, 1 ≤ i < j < k ≤ n

yi, j = {0, 1}, 1 ≤ i < j ≤ n.

(3)

Any y that satisfies the triangle inequalities (3) must correspond to an ordering [43, 74, 83]. Note
that there are O (n2) binary variables and O (n3) constraints in (3). Custom-tailored cutting plane
algorithms have been developed to solve this integer program efficiently (and the linear ordering
problem in general; see, e.g., [43, 83] and [81, Ch. 5], but also Section 3.3).

3.2 Integer Programming Formulation as Minimum Set Cover
An alternative to the formulation of Section 3.1 is the minimum set cover formulation (see, e.g., [92,
Eq. (1)] or [13, Sec. 8.4]).

min
y

m∑

j=1
w jyj

s.t.
m∑

j=1
ai jyj ≥ 1 for each i = 1, 2, . . . , ℓ

yj is binary

(4)

Here, m denotes the number of arcs; w j are nonnegative weights (often integer); yj is 1 if arc
j is in the feedback arc set, and 0 otherwise; ai j is 1 if arc j participates in cycle i , and 0

ACM Journal of Experimental Algorithmics, Vol. 26, No. 1, Article 1.4. Publication date: March 2021.

(ci,j = 0 if (i, j) ̸∈ E yi,j = 0: i precedes j in ordering)

• Encode linear ordering as a graph:
i

j

yj,i = 1 − yi,j

• O(n2) binaries and O(n3) constraints. . .
• branch-and-cut:[

Grötschel, Jünger, and Reinelt (1984): A Cutting Plane
Algorithm for the Linear Ordering Problem

]

53 / 72

http://dx.doi.org/10.1145/3446429
http://dx.doi.org/10.1145/3446429
https://www.jstor.org/stable/170944
https://www.jstor.org/stable/170944

Cycles: excluding via ILP Encodings

Classic encodings: see, e.g., [Baharev, Schichl, Neumaier, and Achterberg (2021): An
Exact Method for the Minimum Feedback Arc Set Problem] §3

An Exact Method for the Minimum Feedback Arc Set Problem 1.4:7

of v causes the graph to become disconnected.) After these simplifications, a depth-first search
(DFS) is performed on each component to identify a (hopefully large) acyclic subgraph D; the arcs
not inD form a feedback arc set F . The cardinality of F is further reduced by a local search heuristic
that works on consecutive subgraphs.

Heuristics for the closely related linear ordering problem. Finally, the reader is referred to the
heuristics for the linear ordering problem, which are discussed in great detail in the work of Marti
and Reinelt [81].

3 EXACT METHODS
The published exact methods include (a) dynamic programming (e.g., [101, 112]), (b) custom branch
and bound methods (or smart enumeration with special exclusion rules; e.g., [37, 46, 64, 89, 92]),
and (c) integer programming formulations. The latter will be reviewed in the following sections
in detail, since the present work focuses on an approach based on integer programming.

3.1 Integer Programming Formulation with Triangle Inequalities
We seek a minimum cost ordering π ∗ of the nodes ofG = (V ,E). Let ci, j denote the cost associated
with the directed arc (i, j) ∈ E, and let ci, j = 0 if (i, j) ! E. If the cardinality of the feedback arc set
is to be minimized, then for each (i, j) ∈ E we have ci, j = 1. If the weighted minimum feedback
arc set problem is to be solved, then all ci, j associated with a directed arc equal the weight of the
corresponding arc (i, j). Furthermore, for all i, j ∈ V , i " j, let the binary variables yi, j associated
with a given ordering π encode the following: Let yi, j = 0 if node i precedes j in π , and let yi, j = 1
otherwise. Any ordering π uniquely determines a corresponding y. This results in the following
integer programming formulation:

min
y

n∑

j=1

!"#
j−1∑

k=1
ck, jyk, j +

n∑

ℓ=j+1
cℓ, j (1 − yj, ℓ)$%&

subject to
yi, j + yj,k − yi,k ≤ 1, 1 ≤ i < j < k ≤ n
−yi, j − yj,k + yi,k ≤ 0, 1 ≤ i < j < k ≤ n

yi, j = {0, 1}, 1 ≤ i < j ≤ n.

(3)

Any y that satisfies the triangle inequalities (3) must correspond to an ordering [43, 74, 83]. Note
that there are O (n2) binary variables and O (n3) constraints in (3). Custom-tailored cutting plane
algorithms have been developed to solve this integer program efficiently (and the linear ordering
problem in general; see, e.g., [43, 83] and [81, Ch. 5], but also Section 3.3).

3.2 Integer Programming Formulation as Minimum Set Cover
An alternative to the formulation of Section 3.1 is the minimum set cover formulation (see, e.g., [92,
Eq. (1)] or [13, Sec. 8.4]).

min
y

m∑

j=1
w jyj

s.t.
m∑

j=1
ai jyj ≥ 1 for each i = 1, 2, . . . , ℓ

yj is binary

(4)

Here, m denotes the number of arcs; w j are nonnegative weights (often integer); yj is 1 if arc
j is in the feedback arc set, and 0 otherwise; ai j is 1 if arc j participates in cycle i , and 0

ACM Journal of Experimental Algorithmics, Vol. 26, No. 1, Article 1.4. Publication date: March 2021.

(ci,j = 0 if (i, j) ̸∈ E yi,j = 0: i precedes j in ordering)

• Encode linear ordering as a graph:
i

j

yi,j = 0

yj,i = 1 − yi,j

• O(n2) binaries and O(n3) constraints. . .
• branch-and-cut:[

Grötschel, Jünger, and Reinelt (1984): A Cutting Plane
Algorithm for the Linear Ordering Problem

]
53 / 72

http://dx.doi.org/10.1145/3446429
http://dx.doi.org/10.1145/3446429
https://www.jstor.org/stable/170944
https://www.jstor.org/stable/170944

Cycles: excluding via ILP Encodings

Classic encodings: see, e.g., [Baharev, Schichl, Neumaier, and Achterberg (2021): An
Exact Method for the Minimum Feedback Arc Set Problem] §3

An Exact Method for the Minimum Feedback Arc Set Problem 1.4:7

of v causes the graph to become disconnected.) After these simplifications, a depth-first search
(DFS) is performed on each component to identify a (hopefully large) acyclic subgraph D; the arcs
not inD form a feedback arc set F . The cardinality of F is further reduced by a local search heuristic
that works on consecutive subgraphs.

Heuristics for the closely related linear ordering problem. Finally, the reader is referred to the
heuristics for the linear ordering problem, which are discussed in great detail in the work of Marti
and Reinelt [81].

3 EXACT METHODS
The published exact methods include (a) dynamic programming (e.g., [101, 112]), (b) custom branch
and bound methods (or smart enumeration with special exclusion rules; e.g., [37, 46, 64, 89, 92]),
and (c) integer programming formulations. The latter will be reviewed in the following sections
in detail, since the present work focuses on an approach based on integer programming.

3.1 Integer Programming Formulation with Triangle Inequalities
We seek a minimum cost ordering π ∗ of the nodes ofG = (V ,E). Let ci, j denote the cost associated
with the directed arc (i, j) ∈ E, and let ci, j = 0 if (i, j) ! E. If the cardinality of the feedback arc set
is to be minimized, then for each (i, j) ∈ E we have ci, j = 1. If the weighted minimum feedback
arc set problem is to be solved, then all ci, j associated with a directed arc equal the weight of the
corresponding arc (i, j). Furthermore, for all i, j ∈ V , i " j, let the binary variables yi, j associated
with a given ordering π encode the following: Let yi, j = 0 if node i precedes j in π , and let yi, j = 1
otherwise. Any ordering π uniquely determines a corresponding y. This results in the following
integer programming formulation:

min
y

n∑

j=1

!"#
j−1∑

k=1
ck, jyk, j +

n∑

ℓ=j+1
cℓ, j (1 − yj, ℓ)$%&

subject to
yi, j + yj,k − yi,k ≤ 1, 1 ≤ i < j < k ≤ n
−yi, j − yj,k + yi,k ≤ 0, 1 ≤ i < j < k ≤ n

yi, j = {0, 1}, 1 ≤ i < j ≤ n.

(3)

Any y that satisfies the triangle inequalities (3) must correspond to an ordering [43, 74, 83]. Note
that there are O (n2) binary variables and O (n3) constraints in (3). Custom-tailored cutting plane
algorithms have been developed to solve this integer program efficiently (and the linear ordering
problem in general; see, e.g., [43, 83] and [81, Ch. 5], but also Section 3.3).

3.2 Integer Programming Formulation as Minimum Set Cover
An alternative to the formulation of Section 3.1 is the minimum set cover formulation (see, e.g., [92,
Eq. (1)] or [13, Sec. 8.4]).

min
y

m∑

j=1
w jyj

s.t.
m∑

j=1
ai jyj ≥ 1 for each i = 1, 2, . . . , ℓ

yj is binary

(4)

Here, m denotes the number of arcs; w j are nonnegative weights (often integer); yj is 1 if arc
j is in the feedback arc set, and 0 otherwise; ai j is 1 if arc j participates in cycle i , and 0

ACM Journal of Experimental Algorithmics, Vol. 26, No. 1, Article 1.4. Publication date: March 2021.

(ci,j = 0 if (i, j) ̸∈ E yi,j = 0: i precedes j in ordering)

• Encode linear ordering as a graph:
i

j

yi,j = 1

yj,i = 1 − yi,j

• O(n2) binaries and O(n3) constraints. . .
• branch-and-cut:[

Grötschel, Jünger, and Reinelt (1984): A Cutting Plane
Algorithm for the Linear Ordering Problem

]
53 / 72

http://dx.doi.org/10.1145/3446429
http://dx.doi.org/10.1145/3446429
https://www.jstor.org/stable/170944
https://www.jstor.org/stable/170944

Cycles: excluding via ILP Encodings

Classic encodings: see, e.g., [Baharev, Schichl, Neumaier, and Achterberg (2021): An
Exact Method for the Minimum Feedback Arc Set Problem] §3

An Exact Method for the Minimum Feedback Arc Set Problem 1.4:7

of v causes the graph to become disconnected.) After these simplifications, a depth-first search
(DFS) is performed on each component to identify a (hopefully large) acyclic subgraph D; the arcs
not inD form a feedback arc set F . The cardinality of F is further reduced by a local search heuristic
that works on consecutive subgraphs.

Heuristics for the closely related linear ordering problem. Finally, the reader is referred to the
heuristics for the linear ordering problem, which are discussed in great detail in the work of Marti
and Reinelt [81].

3 EXACT METHODS
The published exact methods include (a) dynamic programming (e.g., [101, 112]), (b) custom branch
and bound methods (or smart enumeration with special exclusion rules; e.g., [37, 46, 64, 89, 92]),
and (c) integer programming formulations. The latter will be reviewed in the following sections
in detail, since the present work focuses on an approach based on integer programming.

3.1 Integer Programming Formulation with Triangle Inequalities
We seek a minimum cost ordering π ∗ of the nodes ofG = (V ,E). Let ci, j denote the cost associated
with the directed arc (i, j) ∈ E, and let ci, j = 0 if (i, j) ! E. If the cardinality of the feedback arc set
is to be minimized, then for each (i, j) ∈ E we have ci, j = 1. If the weighted minimum feedback
arc set problem is to be solved, then all ci, j associated with a directed arc equal the weight of the
corresponding arc (i, j). Furthermore, for all i, j ∈ V , i " j, let the binary variables yi, j associated
with a given ordering π encode the following: Let yi, j = 0 if node i precedes j in π , and let yi, j = 1
otherwise. Any ordering π uniquely determines a corresponding y. This results in the following
integer programming formulation:

min
y

n∑

j=1

!"#
j−1∑

k=1
ck, jyk, j +

n∑

ℓ=j+1
cℓ, j (1 − yj, ℓ)$%&

subject to
yi, j + yj,k − yi,k ≤ 1, 1 ≤ i < j < k ≤ n
−yi, j − yj,k + yi,k ≤ 0, 1 ≤ i < j < k ≤ n

yi, j = {0, 1}, 1 ≤ i < j ≤ n.

(3)

Any y that satisfies the triangle inequalities (3) must correspond to an ordering [43, 74, 83]. Note
that there are O (n2) binary variables and O (n3) constraints in (3). Custom-tailored cutting plane
algorithms have been developed to solve this integer program efficiently (and the linear ordering
problem in general; see, e.g., [43, 83] and [81, Ch. 5], but also Section 3.3).

3.2 Integer Programming Formulation as Minimum Set Cover
An alternative to the formulation of Section 3.1 is the minimum set cover formulation (see, e.g., [92,
Eq. (1)] or [13, Sec. 8.4]).

min
y

m∑

j=1
w jyj

s.t.
m∑

j=1
ai jyj ≥ 1 for each i = 1, 2, . . . , ℓ

yj is binary

(4)

Here, m denotes the number of arcs; w j are nonnegative weights (often integer); yj is 1 if arc
j is in the feedback arc set, and 0 otherwise; ai j is 1 if arc j participates in cycle i , and 0

ACM Journal of Experimental Algorithmics, Vol. 26, No. 1, Article 1.4. Publication date: March 2021.

(ci,j = 0 if (i, j) ̸∈ E yi,j = 0: i precedes j in ordering)

• Encode linear ordering as a graph:
i

j

yi,j = 1

yj,i = 1 − yi,j

i

j

k

%

• O(n2) binaries and O(n3) constraints. . .
• branch-and-cut:[

Grötschel, Jünger, and Reinelt (1984): A Cutting Plane
Algorithm for the Linear Ordering Problem

]
53 / 72

http://dx.doi.org/10.1145/3446429
http://dx.doi.org/10.1145/3446429
https://www.jstor.org/stable/170944
https://www.jstor.org/stable/170944

Cycles: excluding via ILP Encodings

Classic encodings: see, e.g., [Baharev, Schichl, Neumaier, and Achterberg (2021): An
Exact Method for the Minimum Feedback Arc Set Problem] §3

An Exact Method for the Minimum Feedback Arc Set Problem 1.4:7

of v causes the graph to become disconnected.) After these simplifications, a depth-first search
(DFS) is performed on each component to identify a (hopefully large) acyclic subgraph D; the arcs
not inD form a feedback arc set F . The cardinality of F is further reduced by a local search heuristic
that works on consecutive subgraphs.

