
CPO Semantics of Timed Interactive Actor Networks

Xiaojun Liu
Edward A. Lee

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2006-67

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-67.html

May 18, 2006



Copyright © 2006, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

 
Acknowledgement

 
This paper describes work that is part of the Ptolemy project, which is
supported by the National Science Foundation (NSF award number CCR-
00225610), and Chess (the Center for Hybrid and Embedded Software
Systems), which receives support from NSF, the State of California MICRO
program, and the following companies: Agilent, DGIST, General Motors,
Hewlett Packard, Infineon, Microsoft, and Toyota.



CPO Semantics of
Timed Interactive Actor Networks ?

Xiaojun Liu a,

axiaojun.liu@sun.com
Sun Microsystems, Inc.

Edward A. Leeb

beal@eecs.berkeley.edu
EECS Department, University of California, Berkeley

Abstract

We give a denotational framework for composing interactive components into closed or
open systems and show how to adapt classical domain-theoretic approaches to open sys-
tems and to timed systems. For timed systems, instead of the usual metric-space-based
approaches, we show that existence and uniqueness of behaviors are ensured by continuity
with respect to a simply defined prefix order. Existence and uniqueness of behaviors, how-
ever, does not imply that a composition of components yields a useful behavior. The unique
behavior could be empty or smaller than expected. We define liveness and show that ap-
propriately defined causality conditions ensure liveness and freedom from Zeno conditions.
In our formulation, causality does not require a metric and can embrace a wide variety of
models of time.

Key words: semantics, CPOs, posets, interaction, actors, agents, timed systems, process
networks, discrete events, actors, dataflow

? This paper describes work that is part of the Ptolemy project, which is supported by the
National Science Foundation (NSF award number CCR-00225610), and Chess (the Center
for Hybrid and Embedded Software Systems), which receives support from NSF, the State
of California MICRO program, and the following companies: Agilent, DGIST, General
Motors, Hewlett Packard, Infineon, Microsoft, and Toyota.



1 Introduction

Wegner [45] argues that interaction is more expressive than algorithms. Indeed
there is a family of approaches to computing being studied by diverse commu-
nities that are distinctly interactive rather than algorithmic. These go under the
names of coordination languages, agents, actors, and process networks. They all
refactor software into components that co-exist and engage in dialog with one an-
other. Key to the expressiveness of such component interactions is “entanglement”
[46], where outputs from a component depend on previous outputs, in dialog with
the environment. This is distinct from classical models of computing based on the
Turing-Church thesis, which do not model such interaction.

In today’s prevailing software engineering technologies, components are object ori-
ented. In practice, the components of object-oriented design interact principally
through transfer of control (method calls). The components are passive, and things
get done to them, much like physical “objects” from which the name arises.1 Meth-
ods implement classical algorithmic transformations of system state, and compo-
sitions of objects simply provide convenient architectural partitioning of such al-
gorithmic transformations. Object-oriented techniques offer little or no help in de-
signing interactive systems.

In this paper, we will use the term “actors” for interactive components.2 In con-
trast to objects, actors are concurrent, in charge of their own actions. Their environ-
ment (which can include other actors) provides them with data, and they react and
provide the environment with additional data. Actors engage in dialog with their
environment, whereas objects are passive slaves to it. An immediate consequence
is that actor-oriented designs tend to be highly concurrent.

The term “actors” has, of course, been used for models of this type. In the classi-
cal actor model of Hewitt and Agha [3,25], components have their own thread of
control and interact via message passing. The term “actors” was also used by the
dataflow community [21] to refer to chunks of computation that would react to the
availability of input data by “firing” and producing output data.

We are using the term “actors” more broadly, inspired by the analogy with the phys-
ical world, where actors control their own actions. In fact, the most widespread use
of interactive models fitting our notion of actors is not rooted in any of these classi-
cal communities, but is rather focused on embedded software (where interaction is
intrinsic). For example, the synchronous/reactive languages [9] are “actor-oriented”

1 So called “active objects” add to the basic object-oriented model threads, and their con-
currency is largely orthogonal to their object-oriented nature.
2 The term “agents” is equally good, but we avoid it because in the mind of many re-
searchers, agents include a notion of mobility, which is orthogonal to interaction and irrel-
evant to our current discussion.

2



in our sense. Components react at ticks of a global clock, rather than reacting when
other components invoke their methods. In the synchronous language Esterel [11],
components exchange data through variables whose values are determined by solv-
ing fixed point equations. The Lustre [24] and Signal [10] languages focus more
on the flow of data, but are semantically similar. Asynchronous dataflow models
based on Kahn process networks [26] are also actor-oriented in our sense, and are
used for media intensive embedded signal processing software [20]. Discrete-event
(DE) systems are also actor oriented, and are commonly used in hardware design
(VHDL and Verilog are DE languages) and in modeling and design of networked
systems [14,6]. In DE, components interact via timed events, which carry data and
a time stamp, and reactions are chronologically ordered by time stamp.

Wegner argues that interactive models are less amenable to formalism than algo-
rithmic ones [45]. This is debatable, however. While the formalisms may be more
complex (this should be expected), they are no less rigorous. Surrounding the actor-
oriented approach are a number of semantic formalisms that complement tradi-
tional Turing-Church theories of computation by emphasizing interaction of con-
current components rather than sequential transformation of data. These include
stream formalisms [26,13,41] and discrete-event formalisms [48,28]. A few such
formalisms are rich enough to embrace a significant variety of actor-oriented mod-
els of computation, including interaction categories [1], behavioral types [31,5],
interaction semantics [43], and the tagged-signal model [30].

As in object-oriented design,compositionandabstractionare two central concepts
in actor-oriented design. Actors can be composed to form new actors, which we
call composite actors. We call actors that are not composite actorsatomic actors;
they may be predefined as language primitives (as is typical, for example, in the
synchronous languages), or they may be user-defined, as is typical in coordination
languages [4,38,16]. In a compositional formalism, a composite actor is itself an
actor.

This paper builds on domain theory [2], developed for the denotational semantics of
programming languages [47,42]. But unlike many semantics efforts that focus on
system state and transformation of that state, we focus on concurrent interactions,
and do not even assume that there is a well-defined notion of “system state.”

Our objective is to provide domain-theoretic semantics to timed concurrent sys-
tems, which traditionally rely instead on metric space approaches [48,28,7,8,19].
Our approach does not require a metric and embraces a wide variety of models of
time (for another treatment that does not rely on metric spaces, see [12]). Wegner
argues that temporal properties cannot be modeled with the rigor of mathematical
functions [45]. We show here that they can be. In particular, we develop a timed
version of the fixed-point semantics for process networks as introduced by Kahn
[26]. Our version uses the tagged-signal model [30]. We focus on timed systems
because in embedded systems, software engages in dialog with the physical world,

3



and time is an essential part of the semantics of the physical world.