Heuristics for the closely related linear ordering problem. Finally, the reader is referred to the
heuristics for the linear ordering problem, which are discussed in great detail in the work of Marti
and Reinelt [81].

3 EXACT METHODS
The published exact methods include (a) dynamic programming (e.g., [101, 112]), (b) custom branch
and bound methods (or smart enumeration with special exclusion rules; e.g., [37, 46, 64, 89, 92]),
and (c) integer programming formulations. The latter will be reviewed in the following sections
in detail, since the present work focuses on an approach based on integer programming.

3.1 Integer Programming Formulation with Triangle Inequalities
We seek a minimum cost ordering π ∗ of the nodes ofG = (V ,E). Let ci, j denote the cost associated
with the directed arc (i, j) ∈ E, and let ci, j = 0 if (i, j) ! E. If the cardinality of the feedback arc set
is to be minimized, then for each (i, j) ∈ E we have ci, j = 1. If the weighted minimum feedback
arc set problem is to be solved, then all ci, j associated with a directed arc equal the weight of the
corresponding arc (i, j). Furthermore, for all i, j ∈ V , i " j, let the binary variables yi, j associated
with a given ordering π encode the following: Let yi, j = 0 if node i precedes j in π , and let yi, j = 1
otherwise. Any ordering π uniquely determines a corresponding y. This results in the following
integer programming formulation:

min
y

n∑

j=1

!"#
j−1∑

k=1
ck, jyk, j +

n∑

ℓ=j+1
cℓ, j (1 − yj, ℓ)$%&

subject to
yi, j + yj,k − yi,k ≤ 1, 1 ≤ i < j < k ≤ n
−yi, j − yj,k + yi,k ≤ 0, 1 ≤ i < j < k ≤ n

yi, j = {0, 1}, 1 ≤ i < j ≤ n.

(3)

Any y that satisfies the triangle inequalities (3) must correspond to an ordering [43, 74, 83]. Note
that there are O (n2) binary variables and O (n3) constraints in (3). Custom-tailored cutting plane
algorithms have been developed to solve this integer program efficiently (and the linear ordering
problem in general; see, e.g., [43, 83] and [81, Ch. 5], but also Section 3.3).

3.2 Integer Programming Formulation as Minimum Set Cover
An alternative to the formulation of Section 3.1 is the minimum set cover formulation (see, e.g., [92,
Eq. (1)] or [13, Sec. 8.4]).

min
y

m∑

j=1
w jyj

s.t.
m∑

j=1
ai jyj ≥ 1 for each i = 1, 2, . . . , ℓ

yj is binary

(4)

Here, m denotes the number of arcs; w j are nonnegative weights (often integer); yj is 1 if arc
j is in the feedback arc set, and 0 otherwise; ai j is 1 if arc j participates in cycle i , and 0

ACM Journal of Experimental Algorithmics, Vol. 26, No. 1, Article 1.4. Publication date: March 2021.

(ci,j = 0 if (i, j) ̸∈ E yi,j = 0: i precedes j in ordering)

• Encode linear ordering as a graph:
i

j

yi,j = 1

yj,i = 1 − yi,j

i

j

k

%

• O(n2) binaries and O(n3) constraints. . .
• branch-and-cut:[

Grötschel, Jünger, and Reinelt (1984): A Cutting Plane
Algorithm for the Linear Ordering Problem

]
53 / 72

http://dx.doi.org/10.1145/3446429
http://dx.doi.org/10.1145/3446429
https://www.jstor.org/stable/170944
https://www.jstor.org/stable/170944

Cycles: excluding via ILP Encodings

Classic encodings: see, e.g., [Baharev, Schichl, Neumaier, and Achterberg (2021): An
Exact Method for the Minimum Feedback Arc Set Problem] §3

An Exact Method for the Minimum Feedback Arc Set Problem 1.4:7

of v causes the graph to become disconnected.) After these simplifications, a depth-first search
(DFS) is performed on each component to identify a (hopefully large) acyclic subgraph D; the arcs
not inD form a feedback arc set F . The cardinality of F is further reduced by a local search heuristic
that works on consecutive subgraphs.

Heuristics for the closely related linear ordering problem. Finally, the reader is referred to the
heuristics for the linear ordering problem, which are discussed in great detail in the work of Marti
and Reinelt [81].

3 EXACT METHODS
The published exact methods include (a) dynamic programming (e.g., [101, 112]), (b) custom branch
and bound methods (or smart enumeration with special exclusion rules; e.g., [37, 46, 64, 89, 92]),
and (c) integer programming formulations. The latter will be reviewed in the following sections
in detail, since the present work focuses on an approach based on integer programming.

3.1 Integer Programming Formulation with Triangle Inequalities
We seek a minimum cost ordering π ∗ of the nodes ofG = (V ,E). Let ci, j denote the cost associated
with the directed arc (i, j) ∈ E, and let ci, j = 0 if (i, j) ! E. If the cardinality of the feedback arc set
is to be minimized, then for each (i, j) ∈ E we have ci, j = 1. If the weighted minimum feedback
arc set problem is to be solved, then all ci, j associated with a directed arc equal the weight of the
corresponding arc (i, j). Furthermore, for all i, j ∈ V , i " j, let the binary variables yi, j associated
with a given ordering π encode the following: Let yi, j = 0 if node i precedes j in π , and let yi, j = 1
otherwise. Any ordering π uniquely determines a corresponding y. This results in the following
integer programming formulation:

min
y

n∑

j=1

!"#
j−1∑

k=1
ck, jyk, j +

n∑

ℓ=j+1
cℓ, j (1 − yj, ℓ)$%&

subject to
yi, j + yj,k − yi,k ≤ 1, 1 ≤ i < j < k ≤ n
−yi, j − yj,k + yi,k ≤ 0, 1 ≤ i < j < k ≤ n

yi, j = {0, 1}, 1 ≤ i < j ≤ n.

(3)

Any y that satisfies the triangle inequalities (3) must correspond to an ordering [43, 74, 83]. Note
that there are O (n2) binary variables and O (n3) constraints in (3). Custom-tailored cutting plane
algorithms have been developed to solve this integer program efficiently (and the linear ordering
problem in general; see, e.g., [43, 83] and [81, Ch. 5], but also Section 3.3).

3.2 Integer Programming Formulation as Minimum Set Cover
An alternative to the formulation of Section 3.1 is the minimum set cover formulation (see, e.g., [92,
Eq. (1)] or [13, Sec. 8.4]).

min
y

m∑

j=1
w jyj

s.t.
m∑

j=1
ai jyj ≥ 1 for each i = 1, 2, . . . , ℓ

yj is binary

(4)

Here, m denotes the number of arcs; w j are nonnegative weights (often integer); yj is 1 if arc
j is in the feedback arc set, and 0 otherwise; ai j is 1 if arc j participates in cycle i , and 0

ACM Journal of Experimental Algorithmics, Vol. 26, No. 1, Article 1.4. Publication date: March 2021.

(ci,j = 0 if (i, j) ̸∈ E yi,j = 0: i precedes j in ordering)

• Encode linear ordering as a graph:
i

j

yi,j = 1

yj,i = 1 − yi,j

i

j

k

%
i

j

k

l

• O(n2) binaries and O(n3) constraints. . .
• branch-and-cut:[

Grötschel, Jünger, and Reinelt (1984): A Cutting Plane
Algorithm for the Linear Ordering Problem

]
53 / 72

http://dx.doi.org/10.1145/3446429
http://dx.doi.org/10.1145/3446429
https://www.jstor.org/stable/170944
https://www.jstor.org/stable/170944

Cycles: excluding via ILP Encodings

Classic encodings: see, e.g., [Baharev, Schichl, Neumaier, and Achterberg (2021): An
Exact Method for the Minimum Feedback Arc Set Problem] §3

An Exact Method for the Minimum Feedback Arc Set Problem 1.4:7

of v causes the graph to become disconnected.) After these simplifications, a depth-first search
(DFS) is performed on each component to identify a (hopefully large) acyclic subgraph D; the arcs
not inD form a feedback arc set F . The cardinality of F is further reduced by a local search heuristic
that works on consecutive subgraphs.

Heuristics for the closely related linear ordering problem. Finally, the reader is referred to the
heuristics for the linear ordering problem, which are discussed in great detail in the work of Marti
and Reinelt [81].

3 EXACT METHODS
The published exact methods include (a) dynamic programming (e.g., [101, 112]), (b) custom branch
and bound methods (or smart enumeration with special exclusion rules; e.g., [37, 46, 64, 89, 92]),
and (c) integer programming formulations. The latter will be reviewed in the following sections
in detail, since the present work focuses on an approach based on integer programming.

3.1 Integer Programming Formulation with Triangle Inequalities
We seek a minimum cost ordering π ∗ of the nodes ofG = (V ,E). Let ci, j denote the cost associated
with the directed arc (i, j) ∈ E, and let ci, j = 0 if (i, j) ! E. If the cardinality of the feedback arc set
is to be minimized, then for each (i, j) ∈ E we have ci, j = 1. If the weighted minimum feedback
arc set problem is to be solved, then all ci, j associated with a directed arc equal the weight of the
corresponding arc (i, j). Furthermore, for all i, j ∈ V , i " j, let the binary variables yi, j associated
with a given ordering π encode the following: Let yi, j = 0 if node i precedes j in π , and let yi, j = 1
otherwise. Any ordering π uniquely determines a corresponding y. This results in the following
integer programming formulation:

min
y

n∑

j=1

!"#
j−1∑

k=1
ck, jyk, j +

n∑

ℓ=j+1
cℓ, j (1 − yj, ℓ)$%&

subject to
yi, j + yj,k − yi,k ≤ 1, 1 ≤ i < j < k ≤ n
−yi, j − yj,k + yi,k ≤ 0, 1 ≤ i < j < k ≤ n

yi, j = {0, 1}, 1 ≤ i < j ≤ n.

(3)

Any y that satisfies the triangle inequalities (3) must correspond to an ordering [43, 74, 83]. Note
that there are O (n2) binary variables and O (n3) constraints in (3). Custom-tailored cutting plane
algorithms have been developed to solve this integer program efficiently (and the linear ordering
problem in general; see, e.g., [43, 83] and [81, Ch. 5], but also Section 3.3).

3.2 Integer Programming Formulation as Minimum Set Cover
An alternative to the formulation of Section 3.1 is the minimum set cover formulation (see, e.g., [92,
Eq. (1)] or [13, Sec. 8.4]).

min
y

m∑

j=1
w jyj

s.t.
m∑

j=1
ai jyj ≥ 1 for each i = 1, 2, . . . , ℓ

yj is binary

(4)

Here, m denotes the number of arcs; w j are nonnegative weights (often integer); yj is 1 if arc
j is in the feedback arc set, and 0 otherwise; ai j is 1 if arc j participates in cycle i , and 0

ACM Journal of Experimental Algorithmics, Vol. 26, No. 1, Article 1.4. Publication date: March 2021.

(ci,j = 0 if (i, j) ̸∈ E yi,j = 0: i precedes j in ordering)

• Encode linear ordering as a graph:
i

j

yi,j = 1

yj,i = 1 − yi,j

i

j

k

%
i

j

k

l

• O(n2) binaries and O(n3) constraints. . .
• branch-and-cut:[

Grötschel, Jünger, and Reinelt (1984): A Cutting Plane
Algorithm for the Linear Ordering Problem

]
53 / 72

http://dx.doi.org/10.1145/3446429
http://dx.doi.org/10.1145/3446429
https://www.jstor.org/stable/170944
https://www.jstor.org/stable/170944

Cycles: excluding via ILP Encodings

Classic encodings: see, e.g., [Baharev, Schichl, Neumaier, and Achterberg (2021): An
Exact Method for the Minimum Feedback Arc Set Problem] §3

An Exact Method for the Minimum Feedback Arc Set Problem 1.4:7

of v causes the graph to become disconnected.) After these simplifications, a depth-first search
(DFS) is performed on each component to identify a (hopefully large) acyclic subgraph D; the arcs
not inD form a feedback arc set F . The cardinality of F is further reduced by a local search heuristic
that works on consecutive subgraphs.

Heuristics for the closely related linear ordering problem. Finally, the reader is referred to the
heuristics for the linear ordering problem, which are discussed in great detail in the work of Marti
and Reinelt [81].

3 EXACT METHODS
The published exact methods include (a) dynamic programming (e.g., [101, 112]), (b) custom branch
and bound methods (or smart enumeration with special exclusion rules; e.g., [37, 46, 64, 89, 92]),
and (c) integer programming formulations. The latter will be reviewed in the following sections
in detail, since the present work focuses on an approach based on integer programming.

3.1 Integer Programming Formulation with Triangle Inequalities
We seek a minimum cost ordering π ∗ of the nodes ofG = (V ,E). Let ci, j denote the cost associated
with the directed arc (i, j) ∈ E, and let ci, j = 0 if (i, j) ! E. If the cardinality of the feedback arc set
is to be minimized, then for each (i, j) ∈ E we have ci, j = 1. If the weighted minimum feedback
arc set problem is to be solved, then all ci, j associated with a directed arc equal the weight of the
corresponding arc (i, j). Furthermore, for all i, j ∈ V , i " j, let the binary variables yi, j associated
with a given ordering π encode the following: Let yi, j = 0 if node i precedes j in π , and let yi, j = 1
otherwise. Any ordering π uniquely determines a corresponding y. This results in the following
integer programming formulation:

min
y

n∑

j=1

!"#
j−1∑

k=1
ck, jyk, j +

n∑

ℓ=j+1
cℓ, j (1 − yj, ℓ)$%&

subject to
yi, j + yj,k − yi,k ≤ 1, 1 ≤ i < j < k ≤ n
−yi, j − yj,k + yi,k ≤ 0, 1 ≤ i < j < k ≤ n

yi, j = {0, 1}, 1 ≤ i < j ≤ n.

(3)

Any y that satisfies the triangle inequalities (3) must correspond to an ordering [43, 74, 83]. Note
that there are O (n2) binary variables and O (n3) constraints in (3). Custom-tailored cutting plane
algorithms have been developed to solve this integer program efficiently (and the linear ordering
problem in general; see, e.g., [43, 83] and [81, Ch. 5], but also Section 3.3).