In the next section, we review the tagged signal model and define signals, which
encompass the communication histories between actors. In section 3, we define
compositions of interacting actors and open systems. We show that familiar fixed-
point semantics, which are traditionally applied to closed systems, can be extended
to open systems. In section 4, we specialize to timed systems, and show that the
same fixed point semantics give conditions for existence and uniqueness of behav-
iors. In contrast to other authors [12,37,48], we do not require causality for exis-
tence and uniqueness of behaviors. Causality, however, is useful for liveness, the
timed analog of freedom from deadlock. We define strict causality without the use
of a metric, and like Naundorf [37], show that strict causality in a feedback loop
is sufficient for liveness. This contrasts with other authors [12,48], who require a
stronger form of causality called delta causality or time guardedness. Moreover,
we extend Naundorf by including open systems, by giving conditions for freedom
from Zeno behaviors, and by showing that the fixed point is constructive. We close
with a discussion of Zeno conditions in timed systems.

2 Tagged Signals

The tagged-signal model [30] provides a formal framework for considering and
comparing actor-oriented models of computation. It is similar in objectives to the
coalgebraic formalism of abstract behavior types in [5], interaction categories [1],
and interaction semantics [43]. As with all three of these, the tagged signal model
seeks to model a variety of interaction styles between concurrent components.

In the tagged-signal model, each discrete communication between actors is called
anevent. An event is defined to be a pair(t, v), wheret ∈ T is a tag andv ∈ V
is a value. Asignal is a set of events that typically represents the sum total of the
communication between two actors along some communication path. For the sys-
tems we are interested in, these sets are very likely infinite. Most applications of the
tagged-signal model impose structure on the tag setT and study the consequences
of that structure. For example,T might represent causality properties, time, or ac-
tivation orders.

To be sufficiently expressive to capture these properties of concurrent computation,
we use a partially ordered set (poset). A poset(T,≤) is a setT and a binary relation
≤ that is reflexive (t ≤ t), antisymmetric (t1 ≤ t2 and t2 ≤ t1 ⇒ t1 = t2), and
transitive (t1 ≤ t2 and t2 ≤ t3 ⇒ t1 ≤ t3).

In this paper, we constrain the tagged signal model of [30] in a subtle but important
way. Specifically, we assume that the tag set is a poset(T,≤), and that a signal is
a partial function defined on a down set ofT (a similar restriction is made in [37]).

4



Formally,

Definition 1 (Down Set) Let (T,≤) be a poset. A subsetT ′ of T is a down set if
for all t′ ∈ T ′ andt ∈ T , t ≤ t′ impliest ∈ T ′.

Down sets are also called initial segments in the literature [23].

Definition 2 (Signal) Let (T,≤) be a poset of tags, andV a non-empty set of val-
ues. A signals : T ⇀ V is a partial function fromT to V such thatdom(s) is a
down set ofT .

In the above definition,dom(s) is defined to be the subset ofT on which s is
defined.

LetS denote the set of all signals with tag setT and value setV . That is, this is the
set of partial functions with domainT and codomainV that are defined on a down
set ofT . S is a poset under theprefix order , defined next.

Definition 3 (Prefix Order) For any s1, s2 ∈ S, s1 is a prefix ofs2, denoted by
s1 v s2, if and only ifdom(s1) ⊆ dom(s2), ands1(t) = s2(t), ∀t ∈ dom(s1).

That is, a signals1 is a prefix of another signals2 if the graph of the functions1

is a subset of the graph of the functions2. The prefix order on signals is a natural
generalization of the prefix order on strings or sequences, and the extension order
on partial functions [44].

A complete partial order (CPO) (P,≤) is a poset whereP has least element
⊥P ∈ P , and where every directed subset ofP has a least upper bound. A subset
D ⊆ P is directed if for alld1, d2 ∈ D, {d1, d2} has an upper bound inD.

A signal set with the prefix order(S,v) is a CPO [33]. The least element ofS is
s⊥ : ∅ → V , anempty signal(it has no events). If a signal is defined for all tags in
T , then it is a maximal element ofS, and is called atotal signal.

Note that any pair of signals{s1, s2} ⊂ S has a greatest lower bounds1 ∧ s2 ∈ S.
This greatest lower bound is the common prefix, which may be the empty signal
if the two signals have nothing in common. In fact, any non-empty subsetS ′ ⊆ S
has a greatest lower bound, which makesS acomplete semilatticein addition to a
CPO [18].

3 Tagged Systems

Signals, defined in the previous section, represent communication between actors.
Actors receive and produce events onports. Thus, a port is associated with a signal,

5



which is a set of events. In this section, we give a declarative definition of actors
and show how actors can be composed.

3.1 Behaviors

Consider actorA with a finite set of portsPA = {p1, p2, ..., pn}. Assume each port
sends or receives signals in a signal setSi with tag setTi and value setVi. Let
SA = S1 ∪ S2 ∪ ... ∪ Sn. A behavior of A is a function

σ : PA → SA,

with the constraint thatσ(pi) ∈ Si. A behavior for a set of ports assigns to each
port a signal. The set of all behaviors for portsPA is writtenΣPA

⊆ (PA → SA).

The prefix order can be generalized to behaviors. Given two behaviorsσ1, σ2 ∈
ΣPA

, we sayσ1 v σ2 if and only if for all p ∈ PA, σ1(p) v σ2(p). It is then easy to
see that(ΣPA

,v) is a CPO and a complete semilattice.

Other definitions also generalize naturally. For instance, a behaviorσ : PA → SA is
total if for all p ∈ PA, σ(p) is total.

3.2 Actors as Sets of Behaviors

An actor A with portsPA is a set of behaviorsA ⊆ ΣPA
. That is, an actor can be

viewed as constraints on the signals at its ports. A signals ∈ Si at portpi ∈ PA is
said tosatisfyan actorA if there is a behaviorσ ∈ A such thats = σ(pi).

A connectorC between ports in setPC is also a set of behaviorsC ⊆ ΣPC
, but

with the constraint that for each behaviorσ ∈ C, there is a signals ∈ SC such that

∀ p ∈ PC , σ(p) = s.

That is, a connector asserts that the signals at a set of ports are identical.

3.3 Composition of Actors

Given two actors,A with portsPA andB with portsPB, thecomposition behavior
is the intersection, defined as

A ∧B ⊆ ((PA ∪ PB) → (SA ∪ SB)),

6



where
A ∧B = {σ | σ � PA ∈ A andσ � PB ∈ B},

whereσ � P denotes the restriction ofσ to the subsetP of ports. Note that this is
not the intersection of the graphs of the functions. It is larger.

A set of actors (each of which is a set of behaviors) and a set of connectors (each
of which is also a set of behaviors) defines acomposite actor. The composite actor
is defined to be the composition behavior of the actors and connectors.