3.2 Integer Programming Formulation as Minimum Set Cover
An alternative to the formulation of Section 3.1 is the minimum set cover formulation (see, e.g., [92,
Eq. (1)] or [13, Sec. 8.4]).

min
y

m∑

j=1
w jyj

s.t.
m∑

j=1
ai jyj ≥ 1 for each i = 1, 2, . . . , ℓ

yj is binary

(4)

Here, m denotes the number of arcs; w j are nonnegative weights (often integer); yj is 1 if arc
j is in the feedback arc set, and 0 otherwise; ai j is 1 if arc j participates in cycle i , and 0

ACM Journal of Experimental Algorithmics, Vol. 26, No. 1, Article 1.4. Publication date: March 2021.

(ci,j = 0 if (i, j) ̸∈ E yi,j = 0: i precedes j in ordering)

• Encode linear ordering as a graph:
i

j

yi,j = 1

yj,i = 1 − yi,j

i

j

k

%
i

j

k

l

• O(n2) binaries and O(n3) constraints. . .
• branch-and-cut:[

Grötschel, Jünger, and Reinelt (1984): A Cutting Plane
Algorithm for the Linear Ordering Problem

]
53 / 72

http://dx.doi.org/10.1145/3446429
http://dx.doi.org/10.1145/3446429
https://www.jstor.org/stable/170944
https://www.jstor.org/stable/170944

Cycles: excluding via ILP Encodings

Classic encodings: see, e.g., [Baharev, Schichl, Neumaier, and Achterberg (2021): An
Exact Method for the Minimum Feedback Arc Set Problem] §3

An Exact Method for the Minimum Feedback Arc Set Problem 1.4:7

of v causes the graph to become disconnected.) After these simplifications, a depth-first search
(DFS) is performed on each component to identify a (hopefully large) acyclic subgraph D; the arcs
not inD form a feedback arc set F . The cardinality of F is further reduced by a local search heuristic
that works on consecutive subgraphs.

Heuristics for the closely related linear ordering problem. Finally, the reader is referred to the
heuristics for the linear ordering problem, which are discussed in great detail in the work of Marti
and Reinelt [81].

3 EXACT METHODS
The published exact methods include (a) dynamic programming (e.g., [101, 112]), (b) custom branch
and bound methods (or smart enumeration with special exclusion rules; e.g., [37, 46, 64, 89, 92]),
and (c) integer programming formulations. The latter will be reviewed in the following sections
in detail, since the present work focuses on an approach based on integer programming.

3.1 Integer Programming Formulation with Triangle Inequalities
We seek a minimum cost ordering π ∗ of the nodes ofG = (V ,E). Let ci, j denote the cost associated
with the directed arc (i, j) ∈ E, and let ci, j = 0 if (i, j) ! E. If the cardinality of the feedback arc set
is to be minimized, then for each (i, j) ∈ E we have ci, j = 1. If the weighted minimum feedback
arc set problem is to be solved, then all ci, j associated with a directed arc equal the weight of the
corresponding arc (i, j). Furthermore, for all i, j ∈ V , i " j, let the binary variables yi, j associated
with a given ordering π encode the following: Let yi, j = 0 if node i precedes j in π , and let yi, j = 1
otherwise. Any ordering π uniquely determines a corresponding y. This results in the following
integer programming formulation:

min
y

n∑

j=1

!"#
j−1∑

k=1
ck, jyk, j +

n∑

ℓ=j+1
cℓ, j (1 − yj, ℓ)$%&

subject to
yi, j + yj,k − yi,k ≤ 1, 1 ≤ i < j < k ≤ n
−yi, j − yj,k + yi,k ≤ 0, 1 ≤ i < j < k ≤ n

yi, j = {0, 1}, 1 ≤ i < j ≤ n.

(3)

Any y that satisfies the triangle inequalities (3) must correspond to an ordering [43, 74, 83]. Note
that there are O (n2) binary variables and O (n3) constraints in (3). Custom-tailored cutting plane
algorithms have been developed to solve this integer program efficiently (and the linear ordering
problem in general; see, e.g., [43, 83] and [81, Ch. 5], but also Section 3.3).

3.2 Integer Programming Formulation as Minimum Set Cover
An alternative to the formulation of Section 3.1 is the minimum set cover formulation (see, e.g., [92,
Eq. (1)] or [13, Sec. 8.4]).

min
y

m∑

j=1
w jyj

s.t.
m∑

j=1
ai jyj ≥ 1 for each i = 1, 2, . . . , ℓ

yj is binary

(4)

Here, m denotes the number of arcs; w j are nonnegative weights (often integer); yj is 1 if arc
j is in the feedback arc set, and 0 otherwise; ai j is 1 if arc j participates in cycle i , and 0

ACM Journal of Experimental Algorithmics, Vol. 26, No. 1, Article 1.4. Publication date: March 2021.

(ci,j = 0 if (i, j) ̸∈ E yi,j = 0: i precedes j in ordering)

• Encode linear ordering as a graph:
i

j

yi,j = 1

yj,i = 1 − yi,j

i

j

k

%
i

j

k

l

• O(n2) binaries and O(n3) constraints. . .
• branch-and-cut:[

Grötschel, Jünger, and Reinelt (1984): A Cutting Plane
Algorithm for the Linear Ordering Problem

]
53 / 72

http://dx.doi.org/10.1145/3446429
http://dx.doi.org/10.1145/3446429
https://www.jstor.org/stable/170944
https://www.jstor.org/stable/170944

Cycles: excluding via ILP Encodings

Classic encodings: see, e.g., [Baharev, Schichl, Neumaier, and Achterberg (2021): An
Exact Method for the Minimum Feedback Arc Set Problem] §3

An Exact Method for the Minimum Feedback Arc Set Problem 1.4:7

of v causes the graph to become disconnected.) After these simplifications, a depth-first search
(DFS) is performed on each component to identify a (hopefully large) acyclic subgraph D; the arcs
not inD form a feedback arc set F . The cardinality of F is further reduced by a local search heuristic
that works on consecutive subgraphs.

Heuristics for the closely related linear ordering problem. Finally, the reader is referred to the
heuristics for the linear ordering problem, which are discussed in great detail in the work of Marti
and Reinelt [81].

3 EXACT METHODS
The published exact methods include (a) dynamic programming (e.g., [101, 112]), (b) custom branch
and bound methods (or smart enumeration with special exclusion rules; e.g., [37, 46, 64, 89, 92]),
and (c) integer programming formulations. The latter will be reviewed in the following sections
in detail, since the present work focuses on an approach based on integer programming.

3.1 Integer Programming Formulation with Triangle Inequalities
We seek a minimum cost ordering π ∗ of the nodes ofG = (V ,E). Let ci, j denote the cost associated
with the directed arc (i, j) ∈ E, and let ci, j = 0 if (i, j) ! E. If the cardinality of the feedback arc set
is to be minimized, then for each (i, j) ∈ E we have ci, j = 1. If the weighted minimum feedback
arc set problem is to be solved, then all ci, j associated with a directed arc equal the weight of the
corresponding arc (i, j). Furthermore, for all i, j ∈ V , i " j, let the binary variables yi, j associated
with a given ordering π encode the following: Let yi, j = 0 if node i precedes j in π , and let yi, j = 1
otherwise. Any ordering π uniquely determines a corresponding y. This results in the following
integer programming formulation:

min
y

n∑

j=1

!"#
j−1∑

k=1
ck, jyk, j +

n∑

ℓ=j+1
cℓ, j (1 − yj, ℓ)$%&

subject to
yi, j + yj,k − yi,k ≤ 1, 1 ≤ i < j < k ≤ n
−yi, j − yj,k + yi,k ≤ 0, 1 ≤ i < j < k ≤ n

yi, j = {0, 1}, 1 ≤ i < j ≤ n.

(3)

Any y that satisfies the triangle inequalities (3) must correspond to an ordering [43, 74, 83]. Note
that there are O (n2) binary variables and O (n3) constraints in (3). Custom-tailored cutting plane
algorithms have been developed to solve this integer program efficiently (and the linear ordering
problem in general; see, e.g., [43, 83] and [81, Ch. 5], but also Section 3.3).

3.2 Integer Programming Formulation as Minimum Set Cover
An alternative to the formulation of Section 3.1 is the minimum set cover formulation (see, e.g., [92,
Eq. (1)] or [13, Sec. 8.4]).

min
y

m∑

j=1
w jyj

s.t.
m∑

j=1
ai jyj ≥ 1 for each i = 1, 2, . . . , ℓ

yj is binary

(4)

Here, m denotes the number of arcs; w j are nonnegative weights (often integer); yj is 1 if arc
j is in the feedback arc set, and 0 otherwise; ai j is 1 if arc j participates in cycle i , and 0

ACM Journal of Experimental Algorithmics, Vol. 26, No. 1, Article 1.4. Publication date: March 2021.

(ci,j = 0 if (i, j) ̸∈ E yi,j = 0: i precedes j in ordering)

• Encode linear ordering as a graph:
i

j

yi,j = 1

yj,i = 1 − yi,j

i

j

k

%
i

j

k

l

• O(n2) binaries and O(n3) constraints. . .
• branch-and-cut:[

Grötschel, Jünger, and Reinelt (1984): A Cutting Plane
Algorithm for the Linear Ordering Problem

]
53 / 72

http://dx.doi.org/10.1145/3446429
http://dx.doi.org/10.1145/3446429
https://www.jstor.org/stable/170944
https://www.jstor.org/stable/170944

Cycles: excluding via ILP Encodings

Classic encodings: see, e.g., [Baharev, Schichl, Neumaier, and Achterberg (2021): An
Exact Method for the Minimum Feedback Arc Set Problem] §3

An Exact Method for the Minimum Feedback Arc Set Problem 1.4:7

of v causes the graph to become disconnected.) After these simplifications, a depth-first search
(DFS) is performed on each component to identify a (hopefully large) acyclic subgraph D; the arcs
not inD form a feedback arc set F . The cardinality of F is further reduced by a local search heuristic
that works on consecutive subgraphs.

Heuristics for the closely related linear ordering problem. Finally, the reader is referred to the
heuristics for the linear ordering problem, which are discussed in great detail in the work of Marti
and Reinelt [81].

3 EXACT METHODS
The published exact methods include (a) dynamic programming (e.g., [101, 112]), (b) custom branch
and bound methods (or smart enumeration with special exclusion rules; e.g., [37, 46, 64, 89, 92]),
and (c) integer programming formulations. The latter will be reviewed in the following sections
in detail, since the present work focuses on an approach based on integer programming.

3.1 Integer Programming Formulation with Triangle Inequalities
We seek a minimum cost ordering π ∗ of the nodes ofG = (V ,E). Let ci, j denote the cost associated
with the directed arc (i, j) ∈ E, and let ci, j = 0 if (i, j) ! E. If the cardinality of the feedback arc set
is to be minimized, then for each (i, j) ∈ E we have ci, j = 1. If the weighted minimum feedback
arc set problem is to be solved, then all ci, j associated with a directed arc equal the weight of the
corresponding arc (i, j). Furthermore, for all i, j ∈ V , i " j, let the binary variables yi, j associated
with a given ordering π encode the following: Let yi, j = 0 if node i precedes j in π , and let yi, j = 1
otherwise. Any ordering π uniquely determines a corresponding y. This results in the following
integer programming formulation:

min
y

n∑

j=1

!"#
j−1∑

k=1
ck, jyk, j +

n∑

ℓ=j+1
cℓ, j (1 − yj, ℓ)$%&

subject to
yi, j + yj,k − yi,k ≤ 1, 1 ≤ i < j < k ≤ n
−yi, j − yj,k + yi,k ≤ 0, 1 ≤ i < j < k ≤ n

yi, j = {0, 1}, 1 ≤ i < j ≤ n.

(3)

Any y that satisfies the triangle inequalities (3) must correspond to an ordering [43, 74, 83]. Note
that there are O (n2) binary variables and O (n3) constraints in (3). Custom-tailored cutting plane
algorithms have been developed to solve this integer program efficiently (and the linear ordering
problem in general; see, e.g., [43, 83] and [81, Ch. 5], but also Section 3.3).

3.2 Integer Programming Formulation as Minimum Set Cover
An alternative to the formulation of Section 3.1 is the minimum set cover formulation (see, e.g., [92,
Eq. (1)] or [13, Sec. 8.4]).

min
y

m∑

j=1
w jyj

s.t.
m∑

j=1
ai jyj ≥ 1 for each i = 1, 2, . . . , ℓ

yj is binary

(4)

Here, m denotes the number of arcs; w j are nonnegative weights (often integer); yj is 1 if arc
j is in the feedback arc set, and 0 otherwise; ai j is 1 if arc j participates in cycle i , and 0

ACM Journal of Experimental Algorithmics, Vol. 26, No. 1, Article 1.4. Publication date: March 2021.

(ci,j = 0 if (i, j) ̸∈ E yi,j = 0: i precedes j in ordering)

• Encode linear ordering as a graph:
i

j

yi,j = 1

yj,i = 1 − yi,j

i

j

k

%
i

j

k

l

• O(n2) binaries and O(n3) constraints. . .
• branch-and-cut:[

Grötschel, Jünger, and Reinelt (1984): A Cutting Plane
Algorithm for the Linear Ordering Problem

]
53 / 72

http://dx.doi.org/10.1145/3446429
http://dx.doi.org/10.1145/3446429
https://www.jstor.org/stable/170944
https://www.jstor.org/stable/170944

Cycles: excluding via ILP Encodings

Classic encodings: see, e.g., [Baharev, Schichl, Neumaier, and Achterberg (2021): An
Exact Method for the Minimum Feedback Arc Set Problem] §3

An Exact Method for the Minimum Feedback Arc Set Problem 1.4:7

of v causes the graph to become disconnected.) After these simplifications, a depth-first search
(DFS) is performed on each component to identify a (hopefully large) acyclic subgraph D; the arcs
not inD form a feedback arc set F . The cardinality of F is further reduced by a local search heuristic
that works on consecutive subgraphs.

Heuristics for the closely related linear ordering problem. Finally, the reader is referred to the
heuristics for the linear ordering problem, which are discussed in great detail in the work of Marti
and Reinelt [81].

3 EXACT METHODS
The published exact methods include (a) dynamic programming (e.g., [101, 112]), (b) custom branch
and bound methods (or smart enumeration with special exclusion rules; e.g., [37, 46, 64, 89, 92]),
and (c) integer programming formulations. The latter will be reviewed in the following sections
in detail, since the present work focuses on an approach based on integer programming.