Notice that because all signals in a behavior of a connector must be identical, there
is a type check that must be performed on actor composition. Moreover, whereas a
classical type system would focus only on the value setsV , our type check has to
also check the tag setsT . This means that actors communicating through connec-
tors must have compatible semantics on their ports. For example, if an actor sends
a stream, the receiving actor must accept a stream. If an actor sends timed events,
the receiving actor must accept timed events.

In many actor-oriented formalisms, ports are either inputs or outputs to an actor but
not both. Consider an actorA with portsPA = Pi∪Po, wherePi are the input ports,
Po are the output ports, andPi ∩ Po = ∅. The actor is said to befunctional if

∀ σ1, σ2 ∈ A, (σ1 � Pi = σ2 � Pi) ⇒ (σ1 � Po = σ2 � Po).

Such an actor can be viewed as a function from input signals to output signals.
Specifically, given a functional actorA with input portsPi and output portsPo, we
can define anactor function

FA : (Pi → Si) ⇀ (Po → So). (1)

When it creates no confusion, we make no distinction between the actor (a set of
behaviors) and the actor function. If the actor function is total, the actor is said to be
receptive. A connector, of course, is functional and receptive, where its single input
port is assumed to be an output port of an actor, and all other ports are assumed to
be input ports of actors.

An actor with no input ports (only output ports) is functional if and only if its
behavior set is a singleton set. That is, it has only one behavior. An actor with no
output ports (only input ports) is always functional.

A composition of actors and connectors is itself an actor. The input ports of such
a composition can include any input port of a component actor that does not share
a connection with an output port of a component actor. If the composition has no
input ports, it is said to beclosed. A composition isdeterminate if it is functional.
A key question in many actor-oriented formalisms is, given a set of total functional
actors and connectors, is the composition functional and total? This translates into
the question of existence and uniqueness of behaviors of compositions. It deter-
mines whether a composition is determinate and whether it is receptive. Note that

7



Fig. 1. A composition of three actors and its interpretation as a feedback system.

determinacy here is relative to the tag system. Anything not expressed in the tag
system is irrelevant.

3.4 Syntax

Actor-oriented languages can be either self-contained programming languages (e.g.
Esterel, Lustre) or coordination languages (e.g. Manifold [39], Simulink, Ptolemy
II). In the former case, the “atomic actors” are the language primitives. In the latter
case, the “atomic actors” are defined in a host language that is typically not actor
oriented (but is often object oriented). Actor-oriented design is amenable to either
textual syntaxes, which resemble those of more traditional computer programs, and
visual syntaxes, with “boxes” representing actors and “wires” representing connec-
tions. The synchronous languages Esterel, Lustre, and Signal, for example, have
principally textual syntaxes, although recently visual syntaxes for some of them
have started to catch on. Ports and connectors are syntactically represented in these
languages by variable names. Using the same variable name in two modules implic-
itly defines ports for those modules and a connection between those ports. Visual
syntaxes are more explicit about this architecture. Examples with visual syntaxes
include Simulink, LabVIEW, and Ptolemy II.

A visual syntax for a simple three-actor composition is shown in figure 1(a). Here,
the actors are rendered as boxes, the ports as triangles, and the connectors as wires
between ports. The ports pointing into the boxes are input ports and the ports point-
ing out of the boxes are output ports. A textual syntax for the same composition
might associate a language primitive or a user-defined module with each of the
boxes and a variable name with each of the wires.

8



3.5 Fixed Point Semantics

The composition in figure 1(a) can be redrawn as shown in figure 1(b), which sug-
gests the abstraction shown in figure 1(c). It is easy to see that any block diagram
of this type can be redrawn in this way and abstracted to a single actor with the
same number of input and output ports, with each output port connected back to a
corresponding input port.

It is also easy to see that if actorsA1, A2, andA3 in figure 1(b) are functional
and receptive, then the composite actorA in figure 1(c) is functional and receptive.
Let FA denote the actor function for actorA. Assuming the component actors are
functional and receptive, it has the form

FA : (Pi → Si) → (Po → So).

The feedback connections in figure 1(c) are an actor with function

C : (Po → So) → (Pi → Si)

that requires the signals at portsPi to be the same as the signals at portsPo. The
feedback system functionis thus a composition of the actor function and the feed-
back connections,

(C ◦ FA) : (Pi → Si) → (Pi → Si). (2)

Then the behavior of the feedback composition in figure 1(c) isσ ∈ (Pi → Si) that
is a fixed point ofC ◦ FA. That is,

(C ◦ FA)(σ) = σ.

A key question, of course, is whether such a fixed point exists (does the composi-
tion have a behavior?) and whether it is unique (is the composition determinate?).
This question has been addressed for dataflow process networks using fixed-point
theorems on CPOs [26]. For discrete-event models, it is customary to define se-
mantics somewhat differently, by defining a metric space on the setS of signals
[48,28,19], and to make causality requirements on the components. We show here
that the causality requirements are unnecessary for existence and uniqueness.

3.6 Open Systems

Note that the composition in figure 1 is closed (it has no inputs). We can generalize
the formulation to allow open compositions like the example in figure 2. In such
cases, we partition the input ports of the composition actor into two disjoint sets
Pi = P ′

i ∪ P ′′
i , whereP ′

i is the set of input ports of actorA that are not connected
to any output port ofA, andP ′′

i = Pi \ P ′
i . Thus, in figure 2,P ′

i = {p2} and

9



Fig. 2. A composition with feedback and input ports.

P ′′
i = {p1}. LetPo denote the output ports ofA. In figure 2,Po = {p3}. We assume

without loss of generality that all output ports are connected back to input ports in
P ′′

i . Then the actor function can be written

F ′
A : (P ′

i → S ′
i)× (P ′′

i → S ′′
i ) ⇀ (Po → So),

whereS ′
i andS ′′

i are the signal sets of portsp′i and p′′i . As before, we define a
connector for the feedback path, which will be a function of the form

C : (Po → So) → (P ′′
i → S ′′

i ).

The feedback system function is then

(C ◦ F ′
A) : (P ′

i → S ′
i)× (P ′′

i → S ′′
i ) ⇀ (P ′′

i → S ′′
i ). (3)

Given an input behaviorσi ∈ (P ′
i → S ′

i), if the feedback composition of figure 2
has a feedback behaviorσo ∈ (P ′′

i → S ′′
i ), then it must be true that

(C ◦ F ′
A)(σi, σo) = σo.