3.1 Integer Programming Formulation with Triangle Inequalities
We seek a minimum cost ordering π ∗ of the nodes ofG = (V ,E). Let ci, j denote the cost associated
with the directed arc (i, j) ∈ E, and let ci, j = 0 if (i, j) ! E. If the cardinality of the feedback arc set
is to be minimized, then for each (i, j) ∈ E we have ci, j = 1. If the weighted minimum feedback
arc set problem is to be solved, then all ci, j associated with a directed arc equal the weight of the
corresponding arc (i, j). Furthermore, for all i, j ∈ V , i " j, let the binary variables yi, j associated
with a given ordering π encode the following: Let yi, j = 0 if node i precedes j in π , and let yi, j = 1
otherwise. Any ordering π uniquely determines a corresponding y. This results in the following
integer programming formulation:

min
y

n∑

j=1

!"#
j−1∑

k=1
ck, jyk, j +

n∑

ℓ=j+1
cℓ, j (1 − yj, ℓ)$%&

subject to
yi, j + yj,k − yi,k ≤ 1, 1 ≤ i < j < k ≤ n
−yi, j − yj,k + yi,k ≤ 0, 1 ≤ i < j < k ≤ n

yi, j = {0, 1}, 1 ≤ i < j ≤ n.

(3)

Any y that satisfies the triangle inequalities (3) must correspond to an ordering [43, 74, 83]. Note
that there are O (n2) binary variables and O (n3) constraints in (3). Custom-tailored cutting plane
algorithms have been developed to solve this integer program efficiently (and the linear ordering
problem in general; see, e.g., [43, 83] and [81, Ch. 5], but also Section 3.3).

3.2 Integer Programming Formulation as Minimum Set Cover
An alternative to the formulation of Section 3.1 is the minimum set cover formulation (see, e.g., [92,
Eq. (1)] or [13, Sec. 8.4]).

min
y

m∑

j=1
w jyj

s.t.
m∑

j=1
ai jyj ≥ 1 for each i = 1, 2, . . . , ℓ

yj is binary

(4)

Here, m denotes the number of arcs; w j are nonnegative weights (often integer); yj is 1 if arc
j is in the feedback arc set, and 0 otherwise; ai j is 1 if arc j participates in cycle i , and 0

ACM Journal of Experimental Algorithmics, Vol. 26, No. 1, Article 1.4. Publication date: March 2021.

(ci,j = 0 if (i, j) ̸∈ E yi,j = 0: i precedes j in ordering)

• Encode linear ordering as a graph:
i

j

yi,j = 1

yj,i = 1 − yi,j

i

j

k

%
i

j

k

l

• O(n2) binaries and O(n3) constraints. . .
• branch-and-cut:[

Grötschel, Jünger, and Reinelt (1984): A Cutting Plane
Algorithm for the Linear Ordering Problem

]

An Exact Method for the Minimum Feedback Arc Set Problem 1.4:7

of v causes the graph to become disconnected.) After these simplifications, a depth-first search
(DFS) is performed on each component to identify a (hopefully large) acyclic subgraph D; the arcs
not inD form a feedback arc set F . The cardinality of F is further reduced by a local search heuristic
that works on consecutive subgraphs.

Heuristics for the closely related linear ordering problem. Finally, the reader is referred to the
heuristics for the linear ordering problem, which are discussed in great detail in the work of Marti
and Reinelt [81].

3 EXACT METHODS
The published exact methods include (a) dynamic programming (e.g., [101, 112]), (b) custom branch
and bound methods (or smart enumeration with special exclusion rules; e.g., [37, 46, 64, 89, 92]),
and (c) integer programming formulations. The latter will be reviewed in the following sections
in detail, since the present work focuses on an approach based on integer programming.

3.1 Integer Programming Formulation with Triangle Inequalities
We seek a minimum cost ordering π ∗ of the nodes ofG = (V ,E). Let ci, j denote the cost associated
with the directed arc (i, j) ∈ E, and let ci, j = 0 if (i, j) ! E. If the cardinality of the feedback arc set
is to be minimized, then for each (i, j) ∈ E we have ci, j = 1. If the weighted minimum feedback
arc set problem is to be solved, then all ci, j associated with a directed arc equal the weight of the
corresponding arc (i, j). Furthermore, for all i, j ∈ V , i " j, let the binary variables yi, j associated
with a given ordering π encode the following: Let yi, j = 0 if node i precedes j in π , and let yi, j = 1
otherwise. Any ordering π uniquely determines a corresponding y. This results in the following
integer programming formulation:

min
y

n∑

j=1

!"#
j−1∑

k=1
ck, jyk, j +

n∑

ℓ=j+1
cℓ, j (1 − yj, ℓ)$%&

subject to
yi, j + yj,k − yi,k ≤ 1, 1 ≤ i < j < k ≤ n
−yi, j − yj,k + yi,k ≤ 0, 1 ≤ i < j < k ≤ n

yi, j = {0, 1}, 1 ≤ i < j ≤ n.

(3)

Any y that satisfies the triangle inequalities (3) must correspond to an ordering [43, 74, 83]. Note
that there are O (n2) binary variables and O (n3) constraints in (3). Custom-tailored cutting plane
algorithms have been developed to solve this integer program efficiently (and the linear ordering
problem in general; see, e.g., [43, 83] and [81, Ch. 5], but also Section 3.3).

3.2 Integer Programming Formulation as Minimum Set Cover
An alternative to the formulation of Section 3.1 is the minimum set cover formulation (see, e.g., [92,
Eq. (1)] or [13, Sec. 8.4]).

min
y

m∑

j=1
w jyj

s.t.
m∑

j=1
ai jyj ≥ 1 for each i = 1, 2, . . . , ℓ

yj is binary

(4)

Here, m denotes the number of arcs; w j are nonnegative weights (often integer); yj is 1 if arc
j is in the feedback arc set, and 0 otherwise; ai j is 1 if arc j participates in cycle i , and 0

ACM Journal of Experimental Algorithmics, Vol. 26, No. 1, Article 1.4. Publication date: March 2021.

• yj = 1: arc j is in the feedback arc set
• aij = 1: arc j participates in cycle i

• l elementary cycles, worst case ≈ O(2m). . .
• branch-and-cut:
[Grötschel, Jünger, and Reinelt (2022): Comments on “An
Exact Method for the Minimum Feedback Arc Set Problem”]

• cross fingers and enumerate?[
Johnson (1975): Finding All the Elementary Cir-
cuits of a Directed Graph

]
53 / 72

http://dx.doi.org/10.1145/3446429
http://dx.doi.org/10.1145/3446429
https://www.jstor.org/stable/170944
https://www.jstor.org/stable/170944
http://dx.doi.org/10.1145/3545001
http://dx.doi.org/10.1145/3545001
http://dx.doi.org/10.1137/0204007
http://dx.doi.org/10.1137/0204007

Cycles: excluding via ILP Encodings

Classic encodings: see, e.g., [Baharev, Schichl, Neumaier, and Achterberg (2021): An
Exact Method for the Minimum Feedback Arc Set Problem] §3

An Exact Method for the Minimum Feedback Arc Set Problem 1.4:7

of v causes the graph to become disconnected.) After these simplifications, a depth-first search
(DFS) is performed on each component to identify a (hopefully large) acyclic subgraph D; the arcs
not inD form a feedback arc set F . The cardinality of F is further reduced by a local search heuristic
that works on consecutive subgraphs.

Heuristics for the closely related linear ordering problem. Finally, the reader is referred to the
heuristics for the linear ordering problem, which are discussed in great detail in the work of Marti
and Reinelt [81].

3 EXACT METHODS
The published exact methods include (a) dynamic programming (e.g., [101, 112]), (b) custom branch
and bound methods (or smart enumeration with special exclusion rules; e.g., [37, 46, 64, 89, 92]),
and (c) integer programming formulations. The latter will be reviewed in the following sections
in detail, since the present work focuses on an approach based on integer programming.

3.1 Integer Programming Formulation with Triangle Inequalities
We seek a minimum cost ordering π ∗ of the nodes ofG = (V ,E). Let ci, j denote the cost associated
with the directed arc (i, j) ∈ E, and let ci, j = 0 if (i, j) ! E. If the cardinality of the feedback arc set
is to be minimized, then for each (i, j) ∈ E we have ci, j = 1. If the weighted minimum feedback
arc set problem is to be solved, then all ci, j associated with a directed arc equal the weight of the
corresponding arc (i, j). Furthermore, for all i, j ∈ V , i " j, let the binary variables yi, j associated
with a given ordering π encode the following: Let yi, j = 0 if node i precedes j in π , and let yi, j = 1
otherwise. Any ordering π uniquely determines a corresponding y. This results in the following
integer programming formulation:

min
y

n∑

j=1

!"#
j−1∑

k=1
ck, jyk, j +

n∑

ℓ=j+1
cℓ, j (1 − yj, ℓ)$%&

subject to
yi, j + yj,k − yi,k ≤ 1, 1 ≤ i < j < k ≤ n
−yi, j − yj,k + yi,k ≤ 0, 1 ≤ i < j < k ≤ n

yi, j = {0, 1}, 1 ≤ i < j ≤ n.

(3)

Any y that satisfies the triangle inequalities (3) must correspond to an ordering [43, 74, 83]. Note
that there are O (n2) binary variables and O (n3) constraints in (3). Custom-tailored cutting plane
algorithms have been developed to solve this integer program efficiently (and the linear ordering
problem in general; see, e.g., [43, 83] and [81, Ch. 5], but also Section 3.3).

3.2 Integer Programming Formulation as Minimum Set Cover
An alternative to the formulation of Section 3.1 is the minimum set cover formulation (see, e.g., [92,
Eq. (1)] or [13, Sec. 8.4]).

min
y

m∑

j=1
w jyj

s.t.
m∑

j=1
ai jyj ≥ 1 for each i = 1, 2, . . . , ℓ

yj is binary

(4)

Here, m denotes the number of arcs; w j are nonnegative weights (often integer); yj is 1 if arc
j is in the feedback arc set, and 0 otherwise; ai j is 1 if arc j participates in cycle i , and 0

ACM Journal of Experimental Algorithmics, Vol. 26, No. 1, Article 1.4. Publication date: March 2021.

(ci,j = 0 if (i, j) ̸∈ E yi,j = 0: i precedes j in ordering)

• Encode linear ordering as a graph:
i

j

yi,j = 1

yj,i = 1 − yi,j

i

j

k

%
i

j

k

l

• O(n2) binaries and O(n3) constraints. . .
• branch-and-cut:[

Grötschel, Jünger, and Reinelt (1984): A Cutting Plane
Algorithm for the Linear Ordering Problem

]

An Exact Method for the Minimum Feedback Arc Set Problem 1.4:7

of v causes the graph to become disconnected.) After these simplifications, a depth-first search
(DFS) is performed on each component to identify a (hopefully large) acyclic subgraph D; the arcs
not inD form a feedback arc set F . The cardinality of F is further reduced by a local search heuristic
that works on consecutive subgraphs.

Heuristics for the closely related linear ordering problem. Finally, the reader is referred to the
heuristics for the linear ordering problem, which are discussed in great detail in the work of Marti
and Reinelt [81].

3 EXACT METHODS
The published exact methods include (a) dynamic programming (e.g., [101, 112]), (b) custom branch
and bound methods (or smart enumeration with special exclusion rules; e.g., [37, 46, 64, 89, 92]),
and (c) integer programming formulations. The latter will be reviewed in the following sections
in detail, since the present work focuses on an approach based on integer programming.

3.1 Integer Programming Formulation with Triangle Inequalities
We seek a minimum cost ordering π ∗ of the nodes ofG = (V ,E). Let ci, j denote the cost associated
with the directed arc (i, j) ∈ E, and let ci, j = 0 if (i, j) ! E. If the cardinality of the feedback arc set
is to be minimized, then for each (i, j) ∈ E we have ci, j = 1. If the weighted minimum feedback
arc set problem is to be solved, then all ci, j associated with a directed arc equal the weight of the
corresponding arc (i, j). Furthermore, for all i, j ∈ V , i " j, let the binary variables yi, j associated
with a given ordering π encode the following: Let yi, j = 0 if node i precedes j in π , and let yi, j = 1
otherwise. Any ordering π uniquely determines a corresponding y. This results in the following
integer programming formulation:

min
y

n∑

j=1

!"#
j−1∑

k=1
ck, jyk, j +

n∑

ℓ=j+1
cℓ, j (1 − yj, ℓ)$%&

subject to
yi, j + yj,k − yi,k ≤ 1, 1 ≤ i < j < k ≤ n
−yi, j − yj,k + yi,k ≤ 0, 1 ≤ i < j < k ≤ n

yi, j = {0, 1}, 1 ≤ i < j ≤ n.

(3)

Any y that satisfies the triangle inequalities (3) must correspond to an ordering [43, 74, 83]. Note
that there are O (n2) binary variables and O (n3) constraints in (3). Custom-tailored cutting plane
algorithms have been developed to solve this integer program efficiently (and the linear ordering
problem in general; see, e.g., [43, 83] and [81, Ch. 5], but also Section 3.3).

3.2 Integer Programming Formulation as Minimum Set Cover
An alternative to the formulation of Section 3.1 is the minimum set cover formulation (see, e.g., [92,
Eq. (1)] or [13, Sec. 8.4]).

min
y

m∑

j=1
w jyj

s.t.
m∑

j=1
ai jyj ≥ 1 for each i = 1, 2, . . . , ℓ

yj is binary

(4)

Here, m denotes the number of arcs; w j are nonnegative weights (often integer); yj is 1 if arc
j is in the feedback arc set, and 0 otherwise; ai j is 1 if arc j participates in cycle i , and 0

ACM Journal of Experimental Algorithmics, Vol. 26, No. 1, Article 1.4. Publication date: March 2021.