That is, the behavior on the output ports is a fixed point of a function that is pa-
rameterized by the input signal. If this fixed point exists and is unique for all input
behaviors, then thecomposition functionof figure 2 has the form

F : (P ′
i → S ′

i) → (Po → So). (4)

The ability to cleanly model open systems significantly reduces the incentive to
model nondeterministic systems (where actors are not functional). If the source
of nondeterminism in a system is external events, then a determinate model of an
open system is probably better than a nondeterminate model of a closed system.
Nonetheless, we conjecture that an adaptation of Plotkin’s powerdomain construc-
tion would work to provide a generalization to nondeterminate systems [40]. (It
needs to be adapted because it is based on transformations of global system state,
which is not a well-defined concept in our model.)

We examine next the conditions for existence and uniqueness of the fixed point.

10



3.7 Existence and Uniqueness of Fixed Points

In this section, we review classical results [18] and apply them to our formulation
of actor networks. Let(D,v) and (E,v) be CPOs. A functionG : D → E is
monotonic if it is order-preserving,

∀d1, d2 ∈ D, d1 v d2 =⇒ G(d1) v G(d2).

The same function is (Scott)continuous if for all directed setsD′ ⊆ D, G(D′) is
a directed set and

G(
∨

D′) =
∨

G(D′).

Here,G(D′) is defined in the natural way as{G(d) | d ∈ D′}, and∨X denotes the
least upper bound of the setX.

It is easy to show that every continuous function is monotonic. A classic fixed point
theorem [18] states that ifG : D → D for CPOD is continuous, then it has a least
fixed point, and that least fixed point is∨

{Gn(⊥D) | n ∈ N}, (5)

where⊥D is the least element ofD andN is the natural numbers.

These results can be immediately applied to closed actor systems like those in figure
1. If each component actor is receptive and continuous, then the system function
C ◦ FA of (2) is a continuous function on a CPO. Thus, it has a least fixed point,
and that fixed point is given by (5). Following [26], we can define the semantics of
the feedback system to be the single unique behavior that is the least fixed point.
As we will see, however, this result applies much more broadly than to the process
networks of [26].

To handle open systems like those in figure 2, we have a bit more work to do, but
again, classic results can be applied almost immediately. As before, let(D,v) and
(E,v) be CPOs, but now we consider a function of the form

G : D × E → E. (6)

For a givend ∈ D, let G(d) : E → E be the function such that

∀ e ∈ E, (G(d))(e) = G(d, e).

If G is continuous, then for alld ∈ D, G(d) is continuous (lemma 8.10 in [47]).
Hence,G(d) has a unique least fixed point, and that fixed point is∨

{(G(d))n(⊥E) | n ∈ N},

where⊥E is the least element ofE.

11



We recognize immediately that the feedback system function of (3) is a function
of form (6). Moreover, if the component actors are receptive and continuous, then
the feedback system function will be receptive and continuous, and given an input
behaviorσi ∈ (P ′

i → S ′),

(C ◦ F ′
A)(σi) : (P ′′

i → S ′′
i ) → (P ′′

i → S ′′
i )

is continuous and hence has a least fixed point. We take that least fixed point to be
the semantics of the system. Thus, for any input behaviorσi, the feedback compo-
sition has a unique semantics, and that semantics is a function of the form (4). We
now show that that function is receptive and continuous.

Since for any input behavior the system in figure 2 has a unique semantics, the
composition functionF of (4) is well defined. More interestingly, we can show that
if each of the component actors is receptive and continuous, then the composition
functionF is receptive and continuous. This follows first from the (trivial) obser-
vation thatF ′

A, C, and(C ◦ F ′
A) are receptive and continuous, and second from the

following theorem.

Theorem 4 Let (D,v), (E,v) be CPOs, and letG : D×E → E be a continuous
function. Define a functionF : D → E such that

∀ d ∈ D, F (d) =
∨
{(G(d))n(⊥E) | n ∈ N}.

That is,F (d) yields the least fixed point of the functionG(d) : E → E (which exists
and is unique).F is continuous.

Proof. Let [E → E] be the set of all continuous functions fromE to E. We can
define a partial order on this set by∀ p, q ∈ [E → E],

p v q ⇐⇒ ∀ y ∈ E, p(y) v q(y).

With this partial order,[E → E] is a CPO. For any directed setD′ ⊆ D, {G(d) | d ∈
D′} ⊆ [E → E] is a directed set, and∨

{G(d) | d ∈ D′} = G(
∨

D′),

so the functionG : D → [E → E] is continuous. Letfix: [E → E] → E denote
the function that yields the unique least fixed point of any continuous function in
[E → E]. By Theorem 2.1.19 in [2],fix is continuous. Note that

F = fix ◦G.

Since this is the composition of two continuous functions,F is continuous. 2

12



4 Timed Interactive Networks

Our framework so far can easily subsume some classical results. For example, if
the tag set for all signals isT = N, the natural numbers, then our networks are
Kahn process networks [26]. The constraint that signals be defined on a down set
of T is natural in this case. However, our framework is more general, and in this
paper, we focus on its use for timed interactive networks.

4.1 Models of Time

Our framework admits several models of time. In all cases, the tag setT will be
totally ordered. Perhaps the most natural choice, whereT = R+, the non-negative
reals, reflects a Newtonian physical view of time. The fact that we include only the
non-negative reals implies that our timed interactive networks have a starting point.

A more interesting model of time is super dense time (SDT) [35], whereT =
R+ × N with lexical ordering,

(r1, n1) ≤ (r2, n2) ⇐⇒ r1 < r2, or r1 = r2 andn1 ≤ n2 . (7)

This is a total order. SDT can be similarly defined asT = I × N, whereI is any
interval of real numbers. SDT has been used in studying the semantics of hybrid
systems [27,32,34]. A subsetT = N×N, is used as the model of time in some
hardware description languages (notably VHDL). SDT is in a sense “strictly richer”
thanR+ as a model of time, in that one can show that there is no order-embedding
of T = R+ × N in R+.

We make few constraints on the value sets, but for most models, it is useful to
assume that every value setV contains a special elementε ∈ V that represents
absence of a value. Without this choice, only signals defined on a connected interval
of R+ including0 would meet our requirement that signals be defined on a down
set. This would unnecessarily constrain us to continuous-time signals.

4.2 Defining Signals

For convenience in giving examples, we will give signals as a tuple,(dom(s), E)
wheredom(s) is the domain of the signal (a down set ofT ), andE is the set of
events that are not absent,

E = {(t, s(t)) | t ∈ dom(s), s(t) 6= ε}.

13



0 1 2 3 t

(a)

0 1 2 3 t

(b)

0 1 2 3 t

(c)

0 1 2 3 t

(d)

Fig. 3. Examples of timed signals: (a)const1, (b) clock1, (c) zeno, (d) dzeno.

By implication, all other events with a tag in the domain are absent. IfE is a finite
set, signals is called afinite signal. For example,

s⊥ = (∅, ∅),
sε = (T, ∅).

The empty signals⊥ has no events, whereas the absent signalsε has absent events
(t, ε) for all t ∈ T .

The following examples, withT = R+ andV = {0, 1, ε}, are sketched in figure 3:

const1 = (R+, {(t, 1) | t ∈ R+}),
clock 1 = (R+, {(k, 1) | k ∈ N}),
zeno = (R+, {(1− 1/2k, 1) | k ∈ N}),

dzeno = ([0, 1), {(1− 1/2k, 1) | k ∈ N}).

4.3 Examples of Actors

We now consider two example actors,Delayd andMerge. Letd be any positive real
number. TheDelayd : S → S actor shifts every event in its input signal byd into
the future such that ifr = Delayd(s), then

dom(r) = {t ∈ T | t− d ∈ dom(s) or t− d /∈ T},

r(t) =

s(t− d) t− d ∈ dom(s),

ε otherwise.

(8)

The Merge : S2 → S actor combines the present events in its input signals into
its output signal, giving precedence to its first input when both input signals are

14



Fig. 4. A composition that can be shown to be live.

present at the same time. Specifically, ifs = Merge(s1, s2), then

dom(s) = dom(s1) ∩ dom(s2),

s(t) =

s1(t) s1(t) 6= ε,

s2(t) otherwise.

(9)

It is easy to prove that actorsDelayd andMerge are both continuous [33]. They are
also obviously both receptive.

4.4 Live Systems

A closed composition of actors is said to belive if all its behaviors are total (if it is
determinate, then there is only one behavior). An open composition of actors is live
if, given input signals that are total, all behaviors are total. This broadly captures
the notions of freedom from deadlock, livelock, and causality loops.

Consider the composition shown in figure 4, which has the form of that in figure
2 when theMerge andDelayd are aggregated. Since bothMerge andDelayd are
receptive and continuous, the composite actorA is receptive and continuous, and
hence the feedback composition is itself a continuous function, using results from
section 3.7 above. We can also show that it is live.

To show that the composition in figure 4 is live, we use abstract interpretation [17],
considering the actors only to be relations on the domains of the signals,

dom(s2) = dom(s3) ∩ dom(s1),

dom(s3) = [0, d) ∪ {t + d | t ∈ dom(s2)}.

If the inputs1 is total, thendom(s1) = T anddom(s2) = dom(s3). This implies
that

dom(s3) = [0, d) ∪ {t + d | t ∈ dom(s3)}.
The only subset ofR+ that satisfies the last equation isR+, so boths2 ands3 are
total signals.

Not all timed process networks have this property. Suppose we replace theDelayd

actor in figure 4 with an actorLookAheada : S → S, wherea is a positive real

15



number. Given a signals, the outputr = LookAheada(s) is defined by

dom(r) = {t ∈ T | t + a ∈ dom(s)},
r(t) = s(t + a),

It is easy to show thatLookAheada is continuous.

If we replaceDelayd in figure 4 with LookAheada, the composition still yields
a receptive and continuous function from inputs to outputs, because likeDelayd,
LookAheada is continuous. However, the composition is not live. Given any input
s1, the least fixed point iss2 = s3 = s⊥, the empty signal. Thus, the feedback
composition gives a function that maps all inputs to the empty signal. This func-
tion is certainly receptive and continuous, but it’s not very useful. This situation is
analogous to deadlock in Kahn process networks.

It is well known that, in general, whether a network of actors is live is undecid-
able (this is known for Kahn process networks, which are a special case of our
framework, so we must assume that in general liveness is undecidable). We have
two alternatives. We can specialize the semantics of actors and tag systems to de-
cidable subsets (such as synchronous dataflow [29] and the synchronous/reactive
languages [9]), or we can find sufficient conditions for a network to be live, where
the sufficient conditions are checkable and not overly restrictive.

The latter approach is commonly used in timed systems such as discrete-event lan-
guages [48,28], where a metric space of signals is constructed and contraction maps
combined with the Banach fixed point theorem yield live systems. For systems of
the types represented by figures 1 and 2, a sufficient condition for a system to be
live is that the composite actorA be a contraction map. This corresponds to the
more intuitive requirement that every directed loop in a timed actor network in-
clude a time delay greater than someα > 0. In practice, even though this condition
is only sufficient and not necessary, this constraint is not onerous. Designers using
discrete-event languages, such as hardware description languages, have no diffi-
culty complying, and no difficulty understanding why the requirement is needed.
Indeed, they would consider systems that do not comply but are still live to be
pathological. However, in the context of hybrid systems [32], contraction maps are,
in fact, overly restrictive.

The metric space approach has been adapted to untimed systems (specifically Kahn
process networks) by Mathews [36], who uses a partial metric where the distance
of a sequence to itself is greater than zero if the sequence is finite, and is zero only
if the sequence is infinite. Mathews develops a generalization of the Banach fixed
point theorem to partial metrics and shows that if you have a contraction, then the
system is live (he calls the system “complete” rather than “live”).

In this paper, we give a sufficient condition for a system to be live that does not
require the machinery of a metric or a partial metric, and yet subsumes these mech-

16



anisms as special cases. Our approach is based on a simple and intuitive definition
of causality.

4.5 Causality

Causality is the relationship between causes and effects. If a timed process models
a physical or computational process, the time of an effect cannot be earlier than
the time of the corresponding cause. This intuition is captured by the following
definition.

Definition 5 (Causality) An actorA with input portsPi and output portsPo is
causal if it is monotonic, and for all behaviorsσ ∈ A,⋂

p∈Pi

dom(σ(p)) ⊆
⋂

p∈Po

dom(σ(p)) . (10)

An immediate consequence of this definition is that a causal actor is live. Thus,
whether a composition of actors is causal will tell us whether it is live.

To understand this definition intuitively, consider the case where the tag setT is
totally ordered. Then this definition says that if the inputs to a causal actor are
known up to some tagt ∈ T , then the outputs are known at least up to that same
tagt.

Also, a consequence of this definition is that if the input signals in one behavior
σ ∈ A are the same as the input signals in another behaviorσ′ ∈ A up to some tag
t, then the corresponding output signals will be the same up to the same tagt.

We can make this precise. LetD(t) = {τ ∈ T | τ ≤ t} for somet ∈ T denote the
smallest down set includingt. If an actorA is causal, then for any two behaviors
σ, σ′ ∈ A and timet such that

t ∈
⋂

p∈Pi

dom(σ(p)) ∩ dom(σ′(p)),

∀ p ∈ Pi, σ(p) � D(t) = σ′(p) � D(t) =⇒
∀ p ∈ Po, σ(p) � D(t) = σ′(p) � D(t).

This follows immediately from the definition of causality and the fact that the actor
is monotonic.

Among the actors discussed so far,Delayd andMerge are causal, whereasLookAheada

is not.