• yj = 1: arc j is in the feedback arc set
• aij = 1: arc j participates in cycle i

• l elementary cycles, worst case ≈ O(2m). . .
• branch-and-cut:
[Grötschel, Jünger, and Reinelt (2022): Comments on “An
Exact Method for the Minimum Feedback Arc Set Problem”]

• cross fingers and enumerate?[
Johnson (1975): Finding All the Elementary Cir-
cuits of a Directed Graph

]
53 / 72

http://dx.doi.org/10.1145/3446429
http://dx.doi.org/10.1145/3446429
https://www.jstor.org/stable/170944
https://www.jstor.org/stable/170944
http://dx.doi.org/10.1145/3545001
http://dx.doi.org/10.1145/3545001
http://dx.doi.org/10.1137/0204007
http://dx.doi.org/10.1137/0204007

Cycles: excluding via ILP Encodings

Classic encodings: see, e.g., [Baharev, Schichl, Neumaier, and Achterberg (2021): An
Exact Method for the Minimum Feedback Arc Set Problem] §3

An Exact Method for the Minimum Feedback Arc Set Problem 1.4:7

of v causes the graph to become disconnected.) After these simplifications, a depth-first search
(DFS) is performed on each component to identify a (hopefully large) acyclic subgraph D; the arcs
not inD form a feedback arc set F . The cardinality of F is further reduced by a local search heuristic
that works on consecutive subgraphs.

Heuristics for the closely related linear ordering problem. Finally, the reader is referred to the
heuristics for the linear ordering problem, which are discussed in great detail in the work of Marti
and Reinelt [81].

3 EXACT METHODS
The published exact methods include (a) dynamic programming (e.g., [101, 112]), (b) custom branch
and bound methods (or smart enumeration with special exclusion rules; e.g., [37, 46, 64, 89, 92]),
and (c) integer programming formulations. The latter will be reviewed in the following sections
in detail, since the present work focuses on an approach based on integer programming.

3.1 Integer Programming Formulation with Triangle Inequalities
We seek a minimum cost ordering π ∗ of the nodes ofG = (V ,E). Let ci, j denote the cost associated
with the directed arc (i, j) ∈ E, and let ci, j = 0 if (i, j) ! E. If the cardinality of the feedback arc set
is to be minimized, then for each (i, j) ∈ E we have ci, j = 1. If the weighted minimum feedback
arc set problem is to be solved, then all ci, j associated with a directed arc equal the weight of the
corresponding arc (i, j). Furthermore, for all i, j ∈ V , i " j, let the binary variables yi, j associated
with a given ordering π encode the following: Let yi, j = 0 if node i precedes j in π , and let yi, j = 1
otherwise. Any ordering π uniquely determines a corresponding y. This results in the following
integer programming formulation:

min
y

n∑

j=1

!"#
j−1∑

k=1
ck, jyk, j +

n∑

ℓ=j+1
cℓ, j (1 − yj, ℓ)$%&

subject to
yi, j + yj,k − yi,k ≤ 1, 1 ≤ i < j < k ≤ n
−yi, j − yj,k + yi,k ≤ 0, 1 ≤ i < j < k ≤ n

yi, j = {0, 1}, 1 ≤ i < j ≤ n.

(3)

Any y that satisfies the triangle inequalities (3) must correspond to an ordering [43, 74, 83]. Note
that there are O (n2) binary variables and O (n3) constraints in (3). Custom-tailored cutting plane
algorithms have been developed to solve this integer program efficiently (and the linear ordering
problem in general; see, e.g., [43, 83] and [81, Ch. 5], but also Section 3.3).

3.2 Integer Programming Formulation as Minimum Set Cover
An alternative to the formulation of Section 3.1 is the minimum set cover formulation (see, e.g., [92,
Eq. (1)] or [13, Sec. 8.4]).

min
y

m∑

j=1
w jyj

s.t.
m∑

j=1
ai jyj ≥ 1 for each i = 1, 2, . . . , ℓ

yj is binary

(4)

Here, m denotes the number of arcs; w j are nonnegative weights (often integer); yj is 1 if arc
j is in the feedback arc set, and 0 otherwise; ai j is 1 if arc j participates in cycle i , and 0

ACM Journal of Experimental Algorithmics, Vol. 26, No. 1, Article 1.4. Publication date: March 2021.

(ci,j = 0 if (i, j) ̸∈ E yi,j = 0: i precedes j in ordering)

• Encode linear ordering as a graph:
i

j

yi,j = 1

yj,i = 1 − yi,j

i

j

k

%
i

j

k

l

• O(n2) binaries and O(n3) constraints. . .
• branch-and-cut:[

Grötschel, Jünger, and Reinelt (1984): A Cutting Plane
Algorithm for the Linear Ordering Problem

]

An Exact Method for the Minimum Feedback Arc Set Problem 1.4:7

of v causes the graph to become disconnected.) After these simplifications, a depth-first search
(DFS) is performed on each component to identify a (hopefully large) acyclic subgraph D; the arcs
not inD form a feedback arc set F . The cardinality of F is further reduced by a local search heuristic
that works on consecutive subgraphs.

Heuristics for the closely related linear ordering problem. Finally, the reader is referred to the
heuristics for the linear ordering problem, which are discussed in great detail in the work of Marti
and Reinelt [81].

3 EXACT METHODS
The published exact methods include (a) dynamic programming (e.g., [101, 112]), (b) custom branch
and bound methods (or smart enumeration with special exclusion rules; e.g., [37, 46, 64, 89, 92]),
and (c) integer programming formulations. The latter will be reviewed in the following sections
in detail, since the present work focuses on an approach based on integer programming.

3.1 Integer Programming Formulation with Triangle Inequalities
We seek a minimum cost ordering π ∗ of the nodes ofG = (V ,E). Let ci, j denote the cost associated
with the directed arc (i, j) ∈ E, and let ci, j = 0 if (i, j) ! E. If the cardinality of the feedback arc set
is to be minimized, then for each (i, j) ∈ E we have ci, j = 1. If the weighted minimum feedback
arc set problem is to be solved, then all ci, j associated with a directed arc equal the weight of the
corresponding arc (i, j). Furthermore, for all i, j ∈ V , i " j, let the binary variables yi, j associated
with a given ordering π encode the following: Let yi, j = 0 if node i precedes j in π , and let yi, j = 1
otherwise. Any ordering π uniquely determines a corresponding y. This results in the following
integer programming formulation:

min
y

n∑

j=1

!"#
j−1∑

k=1
ck, jyk, j +

n∑

ℓ=j+1
cℓ, j (1 − yj, ℓ)$%&

subject to
yi, j + yj,k − yi,k ≤ 1, 1 ≤ i < j < k ≤ n
−yi, j − yj,k + yi,k ≤ 0, 1 ≤ i < j < k ≤ n

yi, j = {0, 1}, 1 ≤ i < j ≤ n.

(3)

Any y that satisfies the triangle inequalities (3) must correspond to an ordering [43, 74, 83]. Note
that there are O (n2) binary variables and O (n3) constraints in (3). Custom-tailored cutting plane
algorithms have been developed to solve this integer program efficiently (and the linear ordering
problem in general; see, e.g., [43, 83] and [81, Ch. 5], but also Section 3.3).

3.2 Integer Programming Formulation as Minimum Set Cover
An alternative to the formulation of Section 3.1 is the minimum set cover formulation (see, e.g., [92,
Eq. (1)] or [13, Sec. 8.4]).

min
y

m∑

j=1
w jyj

s.t.
m∑

j=1
ai jyj ≥ 1 for each i = 1, 2, . . . , ℓ

yj is binary

(4)

Here, m denotes the number of arcs; w j are nonnegative weights (often integer); yj is 1 if arc
j is in the feedback arc set, and 0 otherwise; ai j is 1 if arc j participates in cycle i , and 0

ACM Journal of Experimental Algorithmics, Vol. 26, No. 1, Article 1.4. Publication date: March 2021.

• yj = 1: arc j is in the feedback arc set
• aij = 1: arc j participates in cycle i

• l elementary cycles, worst case ≈ O(2m). . .
• branch-and-cut:
[Grötschel, Jünger, and Reinelt (2022): Comments on “An
Exact Method for the Minimum Feedback Arc Set Problem”]

• cross fingers and enumerate?[
Johnson (1975): Finding All the Elementary Cir-
cuits of a Directed Graph

]
53 / 72

http://dx.doi.org/10.1145/3446429
http://dx.doi.org/10.1145/3446429
https://www.jstor.org/stable/170944
https://www.jstor.org/stable/170944
http://dx.doi.org/10.1145/3545001
http://dx.doi.org/10.1145/3545001
http://dx.doi.org/10.1137/0204007
http://dx.doi.org/10.1137/0204007

Cycles: excluding via ILP Encodings

Classic encodings: see, e.g., [Baharev, Schichl, Neumaier, and Achterberg (2021): An
Exact Method for the Minimum Feedback Arc Set Problem] §3

An Exact Method for the Minimum Feedback Arc Set Problem 1.4:7

of v causes the graph to become disconnected.) After these simplifications, a depth-first search
(DFS) is performed on each component to identify a (hopefully large) acyclic subgraph D; the arcs
not inD form a feedback arc set F . The cardinality of F is further reduced by a local search heuristic
that works on consecutive subgraphs.

Heuristics for the closely related linear ordering problem. Finally, the reader is referred to the
heuristics for the linear ordering problem, which are discussed in great detail in the work of Marti
and Reinelt [81].

3 EXACT METHODS
The published exact methods include (a) dynamic programming (e.g., [101, 112]), (b) custom branch
and bound methods (or smart enumeration with special exclusion rules; e.g., [37, 46, 64, 89, 92]),
and (c) integer programming formulations. The latter will be reviewed in the following sections
in detail, since the present work focuses on an approach based on integer programming.

3.1 Integer Programming Formulation with Triangle Inequalities
We seek a minimum cost ordering π ∗ of the nodes ofG = (V ,E). Let ci, j denote the cost associated
with the directed arc (i, j) ∈ E, and let ci, j = 0 if (i, j) ! E. If the cardinality of the feedback arc set
is to be minimized, then for each (i, j) ∈ E we have ci, j = 1. If the weighted minimum feedback
arc set problem is to be solved, then all ci, j associated with a directed arc equal the weight of the
corresponding arc (i, j). Furthermore, for all i, j ∈ V , i " j, let the binary variables yi, j associated
with a given ordering π encode the following: Let yi, j = 0 if node i precedes j in π , and let yi, j = 1
otherwise. Any ordering π uniquely determines a corresponding y. This results in the following
integer programming formulation:

min
y

n∑

j=1

!"#
j−1∑

k=1
ck, jyk, j +

n∑

ℓ=j+1
cℓ, j (1 − yj, ℓ)$%&

subject to
yi, j + yj,k − yi,k ≤ 1, 1 ≤ i < j < k ≤ n
−yi, j − yj,k + yi,k ≤ 0, 1 ≤ i < j < k ≤ n

yi, j = {0, 1}, 1 ≤ i < j ≤ n.

(3)

Any y that satisfies the triangle inequalities (3) must correspond to an ordering [43, 74, 83]. Note
that there are O (n2) binary variables and O (n3) constraints in (3). Custom-tailored cutting plane
algorithms have been developed to solve this integer program efficiently (and the linear ordering
problem in general; see, e.g., [43, 83] and [81, Ch. 5], but also Section 3.3).

3.2 Integer Programming Formulation as Minimum Set Cover
An alternative to the formulation of Section 3.1 is the minimum set cover formulation (see, e.g., [92,
Eq. (1)] or [13, Sec. 8.4]).

min
y

m∑

j=1
w jyj

s.t.
m∑

j=1
ai jyj ≥ 1 for each i = 1, 2, . . . , ℓ

yj is binary

(4)

Here, m denotes the number of arcs; w j are nonnegative weights (often integer); yj is 1 if arc
j is in the feedback arc set, and 0 otherwise; ai j is 1 if arc j participates in cycle i , and 0

ACM Journal of Experimental Algorithmics, Vol. 26, No. 1, Article 1.4. Publication date: March 2021.

(ci,j = 0 if (i, j) ̸∈ E yi,j = 0: i precedes j in ordering)

• Encode linear ordering as a graph:
i

j

yi,j = 1

yj,i = 1 − yi,j

i

j

k

%
i

j

k

l

• O(n2) binaries and O(n3) constraints. . .
• branch-and-cut:[

Grötschel, Jünger, and Reinelt (1984): A Cutting Plane
Algorithm for the Linear Ordering Problem

]

An Exact Method for the Minimum Feedback Arc Set Problem 1.4:7

of v causes the graph to become disconnected.) After these simplifications, a depth-first search
(DFS) is performed on each component to identify a (hopefully large) acyclic subgraph D; the arcs
not inD form a feedback arc set F . The cardinality of F is further reduced by a local search heuristic
that works on consecutive subgraphs.

Heuristics for the closely related linear ordering problem. Finally, the reader is referred to the
heuristics for the linear ordering problem, which are discussed in great detail in the work of Marti
and Reinelt [81].

3 EXACT METHODS
The published exact methods include (a) dynamic programming (e.g., [101, 112]), (b) custom branch
and bound methods (or smart enumeration with special exclusion rules; e.g., [37, 46, 64, 89, 92]),
and (c) integer programming formulations. The latter will be reviewed in the following sections
in detail, since the present work focuses on an approach based on integer programming.

3.1 Integer Programming Formulation with Triangle Inequalities
We seek a minimum cost ordering π ∗ of the nodes ofG = (V ,E). Let ci, j denote the cost associated
with the directed arc (i, j) ∈ E, and let ci, j = 0 if (i, j) ! E. If the cardinality of the feedback arc set
is to be minimized, then for each (i, j) ∈ E we have ci, j = 1. If the weighted minimum feedback
arc set problem is to be solved, then all ci, j associated with a directed arc equal the weight of the
corresponding arc (i, j). Furthermore, for all i, j ∈ V , i " j, let the binary variables yi, j associated
with a given ordering π encode the following: Let yi, j = 0 if node i precedes j in π , and let yi, j = 1
otherwise. Any ordering π uniquely determines a corresponding y. This results in the following
integer programming formulation:

min
y

n∑

j=1

!"#
j−1∑

k=1
ck, jyk, j +

n∑

ℓ=j+1
cℓ, j (1 − yj, ℓ)$%&

subject to
yi, j + yj,k − yi,k ≤ 1, 1 ≤ i < j < k ≤ n
−yi, j − yj,k + yi,k ≤ 0, 1 ≤ i < j < k ≤ n

yi, j = {0, 1}, 1 ≤ i < j ≤ n.

(3)

Any y that satisfies the triangle inequalities (3) must correspond to an ordering [43, 74, 83]. Note
that there are O (n2) binary variables and O (n3) constraints in (3). Custom-tailored cutting plane
algorithms have been developed to solve this integer program efficiently (and the linear ordering
problem in general; see, e.g., [43, 83] and [81, Ch. 5], but also Section 3.3).

3.2 Integer Programming Formulation as Minimum Set Cover
An alternative to the formulation of Section 3.1 is the minimum set cover formulation (see, e.g., [92,
Eq. (1)] or [13, Sec. 8.4]).

min
y

m∑

j=1
w jyj

s.t.
m∑

j=1
ai jyj ≥ 1 for each i = 1, 2, . . . , ℓ

yj is binary

(4)

Here, m denotes the number of arcs; w j are nonnegative weights (often integer); yj is 1 if arc
j is in the feedback arc set, and 0 otherwise; ai j is 1 if arc j participates in cycle i , and 0

ACM Journal of Experimental Algorithmics, Vol. 26, No. 1, Article 1.4. Publication date: March 2021.

• yj = 1: arc j is in the feedback arc set
• aij = 1: arc j participates in cycle i

• l elementary cycles, worst case ≈ O(2m). . .
• branch-and-cut:
[Grötschel, Jünger, and Reinelt (2022): Comments on “An
Exact Method for the Minimum Feedback Arc Set Problem”]

• cross fingers and enumerate?[
Johnson (1975): Finding All the Elementary Cir-
cuits of a Directed Graph

]
53 / 72

http://dx.doi.org/10.1145/3446429
http://dx.doi.org/10.1145/3446429
https://www.jstor.org/stable/170944
https://www.jstor.org/stable/170944
http://dx.doi.org/10.1145/3545001
http://dx.doi.org/10.1145/3545001
http://dx.doi.org/10.1137/0204007
http://dx.doi.org/10.1137/0204007

Cycles: excluding via ILP Encodings

Classic encodings: see, e.g., [Baharev, Schichl, Neumaier, and Achterberg (2021): An
Exact Method for the Minimum Feedback Arc Set Problem] §3

An Exact Method for the Minimum Feedback Arc Set Problem 1.4:7

of v causes the graph to become disconnected.) After these simplifications, a depth-first search
(DFS) is performed on each component to identify a (hopefully large) acyclic subgraph D; the arcs
not inD form a feedback arc set F . The cardinality of F is further reduced by a local search heuristic
that works on consecutive subgraphs.

Heuristics for the closely related linear ordering problem. Finally, the reader is referred to the
heuristics for the linear ordering problem, which are discussed in great detail in the work of Marti
and Reinelt [81].

3 EXACT METHODS
The published exact methods include (a) dynamic programming (e.g., [101, 112]), (b) custom branch
and bound methods (or smart enumeration with special exclusion rules; e.g., [37, 46, 64, 89, 92]),
and (c) integer programming formulations. The latter will be reviewed in the following sections
in detail, since the present work focuses on an approach based on integer programming.

3.1 Integer Programming Formulation with Triangle Inequalities
We seek a minimum cost ordering π ∗ of the nodes ofG = (V ,E). Let ci, j denote the cost associated
with the directed arc (i, j) ∈ E, and let ci, j = 0 if (i, j) ! E. If the cardinality of the feedback arc set
is to be minimized, then for each (i, j) ∈ E we have ci, j = 1. If the weighted minimum feedback
arc set problem is to be solved, then all ci, j associated with a directed arc equal the weight of the
corresponding arc (i, j). Furthermore, for all i, j ∈ V , i " j, let the binary variables yi, j associated
with a given ordering π encode the following: Let yi, j = 0 if node i precedes j in π , and let yi, j = 1
otherwise. Any ordering π uniquely determines a corresponding y. This results in the following
integer programming formulation:

min
y

n∑

j=1

!"#
j−1∑

k=1
ck, jyk, j +

n∑

ℓ=j+1
cℓ, j (1 − yj, ℓ)$%&

subject to
yi, j + yj,k − yi,k ≤ 1, 1 ≤ i < j < k ≤ n
−yi, j − yj,k + yi,k ≤ 0, 1 ≤ i < j < k ≤ n

yi, j = {0, 1}, 1 ≤ i < j ≤ n.

(3)

Any y that satisfies the triangle inequalities (3) must correspond to an ordering [43, 74, 83]. Note
that there are O (n2) binary variables and O (n3) constraints in (3). Custom-tailored cutting plane
algorithms have been developed to solve this integer program efficiently (and the linear ordering
problem in general; see, e.g., [43, 83] and [81, Ch. 5], but also Section 3.3).

3.2 Integer Programming Formulation as Minimum Set Cover
An alternative to the formulation of Section 3.1 is the minimum set cover formulation (see, e.g., [92,
Eq. (1)] or [13, Sec. 8.4]).

min
y

m∑

j=1
w jyj

s.t.
m∑

j=1
ai jyj ≥ 1 for each i = 1, 2, . . . , ℓ

yj is binary

(4)

Here, m denotes the number of arcs; w j are nonnegative weights (often integer); yj is 1 if arc
j is in the feedback arc set, and 0 otherwise; ai j is 1 if arc j participates in cycle i , and 0

ACM Journal of Experimental Algorithmics, Vol. 26, No. 1, Article 1.4. Publication date: March 2021.

(ci,j = 0 if (i, j) ̸∈ E yi,j = 0: i precedes j in ordering)

• Encode linear ordering as a graph:
i

j

yi,j = 1

yj,i = 1 − yi,j

i

j

k

%
i

j

k

l

• O(n2) binaries and O(n3) constraints. . .
• branch-and-cut:[

Grötschel, Jünger, and Reinelt (1984): A Cutting Plane
Algorithm for the Linear Ordering Problem

]

An Exact Method for the Minimum Feedback Arc Set Problem 1.4:7

of v causes the graph to become disconnected.) After these simplifications, a depth-first search
(DFS) is performed on each component to identify a (hopefully large) acyclic subgraph D; the arcs
not inD form a feedback arc set F . The cardinality of F is further reduced by a local search heuristic
that works on consecutive subgraphs.

Heuristics for the closely related linear ordering problem. Finally, the reader is referred to the
heuristics for the linear ordering problem, which are discussed in great detail in the work of Marti
and Reinelt [81].

3 EXACT METHODS
The published exact methods include (a) dynamic programming (e.g., [101, 112]), (b) custom branch
and bound methods (or smart enumeration with special exclusion rules; e.g., [37, 46, 64, 89, 92]),
and (c) integer programming formulations. The latter will be reviewed in the following sections
in detail, since the present work focuses on an approach based on integer programming.

3.1 Integer Programming Formulation with Triangle Inequalities
We seek a minimum cost ordering π ∗ of the nodes ofG = (V ,E). Let ci, j denote the cost associated
with the directed arc (i, j) ∈ E, and let ci, j = 0 if (i, j) ! E. If the cardinality of the feedback arc set
is to be minimized, then for each (i, j) ∈ E we have ci, j = 1. If the weighted minimum feedback
arc set problem is to be solved, then all ci, j associated with a directed arc equal the weight of the
corresponding arc (i, j). Furthermore, for all i, j ∈ V , i " j, let the binary variables yi, j associated
with a given ordering π encode the following: Let yi, j = 0 if node i precedes j in π , and let yi, j = 1
otherwise. Any ordering π uniquely determines a corresponding y. This results in the following
integer programming formulation:

min
y

n∑

j=1

!"#
j−1∑

k=1
ck, jyk, j +

n∑

ℓ=j+1
cℓ, j (1 − yj, ℓ)$%&

subject to
yi, j + yj,k − yi,k ≤ 1, 1 ≤ i < j < k ≤ n
−yi, j − yj,k + yi,k ≤ 0, 1 ≤ i < j < k ≤ n

yi, j = {0, 1}, 1 ≤ i < j ≤ n.

(3)

Any y that satisfies the triangle inequalities (3) must correspond to an ordering [43, 74, 83]. Note
that there are O (n2) binary variables and O (n3) constraints in (3). Custom-tailored cutting plane
algorithms have been developed to solve this integer program efficiently (and the linear ordering
problem in general; see, e.g., [43, 83] and [81, Ch. 5], but also Section 3.3).

3.2 Integer Programming Formulation as Minimum Set Cover
An alternative to the formulation of Section 3.1 is the minimum set cover formulation (see, e.g., [92,
Eq. (1)] or [13, Sec. 8.4]).

min
y

m∑

j=1
w jyj

s.t.
m∑

j=1
ai jyj ≥ 1 for each i = 1, 2, . . . , ℓ

yj is binary

(4)

Here, m denotes the number of arcs; w j are nonnegative weights (often integer); yj is 1 if arc
j is in the feedback arc set, and 0 otherwise; ai j is 1 if arc j participates in cycle i , and 0

ACM Journal of Experimental Algorithmics, Vol. 26, No. 1, Article 1.4. Publication date: March 2021.

• yj = 1: arc j is in the feedback arc set
• aij = 1: arc j participates in cycle i

• l elementary cycles, worst case ≈ O(2m). . .
• branch-and-cut:
[Grötschel, Jünger, and Reinelt (2022): Comments on “An
Exact Method for the Minimum Feedback Arc Set Problem”]

• cross fingers and enumerate?[
Johnson (1975): Finding All the Elementary Cir-
cuits of a Directed Graph

]
53 / 72

http://dx.doi.org/10.1145/3446429
http://dx.doi.org/10.1145/3446429
https://www.jstor.org/stable/170944
https://www.jstor.org/stable/170944
http://dx.doi.org/10.1145/3545001
http://dx.doi.org/10.1145/3545001
http://dx.doi.org/10.1137/0204007
http://dx.doi.org/10.1137/0204007

Cycles: --fast-first
s1 = f1(s0 when (? % 3), s4 when (? % 3));
s2 = f2(s1);
s3 = f3(s2);
s4 = current(s3 , (? % 3));

f1

f2

w:f
(s1)

f3

w:f
(s2)

s4_0

*3:f
(s3)

/3:f
(s4)

• Every flow has forward
concomitance (:f)

• If all equations are
scheduled in the same
phase, then code
generation fails because it
cannot break the cycle.

f1

f2

w:f
(s1)

f3

w:f
(s2)

s4_0

*3:b
(s3)

/3:f
(s4)

• With --fast-first, the
flow between the last two
equations, has backward
concomitance (:b).

• Even if all equations are
scheduled in the same
phase, code generation
succeeds because there is
no cycle.

54 / 72

Cycles: --fast-first
s1 = f1(s0 when (? % 3), s4 when (? % 3));
s2 = f2(s1);
s3 = f3(s2);
s4 = current(s3 , (? % 3));

f1

f2

w:f
(s1)

f3

w:f
(s2)

s4_0

*3:f
(s3)

/3:f
(s4)

• Every flow has forward
concomitance (:f)

• If all equations are
scheduled in the same
phase, then code
generation fails because it
cannot break the cycle.

f1

f2

w:f
(s1)

f3

w:f
(s2)

s4_0

*3:b
(s3)

/3:f
(s4)

• With --fast-first, the
flow between the last two
equations, has backward
concomitance (:b).

• Even if all equations are
scheduled in the same
phase, code generation
succeeds because there is
no cycle.

54 / 72

Plan

Rate-Synchronous Model

The Rosace Example

Flowgraphs and Scheduling

End-to-end Latency

Code Generation

Avoiding Cycles during Sequencing

Scheduling Complications

Multi-threaded Scheduling

Conclusion

55 / 72

Causality, Scheduling, and Semantics

c = 0 fby (c + 1);
vf = current(vs , (4 % 6)) + c;
vs = vf when (1 % 6) + 5; fast slow

α

α

3
i

o

vf

vs

Causal dependencies
c

vf

vs

when
(1

%
6)

cu
rre

nt
(4

%
6)

vf 0 1 2 3 10 11 12 13 14 15 28 29 · · ·
c 0 1 2 3 4 5 6 7 8 9 10 11 · · ·

vs 6 18 · · ·

56 / 72

Causality, Scheduling, and Semantics

c = 0 fby (c + 1);
vf = current(vs , (4 % 6)) + c;
vs = vf when (1 % 6) + 5; fast slow

α

α

3
i

o

vf

vs

Causal dependencies
c

vf

vs

when
(1

%
6)

cu
rre

nt
(4

%
6)

vf 0 1 2 3 10 11 12 13 14 15 28 29 · · ·
c 0 1 2 3 4 5 6 7 8 9 10 11 · · ·

vs 6 18 · · ·

56 / 72

Causality, Scheduling, and Semantics

c = 0 fby (c + 1);
vf = current(vs , (4 % 6)) + c;
vs = vf when (1 % 6) + 5; fast slow

α

α

3
i

o

vf

vs

Causal dependencies
c

vf

vs

when
(1

%
6)

cu
rre

nt
(4

%
6)

vf 0 1 2 3 10 11 12 13 14 15 28 29 · · ·
c 0 1 2 3 4 5 6 7 8 9 10 11 · · ·

vs 6 18 · · ·

56 / 72

Causality, Scheduling, and Semantics

c = 0 fby (c + 1);
vf = current(vs , (4 % 6)) + c;
vs = vf when (1 % 6) + 5; fast slow

α

α

3
i

o

vf

vs

Causal dependencies
c

vf

vs

when
(1

%
6)

cu
rre

nt
(4

%
6)

vf 0 1 2 3 10 11 12 13 14 15 28 29 · · ·
c 0 1 2 3 4 5 6 7 8 9 10 11 · · ·

vs 6 18 · · ·

56 / 72

Causality, Scheduling, and Semantics

c = 0 fby (c + 1);
vf = current(vs , (4 % 6)) + c;
vs = vf when (1 % 6) + 5; fast slow

α

α

3
i

o

vf

vs

Causal dependencies
c

vf

vs

when
(1

%
6)

cu
rre

nt
(4

%
6)

Scheduling dependencies
c

vf

vs

when
(1

%
6)

cu
rre

nt
(4

%
6)

%

vf 0 1 2 3 10 11 12 13 14 15 28 29 · · ·
c 0 1 2 3 4 5 6 7 8 9 10 11 · · ·

vs 6 18 · · ·

56 / 72

Adding equations to relax constraints/add buffering

Hold slow around fast reads

(slower) production

(faster) consumption
current(vs, (2%3))

vs

Hold fast around fast writes

(faster) production
vf

(slower) consumption
vf when (0%3)

c = 0 fby (c + 1);
vf = current(vs’, (4 % 6)) + c;
vfs = vf when (1 % 6)
vs = vfs + 5;
vs’ = vs

c

vf

vfs
vs

vs ′

w
he

n
(1

%
6)

current
(4

%
6)

57 / 72

Adding equations to relax constraints/add buffering

Hold slow around fast reads

(slower) production

(faster) consumption
current(vs, (2%3))

vs

Hold fast around fast writes

(faster) production
vf

(slower) consumption
vf when (0%3)

c = 0 fby (c + 1);
vf = current(vs’, (4 % 6)) + c;
vfs = vf when (1 % 6)
vs = vfs + 5;
vs’ = vs

c

vf

vfs
vs

vs ′

w
he

n
(1

%
6)

current
(4

%
6)

57 / 72

Causality: 1

• Which programs are valid? I.e., which have a semantics?