17



Neither causality nor continuity implies the other. TheLookAheada process is con-
tinuous but not causal. A minor variant of theMerge actor that we callMaxMerge
is causal but not continuous. TheMaxMerge : S2 → S actor is such thats =
MaxMerge(s1, s2) is given by

dom(s) = {t ∈ dom(s1) | ∀τ ∈ D(t) \ dom(s2), s1(τ) 6= ε}, (11)

s(t) =

s1(t) s1(t) 6= ε,

s2(t) otherwise.
(12)

Intuitively, if the input signals1 is continuously present over a time interval beyond
dom(s2), then those present events are in the output ofMaxMerge. The “Max” in
the name is suggestive that this actor, unlikeMerge, produces the maximal output
for a given pair of inputs.

Lemma 6 MaxMerge is not continuous.

Proof. AssumeT = R+ and consider two signals

u1 = ([0, 1], {(1, 1)}), (13)
u2 = ([0, 1), ∅), (14)

MaxMerge(u1, u2) = u1. (15)

Let

rk = ([0, 1− 1

2k
), ∅), k ∈ N,

D = {(u1, rk), k ∈ N}.

D is a directed set, and

MaxMerge(u1, rk) = rk,
∨

MaxMerge(D) = u2.∨
D = (u1, u2), MaxMerge(

∨
D) = u1.∨

MaxMerge(D) 6= MaxMerge(
∨

D) .

Hence, the actor is not continuous.2

It is easy to see that any composition of causal actors without directed cycles is
itself a causal actor. This is not in general true when there are directed cycles. In
this case, we will require that at least one actor in the loop be strictly causal, as
defined next.

Definition 7 (Strict Causality) An actorA with input portsPi and output ports
Po is strictly causal if it is monotonic, and for all behaviorsσ ∈ A, eitherσ(p) is

18



total for all p ∈ Po or ⋂
p∈Pi

dom(σ(p)) ⊂
⋂

p∈Po

dom(σ(p)) . (16)

Here⊂ denotes a strict subset relation. Note that ifA is a strictly causal actor with
one input and one output, thenA(s⊥) 6= s⊥. A must “come up with something from
nothing.” This is, of course, why strictly causal actors are useful in directed cycles.
Strict causality in our sense serves a similar role to “delta causality” in metric space
formulations, but ours does not require a metric.

We might assume thatDelayd is strictly causal, but this is not always the case. If
the tag set isT = R+, thenDelayd is strictly causal for anyd > 0. The same holds
if T is any interval in the reals that is not a down set ofR. If T is a down set ofR,
such as(−∞, 0] or R itself, thenDelayd is not strictly causal, as evidenced by the
fact thatDelayd(s⊥) = s⊥.

We finally come to the main result of this section. The following theorem effectively
gives us a sufficient condition for networks to be live, since causal actors are live.

Theorem 8 (Causality of Feedback Compositions)Given a totally ordered tag
set and a network of causal, receptive, and continuous actors where in every de-
pendency loop in the network there is at least one strictly causal actor, then the
network is a causal, receptive, and continuous actor.

Proof. (Sketch) We will prove the theorem for networks of the form of figure 2.
The composition actor has input portp2 and output portp3. Note that since actor
A is continuous, the composite actor is receptive and continuous by the results
of section 3.7. So we only have to show causality. The generalization to arbitrary
networks is notationally more tedious, but conceptually identical, and is given in
[33].

We proceed by contradiction. Suppose the composite actor is not causal. Then there
exists an input signals2 at portp2 and output signals3 at p3 wheredom(s2) 6⊆
dom(s3). Since the tag set is totally ordered, the set of down sets of the tag set
is totally ordered by set inclusion. Thus, ifdom(s2) 6⊆ dom(s3), then it must be
true thatdom(s3) ⊂ dom(s2) (a strict subset). The signals1 at portp1 is the same
ass3, sodom(s1) ⊂ dom(s2) anddom(s1) ∩ dom(s2) = dom(s1). Hence, strict
causality requiresdom(s1) ⊂ dom(s3), but we havedom(s1) = dom(s3), a con-
tradiction. 2

Note that this proof is not constructive. It does not tell us how to find the behavior
of the actor network, it just tells us that there is a well-defined behavior, and it im-
plies that if the input is total then the output is total. Since we assume the actors are

19



receptive and continuous, the behavior of the network is the same as obtained con-
structively by theorem 4. However, although theorem 4 is constructive, behaviors
of the system may not be computable in practice. We examine this issue next.

5 Discrete-Event Systems

An important subclass of timed systems are discrete event (DE) systems [14,22,28].
Here, we give a strong definition of such systems, showing that they provide a
subset of timed systems that can be computed one event at a time. In particular,
appropriately constrained DE systems yield a countable set of events and avoid
Zeno conditions, which in practice can be as big an obstacle to practical utility as
lack of liveness. We begin with the definition of DE signals and their properties.

5.1 DE Signals

Definition 9 (Discrete Event Signal) A timed signals ∈ S is a discrete event
(DE) signal if there exists a directed setD ⊆ S of finite timed signals such that

s =
∨

D .

Let Sd ⊆ S denote the set of all DE signals with the same tag and value sets asS.
Among the signals in figure 3,clock 1 anddzeno are DE signals, but notconst1 and
zeno. Both the empty signals⊥ and the absent signalsε are DE signals.

There are several equivalent definitions of DE signals, as established by the follow-
ing lemmas.

Lemma 10 A timed signals is a DE signal if and only if for allt ∈ dom(s),
s � D(t) is a finite signal.

Proof. Let s be a DE signal andD a directed set of finite signals such thats =
∨

D.
For all t ∈ dom(s), there existsr ∈ D such thatt ∈ dom(r).

r v s =⇒ s � D(t) = r � D(t).

r is a finite signal impliesr � D(t) is a finite signal, so iss � D(t).

For any timed signals, let

Ds = {s � D(t) | t ∈ dom(s)} ∪ {s⊥} .

20



Ds is a directed set ands =
∨

Ds. If for all t ∈ dom(s), s � D(t) is finite, thens is
a DE signal. 2

Lemma 11 A timed signals ∈ S is a DE signal if and only ifs−1(V \ {ε}) is
order-isomorphic to a down set ofN, and ifs−1(V \ {ε}) is an infinite set, then

dom(s) =
⋃

t∈s−1(V \{ε})
D(t) . (17)

This definition is used in [28]. Ifs−1(V \ {ε}) is order-isomorphic to a down set
of N, then the present events ofs can be enumerated in the order of their time. Ifs
is present at an infinite number of times, then equation 17 guarantees that for any
t ∈ dom(s), s is present at a time later thant.

With these lemmas, we have three equivalent definitions of DE signals. Definition
9 states that DE signals can be approximated by “simple” elements ofS, the finite
signals. Lemma 10 is very useful in proving properties of DE signals. By lemma
11, the present events in a DE signal can be treated as a sequence with increasing
time tags.