• Consider causality across the least common multiple of periods.

• Implicit dependencies to past elements on same flow.

vf = current(vs , (1%2));
vs = vf when (0%2);

vf

vs cu
rr
en

t
(1

%
2)

w
he

n
(0

%
2)

vf = current(vs , (1%2));
vs = vf when (1%2);

vf

vs cu
rr
en

t
(1

%
2)

w
he

n
(1

%
2)

%

vf = current(vs , (0%2));
vs = vf when (1%2);

vf

vs

current
(0

%
2) w

he
n

(1
%

2)

%

58 / 72

Causality: 1

• Which programs are valid? I.e., which have a semantics?

• Consider causality across the least common multiple of periods.

• Implicit dependencies to past elements on same flow.

vf = current(vs , (1%2));
vs = vf when (0%2);

vf

vs cu
rr
en

t
(1

%
2)

w
he

n
(0

%
2)

vf = current(vs , (1%2));
vs = vf when (1%2);

vf

vs cu
rr
en

t
(1

%
2)

w
he

n
(1

%
2)

%

vf = current(vs , (0%2));
vs = vf when (1%2);

vf

vs

current
(0

%
2) w

he
n

(1
%

2)

%

58 / 72

Causality: 1

• Which programs are valid? I.e., which have a semantics?

• Consider causality across the least common multiple of periods.

• Implicit dependencies to past elements on same flow.

vf = current(vs , (1%2));
vs = vf when (0%2);

vf

vs cu
rr
en

t
(1

%
2)

w
he

n
(0

%
2)

vf = current(vs , (1%2));
vs = vf when (1%2);

vf

vs cu
rr
en

t
(1

%
2)

w
he

n
(1

%
2)

%

vf = current(vs , (0%2));
vs = vf when (1%2);

vf

vs

current
(0

%
2) w

he
n

(1
%

2)

%

58 / 72

Causality: 1

• Which programs are valid? I.e., which have a semantics?

• Consider causality across the least common multiple of periods.

• Implicit dependencies to past elements on same flow.

vf = current(vs , (1%2));
vs = vf when (0%2);

vf

vs cu
rr
en

t
(1

%
2)

w
he

n
(0

%
2)

vf = current(vs , (1%2));
vs = vf when (1%2);

vf

vs cu
rr
en

t
(1

%
2)

w
he

n
(1

%
2)

%

vf = current(vs , (0%2));
vs = vf when (1%2);

vf

vs

current
(0

%
2) w

he
n

(1
%

2)

%

58 / 72

Causality: 2

Causality relations between x :: α, y ::
α

2
, and z ::

α

4
.

x = current(y, (1 % 2))
+ current(z, (3 % 4)) + 2;

y = current(z, (1 % 2)) + 20;

z = x when (2 % 4) + 200;

x

y

z

cu
rr
en

t
(1

%
2)

cu
rr
en

t
(1

%
2)

cu
rre

nt
(1

%
2)

cu
rre

nt
(3

%
4)

w
he

n
(2

%
4)

x = current(y, (0 % 2))
+ current(z, (3 % 4)) + 2;

y = current(z, (1 % 2)) + 20;

z = x when (2 % 4) + 200;

x

y

z

current
(0

%
2)

current
(0

%
2)

cu
rre

nt
(1

%
2)

cu
rre

nt
(3

%
4)

w
he

n
(2

%
4)

%

59 / 72

Causality: 2

Causality relations between x :: α, y ::
α

2
, and z ::

α

4
.

x = current(y, (1 % 2))
+ current(z, (3 % 4)) + 2;

y = current(z, (1 % 2)) + 20;

z = x when (2 % 4) + 200;

x

y

z

cu
rr
en

t
(1

%
2)

cu
rr
en

t
(1

%
2)

cu
rre

nt
(1

%
2)

cu
rre

nt
(3

%
4)

w
he

n
(2

%
4)

x = current(y, (0 % 2))
+ current(z, (3 % 4)) + 2;

y = current(z, (1 % 2)) + 20;

z = x when (2 % 4) + 200;

x

y

z

current
(0

%
2)

current
(0

%
2)

cu
rre

nt
(1

%
2)

cu
rre

nt
(3

%
4)

w
he

n
(2

%
4)

%

59 / 72

Causality: non-harmonic rates with ‘shifting’

w = current(z, (2 % 4));
x = w when (1 % 3);
y = current(x, (1 % 3));
z = y when (2 % 4);

w

x

y

z

w
he

n
(1

%
3)

w
he

n
(1

%
3)

w
he

n
(1

%
3)

w
he

n
(1

%
3)

current
(1

%
3)

current
(1

%
3)

current
(1

%
3)

current
(1

%
3)

whe
n
(2

%
4)

whe
n
(2

%
4)

whe
n
(2

%
4)

current (2
% 4)

current
(2

%
4)

current
(2

%
4)

%

60 / 72

Causality: non-harmonic rates with ‘shifting’

w = current(z, (2 % 4));
x = w when (1 % 3);
y = current(x, (1 % 3));
z = y when (2 % 4);

w

x

y

z

w
he

n
(1

%
3)

w
he

n
(1

%
3)

w
he

n
(1

%
3)

w
he

n
(1

%
3)

current
(1

%
3)

current
(1

%
3)

current
(1

%
3)

current
(1

%
3)

whe
n
(2

%
4)

whe
n
(2

%
4)

whe
n
(2

%
4)

current (2
% 4)

current
(2

%
4)

current
(2

%
4)

%

60 / 72

Causality: non-harmonic rates with ‘shifting’

w = current(z, (2 % 4));
x = w when (1 % 3);
y = current(x, (1 % 3));
z = y when (2 % 4);

w

x

y

z

w
he

n
(1

%
3)

w
he

n
(1

%
3)

w
he

n
(1

%
3)

w
he

n
(1

%
3)

current
(1

%
3)

current
(1

%
3)

current
(1

%
3)

current
(1

%
3)

whe
n
(2

%
4)

whe
n
(2

%
4)

whe
n
(2

%
4)

current (2
% 4)

current
(2

%
4)

current
(2

%
4)

%

60 / 72

Plan

Rate-Synchronous Model

The Rosace Example

Flowgraphs and Scheduling

End-to-end Latency

Code Generation

Avoiding Cycles during Sequencing

Scheduling Complications

Multi-threaded Scheduling

Conclusion

61 / 72

Multi-threaded code generation: ongoing experiments

Why not?. . .

1. Generate ILP: equation 7→ thread & phase
2. Forbid inter-thread communication within a cycle

“42-cm M-Gerät 14 Kurze Marinekanone L/12”

62 / 72

Multi-threaded code generation: ongoing experiments

Why not?. . .

1. Generate ILP: equation 7→ thread & phase
2. Forbid inter-thread communication within a cycle

“42-cm M-Gerät 14 Kurze Marinekanone L/12”

62 / 72

Multi-threaded code generation: ongoing experiments

Why not?. . .

1. Generate ILP: equation 7→ thread & phase
2. Forbid inter-thread communication within a cycle

. . . because
• the number of constraints explodes and the ILP

solver may not be able to find a solution

• delayed communications may accumulate and
increase end-to-end latency

“42-cm M-Gerät 14 Kurze Marinekanone L/12”

62 / 72

Threads and phases

Source program: w = e; r = f(w);

(tw ̸= tr) ∧ (pw = pr): extra synchronization required

thread 1 thread 2
· · · · · ·

if (c % 2 == 0) { w = e; sem_post(wok); } if (c % 2 == 0) { sem_wait(wok); r = f(w); }
· · · · · ·

(pw ̸= pr): no race condition

thread 1 thread 2
· · · · · ·

if (c % 2 == 0) { w = e; } if (c % 2 == 1) { r = f(w); }
· · · · · ·

for now, require: tw = tr ∨ pw ̸= pr (may not be possible)

63 / 72

Threads and phases

Source program: w = e; r = f(w);

(tw ̸= tr) ∧ (pw = pr): extra synchronization required

thread 1 thread 2
· · · · · ·

if (c % 2 == 0) { w = e; sem_post(wok); } if (c % 2 == 0) { sem_wait(wok); r = f(w); }
· · · · · ·

(pw ̸= pr): no race condition

thread 1 thread 2
· · · · · ·

if (c % 2 == 0) { w = e; } if (c % 2 == 1) { r = f(w); }
· · · · · ·

for now, require: tw = tr ∨ pw ̸= pr (may not be possible)

63 / 72

Threads and phases

Source program: w = e; r = f(w);

(tw ̸= tr) ∧ (pw = pr): extra synchronization required

thread 1 thread 2
· · · · · ·

if (c % 2 == 0) { w = e; sem_post(wok); } if (c % 2 == 0) { sem_wait(wok); r = f(w); }
· · · · · ·

(pw ̸= pr): no race condition

thread 1 thread 2
· · · · · ·

if (c % 2 == 0) { w = e; } if (c % 2 == 1) { r = f(w); }
· · · · · ·

for now, require: tw = tr ∨ pw ̸= pr (may not be possible)
63 / 72

Constraints: same thread or different phase

require: tw = tr ∨ pw ̸= pr

• Try a completely boolean encoding using phase/thread weights?

• w :: 1/4, r :: 1/12, --nthreads 2

th:0:ph:0:w + th:1:ph:0:r + th:1:ph:4:r + th:1:ph:8:r ≤ 1
th:0:ph:1:w + th:1:ph:1:r + th:1:ph:5:r + th:1:ph:9:r ≤ 1
th:0:ph:2:w + th:1:ph:2:r + th:1:ph:6:r + th:1:ph:10:r ≤ 1

...
th:1:ph:0:w + th:0:ph:0:r + th:0:ph:4:r + th:0:ph:8:r ≤ 1
th:1:ph:1:w + th:0:ph:1:r + th:0:ph:5:r + th:0:ph:9:r ≤ 1
th:1:ph:2:w + th:0:ph:2:r + th:0:ph:6:r + th:0:ph:10:r ≤ 1

• Not very linear. . .
64 / 72

Resource Constraints

resource cpu : int

node f1(x : int) returns (y : int) requires (cpu = 5);
node f2(x : int) returns (y : int) requires (cpu = 2);
node f3(x : int) returns (y : int) requires (cpu = 2);

node main(s0 : int) returns (s4 : int)
let

s1 = f1(s0 when (0 % 3));
s2 = f2(s1);
s3 = f3(s2);
s4 = current(s3 , (2 % 3));

resource balance cpu;
tel

Existing encoding: per cycle
pw.def0.f1: pw.ph.0.f1 + pw.ph.1.f1 + pw.ph.2.f1 = 1
pw.def1.f1: -1 p.f1 + 2 pw.ph.2.f1 + pw.ph.1.f1 = 0
...
rsum.ph.0.cpu: rsum.ph.0.cpu - 2 pw.ph.0.f3 - 2 pw.ph.0.f2 - 5 pw.ph.0.f1 = 0
rsum.ph.1.cpu: rsum.ph.1.cpu - 2 pw.ph.1.f3 - 2 pw.ph.1.f2 - 5 pw.ph.1.f1 = 0
rsum.ph.2.cpu: rsum.ph.2.cpu - 2 pw.ph.2.f3 - 2 pw.ph.2.f2 - 5 pw.ph.2.f1 = 0

65 / 72

Resource Constraints

New possibility: per thread per cycle
...
tw.def1.thread .0: tw.1. thread .0 - thread .0 = 0
tw.def0.thread .0: tw.0. thread .0 + tw.1. thread .0 = 1
...
pw.def0.f1: pw.th.0.ph.0.f1 + pw.th.0.ph.1.f1 + pw.th.0.ph.2.f1

+ pw.th.1.ph.0.f1 + pw.th.1.ph.1.f1 + pw.th.1.ph.2.f1 = 1
pw.def1.f1: -1 p.f1 + 5 pw.th.1.ph.2.f1 + 4 pw.th.1.ph.1.f1

+ 3 pw.th.1.ph.0.f1 + 2 pw.th.0.ph.2.f1 + pw.th.0.ph.1.f1
- 3 thread .0 = 0

...
rsum.th.0.ph.0.cpu: rsum.th.0.ph.0.cpu - 2 pw.th.0.ph.0.f3

- 2 pw.th.0.ph.0.f2 - 5 pw.th.0.ph.0.f1 = 0
rsum.th.0.ph.1.cpu: rsum.th.0.ph.1.cpu - 2 pw.th.0.ph.1.f3

- 2 pw.th.0.ph.1.f2 - 5 pw.th.0.ph.1.f1 = 0
rsum.th.1.ph.0.cpu: rsum.th.1.ph.0.cpu - 2 pw.th.1.ph.0.f3

- 2 pw.th.1.ph.0.f2 - 5 pw.th.1.ph.0.f1 = 0
...

66 / 72

Preliminary Experiments on largest Airbus case-study

• Oct. 2024: It does not work

» cplex: runs for days until out-of-memory

» set mip strategy file 3: runs for longer
until dying

• Nov. 2024: It works a little bit

» Schedule on one thread and generate a MIP
start file

» Scheduling on two cores then starts from a
valid solution, which the optimizer can
iteratively improve.

» Solution after ≈35 hours

• Mar. 2025: “Boolean” encoding for
same-thread or different-phase

» cplex: 2 hours

» cp-sat (with L. Sylvestre): 20 minutes

• Ongoing: Pure SAT encoding (with
L. Sylvestre)

» Translate pseudo-boolean constraints following
Eén and Sörensson (suggested by K. Claessen
and M. Sheeran)

» Re-encode end-to-end latency constraints

67 / 72

Preliminary Experiments on largest Airbus case-study

• Oct. 2024: It does not work

» cplex: runs for days until out-of-memory

» set mip strategy file 3: runs for longer
until dying

• Nov. 2024: It works a little bit

» Schedule on one thread and generate a MIP
start file

» Scheduling on two cores then starts from a
valid solution, which the optimizer can
iteratively improve.

» Solution after ≈35 hours

• Mar. 2025: “Boolean” encoding for
same-thread or different-phase

» cplex: 2 hours

» cp-sat (with L. Sylvestre): 20 minutes

• Ongoing: Pure SAT encoding (with
L. Sylvestre)

» Translate pseudo-boolean constraints following
Eén and Sörensson (suggested by K. Claessen
and M. Sheeran)

» Re-encode end-to-end latency constraints

67 / 72

Preliminary Experiments on largest Airbus case-study

• Oct. 2024: It does not work

» cplex: runs for days until out-of-memory

» set mip strategy file 3: runs for longer
until dying

• Nov. 2024: It works a little bit

» Schedule on one thread and generate a MIP
start file

» Scheduling on two cores then starts from a
valid solution, which the optimizer can
iteratively improve.

» Solution after ≈35 hours

• Mar. 2025: “Boolean” encoding for
same-thread or different-phase

» cplex: 2 hours

» cp-sat (with L. Sylvestre): 20 minutes

• Ongoing: Pure SAT encoding (with
L. Sylvestre)

» Translate pseudo-boolean constraints following
Eén and Sörensson (suggested by K. Claessen
and M. Sheeran)

» Re-encode end-to-end latency constraints

67 / 72

68 / 72

Graph clustering prior to ILP

• Cluster flowgraph using metis1 from Uni. Minnesota.

• Assign all equations in the same cluster to a single thread.

• Many partitions: not very effective at reducing solve time

• Few partitions: seems to preclude finding a valid schedule

» E.g., with four partitions, we can rapidly test all combinations for feasability: 1100, 0110, 1010

• Cluster in a different way? Feedback from ILP solver?

1
https://github.com/karypislab/metis

69 / 72

https://github.com/karypislab/metis

WiP: Inter-thread communications for fast equations

• Same thread or different phase: only possible if 1/n < 1.

• Prevents splitting writer/reader pairs when either is on the base clock

• Current work: add a synchronization barrier
thread 1 thread 2
w0 = e0; · · ·

· · ·
sync(); sync();

r0 = f(w0);
if (c % 2 == 0) { w1 = e1; } if (c % 2 == 1) { r1 = f(w1); }

· · · · · ·
• Add (yet more) 0-1 variables to indicate before/after barrier.

• Add constraints for “same thread or different phase/side”

• Need to balance resources used before the barrier to minimize waiting.

70 / 72

WiP: Inter-thread communications for fast equations

• Same thread or different phase: only possible if 1/n < 1.

• Prevents splitting writer/reader pairs when either is on the base clock

• Current work: add a synchronization barrier
thread 1 thread 2
w0 = e0; · · ·

· · ·
sync(); sync();

r0 = f(w0);
if (c % 2 == 0) { w1 = e1; } if (c % 2 == 1) { r1 = f(w1); }

· · · · · ·

• Add (yet more) 0-1 variables to indicate before/after barrier.

• Add constraints for “same thread or different phase/side”

• Need to balance resources used before the barrier to minimize waiting.

70 / 72

WiP: Inter-thread communications for fast equations

• Same thread or different phase: only possible if 1/n < 1.

• Prevents splitting writer/reader pairs when either is on the base clock

• Current work: add a synchronization barrier
thread 1 thread 2
w0 = e0; · · ·

· · ·
sync(); sync();

r0 = f(w0);
if (c % 2 == 0) { w1 = e1; } if (c % 2 == 1) { r1 = f(w1); }

· · · · · ·
• Add (yet more) 0-1 variables to indicate before/after barrier.

• Add constraints for “same thread or different phase/side”

• Need to balance resources used before the barrier to minimize waiting.
70 / 72

Plan

Rate-Synchronous Model

The Rosace Example

Flowgraphs and Scheduling

End-to-end Latency

Code Generation

Avoiding Cycles during Sequencing

Scheduling Complications

Multi-threaded Scheduling

Conclusion

71 / 72

Conclusion

• Block diagram language with deterministic stream semantics

• Scheduled using constraint solvers (cplex or cp-sat)

» Resource constraints and balancing

» End-to-end latency constraints

» Schedules have differing resource use, but calculate the same input/output function

• Prototype compiler with basic code generation.

• Tested on Airbus example with 5000 nodes (compiles in approx. 45 minutes).

72 / 72

References I

• Baharev, A., H. Schichl, A. Neumaier, and T. Achterberg (Apr. 2021). “An Exact Method for the
Minimum Feedback Arc Set Problem”. In: ACM J. Experimental Algorithmics 26.1, article 4.

• Biernacki, D., J.-L. Colaço, G. Hamon, and M. Pouzet (June 2008). “Clock-directed modular code
generation for synchronous data-flow languages”. In: Proc. 9th ACM SIGPLAN Conf. on Languages,
Compilers, and Tools for Embedded Systems (LCTES 2008). Tucson, AZ, USA: ACM Press, pp. 121–130.

• Cohen, A., M. Duranton, C. Eisenbeis, C. Pagetti, F. Plateau, and M. Pouzet (Jan. 2006).
“N-Synchronous Kahn networks: a relaxed model of synchrony for real-time systems”. In: Proc. 33rd ACM
SIGPLAN-SIGACT Symp. Principles of Programming Languages (POPL 2006). Charleston, SC, USA:
ACM Press, pp. 180–193.

• Cohen, A., L. Mandel, F. Plateau, and M. Pouzet (Dec. 2008). “Abstraction of Clocks in Synchronous
Data-flow Systems”. In: Proc. 6th Asian Symp. Programming Languages and Systems (APLAS 2008).
Ed. by G. Ramalingam. Vol. 5356. LNCS. Bangalore, India, pp. 237–254.

• Curic, A. (Sept. 2005). “Implementing Lustre Programs on Distributed Platforms with Real-Time
Constraints”. PhD thesis. Grenoble, France: Université Joseph Fourier.

I

http://dx.doi.org/10.1145/3446429
http://dx.doi.org/10.1145/3446429
https://www.di.ens.fr/~pouzet/bib/lctes08a.pdf
https://www.di.ens.fr/~pouzet/bib/lctes08a.pdf
http://dx.doi.org/10.1145/1111320.1111054
http://dx.doi.org/10.1007/978-3-540-89330-1_17
http://dx.doi.org/10.1007/978-3-540-89330-1_17

References II

• Feiertag, N., K. Richter, J. Nordlander, and J. Jonsson (Nov. 2008). “A Compositional Framework for
End-to-End Path Delay Calculation of Automotive Systems under Different Path Semantics”. In: Workshop
on Compositional Theory and Technology for Real-Time Embedded Systems (CRTS 2008, co-located with
RTSS 2008). Barcelona, Spain.

• Forget, J., F. Boniol, D. Lesens, and C. Pagetti (Dec. 2008). “A Multi-Periodic Synchronous Data-Flow
Language”. In: Proc. 11th IEEE High Assurance Systems Engineering Symposium (HASE 2008). Nanjing,
China, pp. 251–260.

• — (Mar. 2010). “A Real-Time Architecture Design Language for Multi-Rate Embedded Control Systems”.
In: Proc. 25th ACM Symp. Applied Computing (SAC’10). Ed. by S. Y. Shin, S. Ossowski, M. Schumacher,
M. J. Palakal, and C.-C. Hung. Sierre, Switzerland, pp. 527–534.

• Girault, A., C. Prévot, S. Quinton, R. Henia, and N. Sordon (Nov. 2018). “Improving and Estimating the
Precision of Bounds on the Worst-Case Latency of Task Chains”. In: IEEE Trans. Computer-Aided Design
of Integrated Circuits and Systems 37.11, pp. 2578–2589.

• Grötschel, M., M. Jünger, and G. Reinelt (Nov. 1984). “A Cutting Plane Algorithm for the Linear Ordering
Problem”. In: Operations Research 32.6, pp. 1195–1220.

II

https://www.diva-portal.org/smash/get/diva2:1003533/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:1003533/FULLTEXT01.pdf
http://dx.doi.org/10.1109/HASE.2008.47
http://dx.doi.org/10.1109/HASE.2008.47
http://dx.doi.org/10.1145/1774088.1774196
http://dx.doi.org/10.1109/TCAD.2018.2861016
http://dx.doi.org/10.1109/TCAD.2018.2861016
https://www.jstor.org/stable/170944
https://www.jstor.org/stable/170944

References III

• Grötschel, M., M. Jünger, and G. Reinelt (July 2022). “Comments on “An Exact Method for the Minimum
Feedback Arc Set Problem””. In: ACM J. Experimental Algorithmics 27.1, article 3.

• Iooss, G., M. Pouzet, A. Cohen, D. Potop-Butucaru, J. Souyris, V. Bregeon, and P. Baufreton (Mar.
2020). “1-Synchronous Programming of Large Scale, Multi-Periodic Real-Time Applications with
Functional Degrees of Freedom”. preprint.

• Johnson, D. B. (Mar. 1975). “Finding All the Elementary Circuits of a Directed Graph”. In: SIAM J.
Computing 4.1, pp. 77–84.

• Mandel, L., F. Plateau, and M. Pouzet (June 2010). “Lucy-n: a n-Synchronous extension of Lustre”. In:
Proc. 10th Int. Conf. on Mathematics of Program Construction (MPC 2010). Ed. by C. Bolduc,
J. Desharnais, and B. Ktari. Vol. 6120. LNCS. Québec City, Canada, pp. 288–309.

• Pagetti, C., J. Forget, F. Boniol, M. Cordovilla, and D. Lesens (Sept. 2011). “Multi-task implementation of
multi-periodic synchronous programs”. In: Discrete Event Dynamic Systems 21.3, pp. 307–338.

III

http://dx.doi.org/10.1145/3545001
http://dx.doi.org/10.1145/3545001
https://hal.inria.fr/hal-02495471
https://hal.inria.fr/hal-02495471
http://dx.doi.org/10.1137/0204007
http://dx.doi.org/10.1007/978-3-642-13321-3_17
http://dx.doi.org/10.1007/s10626-011-0107-x
http://dx.doi.org/10.1007/s10626-011-0107-x

References IV

• Pagetti, C., D. Saussié, R. Gratia, E. Noulard, and P. Siron (Apr. 2014). “The ROSACE Case Study: From
Simulink Specification to Multi/Many-Core Execution”. In: 20th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS 2014). Berlin, Germany, pp. 309–318.

• Pouzet, M. (Apr. 2006). Lucid Synchrone, v. 3. Tutorial and reference manual. Université Paris-Sud.

• Smarandache, I. M., T. Gautier, and P. Le Guernic (Sept. 1999). “Validation of Mixed Signal-Alpha
Real-Time Systems through Affine Calculus on Clock Synchronisation Constraints”. In: Proc. World
Congress on Formal Methods in the Development of Computing Systems (FM’99). Ed. by J. M. Wing,
J. Woodcock, and J. Davies. Vol. 1709. LNCS. Toulouse, France, pp. 1364–1383.

• Wyss, R., F. Boniol, J. Forget, and C. Pagetti (Dec. 2012). “A Synchronous Language with Partial Delay
Specification for Real-Time Systems Programming”. In: Proc. 10th Asian Symp. Programming Languages
and Systems (APLAS 2012). Ed. by R. Jhala and A. Igarashi. Vol. 7705. LNCS. Kyoto, Japan, pp. 223–238.

IV

http://oatao.univ-toulouse.fr/11522/1/Siron_11522.pdf
http://oatao.univ-toulouse.fr/11522/1/Siron_11522.pdf
https://www.di.ens.fr/~pouzet/lucid-synchrone/lucid-synchrone-3.0-manual.pdf
http://dx.doi.org/10.1007/3-540-48118-4_22
http://dx.doi.org/10.1007/3-540-48118-4_22
http://dx.doi.org/10.1007/978-3-642-35182-2_16
http://dx.doi.org/10.1007/978-3-642-35182-2_16

	Title slide
	Rate-Synchronous Model
	Plan
	Context
	Slow flows
	Changing speeds: 1
	Changing speeds: 2
	Rate-synchronous Model
	Overview: compilation using Integer Linear Programming (ILP)
	Aside: fby or last
	Rate-synchronous Model
	Syntax
	Valid programs are defined by clock typing
	Related Work: Lucy-n
	Related Work: Iooss et al.
	Prelude: Multi-periodic Synchronous Programming
	Stream-based Semantics
	Declare and constrain resources
	Direct Communications
	Rate Transitions
	Macro-scheduling using Integer Linear Programming (ILP)

	The Rosace Example
	Plan
	The ROSACE Case Study
	ROSACE assemblage in Prelude
	ROSACE assemblage in All-in-Lustre
	Compilation: Model Scheduling Generated Code

	Flowgraphs and Scheduling
	Plan
	Flowgraphs
	Flowgraph links
	Schedule

	End-to-end Latency
	Plan
	Minimum Pairwise Latency: same period
	Minimum Pairwise Latency: fast-to-slow
	Minimum Pairwise Latency: slow-to-fast
	End-to-End Latency: the wrong way
	Constraining End-to-end Latency
	Constraining End-to-end Latency
	Chains of constraints
	Showlatency demo
	End-to-End Latency

	Code Generation
	Plan
	Manipulating flow graphs
	ROSACE example: flow graph dependency graph
	ROSACE example: generated code
	Code generation
	Code generation: 2

	Avoiding Cycles during Sequencing
	Plan
	More Information
	Direct Communications
	Rate Transitions
	Cycles
	Cycles: excluding via ILP Encodings
	Cycles: --fast-first

	Scheduling Complications
	Plan
	Causality, Scheduling, and Semantics
	Adding equations to relax constraints/add buffering
	Causality: 1
	Causality: 2
	Causality: non-harmonic rates with `shifting'

	Multi-threaded Scheduling
	Plan
	Multi-threaded code generation: ongoing experiments
	Threads and phases
	Constraints: same thread or different phase
	Resource Constraints
	Resource Constraints
	Preliminary Experiments on largest Airbus case-study
	
	Graph clustering prior to ILP
	WiP: Inter-thread communications for fast equations

	Conclusion
	Plan
	Conclusion

	Appendix
	References
	References
	References
	References