The following lemma summarizes the properties ofSd, the set of DE signals.

Lemma 12 For any totally ordered tag setT ,

(a) Sd is a down set ofS.
(b) Sd with the prefix order is a CPO.
(c) Sd is a complete semilattice.

Proof. Part (a) is straightforward, as any prefix of a DE signal is also a DE signal.

Part (b). LetD be a directed set of DE signals fromSd. As a subset ofS, D is also
a directed set. SinceS is a CPO, there existsu ∈ S such thatu =

∨
D in the CPO

S. For all t ∈ dom(u), there existss ∈ D such thatt ∈ dom(s).

s v u, t ∈ dom(s) =⇒ u � D(t) = s � D(t).

s � D(t) is a finite signal, so isu � D(t). u is a DE signal, soD has a least upper
bound inSd. Sd is a CPO.

Part (c). The proof follows directly from the fact thatS is a complete semilattice
and part (a) of this lemma.2

Definition 13 (Non-Zeno Signal) A DE signals ∈ Sd is non-Zeno if eithers is a
finite signal, ors is a total signal,dom(s) = T .

21



Of the signals in figure 3,clock 1 is the only non-Zeno DE signal. The only other
DE signal,dzeno, is a Zeno signal—it is present at an infinite number of times in a
strict subset of its tag set. The significance of this is that if the signal is computed
by enumerating its present events ordered by time, then anyt ∈ T \ dom(dzeno)
cannot be covered in any finite number of computational steps.

Note the role of the tag setT in definition 13. If we change the tag set toT = [0, 1),
then the signal

([0, 1), {(1− 1

2k
, 1) | k ∈ N})

is present at the same set of times asdzeno, but it is a non-Zeno signal because its
tag setT is [0, 1) and it is a total signal.

A key property of non-zeno DE signals is that all approximations defined over a
subset ofT have a finite number of (non-absent) events. This property is extremely
helpful when computing the signals in a composition. It means that a computation
can successively approximate signals over downsets ofT , iteratively increasing
these downsets towards the limit ofT , and the computation will never have to rep-
resent more than a finite number of events. Discrete-event simulators, for example,
execute a composition in precisely this manner, by advancing time and representing
signals up to the advancing time. This observation motivates the following defini-
tions.

Definition 14 (Computable closed compositions)A closed composition is com-
putable if it has a finite number of behaviors and every signal in every behavior is
a non-Zeno DE signal.

Definition 15 (Computable open compositions)An open composition is computable
if given non-Zeno DE signals for inputs it has a finite number of behaviors and ev-
ery signal in every behavior is a non-Zeno DE signal.

5.2 Discrete-Event Actors

Definition 16 (Discrete-Event Actor) A discrete event actoris a function from
DE signals to DE signals.

All input and output signals of a DE actor have the same tag set. Among the actors
discussed above,Delayd, Merge, andLookAheada are DE actors.MaxMerge is not
a DE actor, as it has the following behavior,

s1 = ([0, 1], {(1, 1)}) ,

s2 = dzeno,

MaxMerge(s1, s2) = ([0, 1], {(1− 1

2k
, 1) | k ∈ N} ∪ {(1, 1)}) .

22



MaxMerge(s1, s2) is not a DE signal.

Definition 17 (Non-Zeno Actor) A DE actorP : Sd → Sd is a non-Zeno actorif
for any non-Zeno signals ∈ Sd, P (s) is a non-Zeno signal.

Such actors are calledsimple processesin [15].

Theorem 18 A causal DE actor is non-Zeno.

Proof. Let P : Sd → Sd be a causal DE process. Lets ∈ Sd be any non-Zeno
signal. If s is a total signal,P is causal impliesP (s) is a total DE signal.P (s) is
non-Zeno.

If s is not a total signal, thens is finite. Lets′ ∈ Sd be a total signal such that

s′(t) =

s(t) if t ∈ dom(s),

ε otherwise.

s′ is a total non-Zeno signal, ands v s′. P (s′) is a non-Zeno signal.P is causal, so
it is monotonic by definition.P (s) v P (s′), soP (s) is non-Zeno. 2

5.3 Composition of Discrete-Event Actors

Combining the previous results, from section 3, we know that if all actors in a
network of DE actors are continuous, then the network, as a functional actor that
maps input signals to the least solution of the network equations, is continuous. The
following theorem is proved essentially identically to theorem 8.

Theorem 19 (Causal DE Process Network)If all actors in a DE actor network
are causal and continuous, and in every dependency loop in the network there is at
least one strictly causal actor, then the network is causal and continuous.

Corollary 20 A DE actor network that satisfies the assumptions of theorem 19 is
non-Zeno, and hence computable.

This corollary follows directly from theorems 19 and 18. Note that unlike [49,48,28]
and most other treatments of DE systems, we do not require that two present events
in a signal be separated by a minimum time interval, nor that actors be required to
introduce a minimum time delay.

23



6 Conclusion

We have given a domain-theoretic denotational framework for timed interactive
systems. We have shown that classical CPO-based techniques determine existence
and uniqueness of (least fixed point) solutions, while causality determines liveness.
In particular, strict causality, the definition of which does not require a metric space,
ensures live feedback loops, which in turn ensures freedom from Zeno conditions.
Our approach contrasts with metric space approaches, where contractions and the
Banach fixed point theorem ensure existence and uniqueness of fixed points to-
gether with liveness. Separating liveness concerns from existence/uniqueness con-
cerns allows us to admit non-causal components. Moreover, our approach does not
require a metric space and consequently embraces easily a wide variety of models
of time, including super-dense time.

7 Acknowledgements

Thanks to Adam Cataldo and Eleftherios D. Matsikoudis for many helpful sugges-
tions.

References

[1] S. Abramsky, S. J. Gay, and R. Nagarajan. Interaction categories and the foundations
of typed concurrent programming. In M. Broy, editor,Deductive Program Design:
Proceedings of the 1994 Marktoberdorf Summer School, NATO ASI Series F.
Springer-Verlag, 1995.

[2] S. Abramsky and A. Jung. Domain theory. InHandbook of logic in computer science
(vol. 3): semantic structures, pages 1–168. Oxford University Press, Oxford, UK,
1995.

[3] G. Agha. Concurrent object-oriented programming.Communications of the ACM,
33(9):125–140, 1990.

[4] F. Arbab. Reo: A channel-based coordination model for component composition.
Mathematical Structures in Computer Science, 14(3):329–366, 2004.

[5] F. Arbab. Abstract behavior types : A foundation model for components and their
composition.Science of Computer Programming, 55:3–52, 2005.

[6] J. R. Armstrong and F. G. Gray.VHDL Design Representation and Synthesis. Prentice-
Hall, second edition, 2000.

[7] A. Arnold and M. Nivat. Metric interpretations of infinite trees and semantics of non
deterministic recursive programs.Fundamenta Informaticae, 11(2):181–205, 1980.

[8] C. Baier and M. E. Majster-Cederbaum. Denotational semantics in the cpo and metric
approach.Theoretical Computer Science, 135(2):171–220, 1994.

[9] A. Benveniste and G. Berry. The synchronous approach to reactive and real-time
systems.Proceedings of the IEEE, 79(9):1270–1282, 1991.

24



[10] A. Benveniste and P. L. Guernic. Hybrid dynamical systems theory and the signal
language.IEEE Tr. on Automatic Control, 35(5):525–546, 1990.

[11] G. Berry and G. Gonthier. The esterel synchronous programming language: Design,
semantics, implementation.Science of Computer Programming, 19(2):87–152, 1992.

[12] M. Broy. Refinement of time.Theoretical Computer Science, 253:3–26, 2001.
[13] M. Broy and G. Stefanescu. The algebra of stream processing functions.Theoretical

Computer Science, 258:99–129, 2001.
[14] C. G. Cassandras.Discrete Event Systems, Modeling and Performance Analysis. Irwin,

1993.
[15] J. A. Cataldo, E. A. Lee, X. Liu, E. D. Matsikoudis, and H. Zheng. A constructive

fixed-point theorem and the feedback semantics of timed systems. Technical report,
EECS Department, University of California, Berkeley, January 24 2006.

[16] P. Ciancarini. Coordination models and languages as software integrators.ACM
Computing Surveys, 28(2), 1996.

[17] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. InSymposium on
Principles of Programming Languages (POPL), pages 238–252. ACM Press, 1977.

[18] B. A. Davey and H. A. Priestly. Introduction to Lattices and Order. Cambridge
University Press, 1990.

[19] J. W. de Bakker and E. P. de Vink. Denotational models for programming languages:
Applications of banachs fixed point theorem.Topology and its Applications, 85:35–52,
1998.

[20] E. A. de Kock, G. Essink, W. J. M. Smits, P. van der Wolf, J.-Y. Brunel, W. Kruijtzer,
P. Lieverse, and K. A. Vissers. YAPI: Application modeling for signal processing
systems. In37th Design Automation Conference (DAC’00), pages 402–405, Los
Angeles, CA, 2000.

[21] J. B. Dennis. First version data flow procedure language. Technical Report MAC
TM61, MIT Laboratory for Computer Science, 1974.

[22] G. S. Fishman.Discrete-Event Simulation: Modeling, Programming, and Analysis.
Springer-Verlag, 2001.

[23] Y. Gurevich. Evolving algebras 1993: Lipari Guide. In E. Börger, editor,Specification
and Validation Methods, pages 9–37. 1994.

[24] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data flow
programming language LUSTRE.Proceedings of the IEEE, 79(9):1305–1319, 1991.

[25] C. Hewitt. Viewing control structures as patterns of passing messages.Journal of
Artifical Intelligence, 8(3):323363, 1977.

[26] G. Kahn. The semantics of a simple language for parallel programming. InProc. of
the IFIP Congress 74. North-Holland Publishing Co., 1974.

[27] A. Kapur. Interval and Point-Based Approaches to Hybrid Systems Verification. Ph.d.,
Stanford University, 1997. Uses super dense time (super-dense, superdense).

[28] E. A. Lee. Modeling concurrent real-time processes using discrete events.Annals of
Software Engineering, 7:25–45, 1999.

[29] E. A. Lee and D. G. Messerschmitt. Synchronous data flow.Proceedings of the IEEE,
1987.

[30] E. A. Lee and A. Sangiovanni-Vincentelli. A framework for comparing models of
computation.IEEE Transactions on CAD, 17(12), 1998.

[31] E. A. Lee and Y. Xiong. A behavioral type system and its application in Ptolemy II.
Formal Aspects of Computing Journal, 16(3):210 – 237, 2004.

25



[32] E. A. Lee and H. Zheng. Operational semantics of hybrid systems. In M. Morari and
L. Thiele, editors,Hybrid Systems: Computation and Control (HSCC), volume LNCS
3414, pages pp. 25–53, Zurich, Switzerland, 2005. Springer-Verlag.

[33] X. Liu. Semantic foundation of the tagged signal model. Phd thesis, EECS
Department, University of California, December 20 2005.

[34] O. Maler, Z. Manna, and A. Pnueli. From timed to hybrid systems. InReal-Time:
Theory and Practice, REX Workshop, pages 447–484. Springer-Verlag, 1992.

[35] Z. Manna and A. Pnueli. Verifying hybrid systems.Hybrid Systems, pages 4–35,
1992.

[36] S. G. Matthews. An extensional treatment of lazy data flow deadlock.Theoretical
Computer Science, 151(1):195–205, 1995.

[37] H. Naundorf. Strictly causal functions have a unique fixed point.Theoretical
Computer Science, 238(1-2):483–488, 2000.

[38] G. Papadopoulos and F. Arbab. Coordination models and languages. In M. Zelkowitz,
editor,Advances in Computers - The Engineering of Large Systems, volume 46, pages
329–400. Academic Press, 1998.

[39] G. A. Papadopoulos, A. Stavrou, and O. Papapetrou. An implementation framework
for software architectures based on the coordination paradigm.Science of Computer
Programming, 60(1):27–67, 2006.

[40] G. Plotkin. A powerdomain construction.SIAM Journal on Computing, 5(3):452–487,
1976.

[41] J. J. M. M. Rutten. A coinductive calculus of streams.Mathematical Structures in
Computer Science, 15(1):93–147, 2005.

[42] J. E. Stoy.Denotational Semantics. MIT Press, Cambridge, MA, 1977.
[43] C. L. Talcott. Interaction semantics for components of distributed systems. InFormal

Methods for Open Object-Based Distributed Systems (FMOODS), 1996.
[44] P. Taylor.Practical Foundations of Mathematics. Cambridge University Press, 1999.
[45] P. Wegner. Interactive foundations of computing.Theoretical Computer Science,

192(2):315–351, 1998.
[46] P. Wegner, F. Arbab, D. Goldin, P. McBurney, M. Luck, and D. Roberson. The role

of agent interaction in models of computation (panel summary). InWorkshop on
Foundations of Interactive Computation, Edinburgh, 2005.

[47] G. Winskel. The Formal Semantics of Programming Languages. MIT Press,
Cambridge, MA, USA, 1993.

[48] R. K. Yates. Networks of real-time processes. In E. Best, editor,Proc. of the 4th Int.
Conf. on Concurrency Theory (CONCUR), volume LNCS 715. Springer-Verlag, 1993.

[49] R. K. Yates and G. R. Gao. A kahn principle for networks of nonmonotonic real-time
processes. InParallel Architectures and Languages, Europe, pages 209–227, 1993.

26


