
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Type-based Initialization Analysis of a Synchronous
Data-flow Language?

Jean-Louis Colaço1, Marc Pouzet2

1 LIP6, Université Pierre et Marie Curie, 8 rue du Capitaine Scott, 75015 Paris, France.
e-mail: Marc.Pouzet@lip6.fr

2 ESTEREL Technologies, Park Avenue 9, Rue Michel Labrousse 31100 Toulouse, France
e-mail: Jean-Louis.Colaco@esterel-technologies.com

January 2004

Abstract. One of the appreciated features of the syn-
chronous data-flow approach is that a program defines a
perfectly deterministic behavior. But the use of the de-
lay primitive leads to undefined values at the first cycle;
thus a data-flow program is really deterministic only if
it can be shown that such undefined values do not affect
the behavior of the system.

This paper presents an initialization analysis that
guarantees the deterministic behavior of programs. This
property being undecidable in general, the paper pro-
poses a safe approximation of the property, precise enough
for most data-flow programs. This analysis is a one-bit
analysis — expressions are either initialized or unini-
tialized — and is defined as an inference type system
with sub-typing constraints. This analysis has been im-
plemented in the Lucid Synchrone compiler and in
a new Scade-Lustre prototype compiler at Esterel-
Technologies. The analysis gives very good results in
practice.

Key words: Synchronous data-flow languages – Lustre
– Type systems with sub-typing – Program analysis.

1 Introduction

Since its definition in the early eighties, Lustre [8] has
been successfully used by several industrial companies to
implement safety critical systems in various domains like
nuclear plants, civil aircrafts, transport and automotive
systems. All these development have been done using
Scade [14], a graphical environment based on Lustre
and distributed successively by Verilog SA, Telelogic and
now Esterel Technologies.

? A preliminary version of this paper appears in [6].

Lustre is a first-order functional language managing
infinite sequences or streams as primitive values. These
streams are used for representing input/outputs in a
real-time system. Lustre is well suited for real-time
critical systems constraints thanks to its well formal-
ized semantics, its associated verification tools and its
ability to be translated into simple imperative programs
for which some fundamental properties can be ensured
(e.g., bounded execution time and memory).

In order to “break” data-flow loops and then define
a causally correct specification, explicit delays must be
introduced. Because these delays are not initialized, they
may introduce undefined values. These undefined values
may be responsible for non deterministic behavior. The
Scade-Lustre compiler analyses this risk. Nonetheless,
the analysis is too much conservative and often forces the
programmer to add extra initializations.

The purpose of this paper is to present a new initial-
ization analysis which improves the existing one and is
fast enough to be used in a development process of large
programs. The analysis has been designed originally for
Lucid Synchrone [4,5,13]. While keeping the funda-
mental properties of Lustre, Lucid Synchrone pro-
vides powerful extensions such as higher-order features,
data-types, type and clock inference. The compilation
also performs a causality analysis and an initialization
analysis which is the subject of the present paper. Lucid
Synchrone is used today by the Scade team at Es-
terel Technologies for testing extension of Scade
and the design of a new compiler.

1.1 Contribution

This paper presents an initialization analysis for a syn-
chronous data-flow language providing uninitialized unary
delay and a separate initialization operator. We express
it as a standard typing problem with sub-typing con-

2 Jean-Louis Colaço, Marc Pouzet: Type-based Initialization Analysis of a Synchronous Data-flow Language

straints and we base it on classical resolution techniques
of the field.

The paper does not present new theoretical result
in the field of type systems with sub-typing. Rather, it
shows the adequacy of a type-based formulation of the
initialization problem and the use of conventional tech-
niques to solve it.

The analysis has been implemented in the industrial
Lustre compiler prototype called ReLuC (Retargetable
Lustre Compiler) and in the Lucid Synchrone com-
piler. Compared to the actual Scade implementation,
the analysis is more accurate: most of the time, rejected
programs do produce undefined results. The analysis is
also faster: this is particularly important in an indus-
trial setting where the analysis should be able to check
real size programs (several thousand lines of code) be-
fore any simulation start. The analysis is modular in the
sense that the initialization information of a node re-
duces to the initialization information of its definition.
This initialization information is a type, i.e., an abstrac-
tion of value with respect to the initialization problem.
Modularity is partly responsible for efficiency. Finally, it
appears to give good diagnostics in practice in the sense
that it is often enough to insert an initialization where
the error occurs in order to obtain a correct program
that will be analyzed successfully.

The paper is organized as follows. Section 2 gives the
main intuitions of our initialization analysis and motiva-
tion. Section 3 formalizes the analysis on a higher-order
data-flow synchronous kernel in which Lustre and Lu-
cid Synchrone can be easily translated. It then estab-
lishes the correctness theorem stating that “well typed
programs are well initialized”. Section 4 discuss imple-
mentation approaches taken by both compilers. In sec-
tion 5, we come back to the need of un-initialized delays
in data-flow languages and alternative or existing ap-
proaches for the initialization problem. Section 6 is the
conclusion.

2 Initialization Analysis: intuitions

Because this work has been done for two different lan-
guages with their own syntax, we base our presentation
on the more abstract syntax presented in section 3.

Synchronous data-flow languages manage infinite se-
quences or streams as primitive values. For example, 1
stands for an infinite constant sequence and primitives
imported from a host language are applied point-wise to
their argument. These languages provide also a unary
delay pre (for previous) and an initialization operator

-> (for f ollowed-by).

x x0 x1 x2 x3 . . .
pre x nil x0 x1 x2 . . .
y y0 y1 y2 y3 . . .
y -> x y0 x1 x2 x3 . . .
y -> pre x y0 x0 x1 x2 . . .
y -> pre (pre x) y0 nil x0 x1 . . .

The initial value of pre x is undefined and noted nil.
These undefined values can be eliminated by inserting an
initialization operator (->). It is easy to see that com-
bining these two primitives leads to an always defined
delay ->pre. In the context of critical system program-
ming, we need to check that these undefined values will
not affect the behavior of the program.

A trivial analysis consists in verifying that each delay
is syntactically preceded by an initialization. Nonethe-
less, an equation is often defined by separating the in-
variant part (written with pre) from its initialization
part (written with ->) as in the following example:

node switch c = o

with o = c -> if c then not (pre o)

else pre o

The syntactic criteria is unable to verify that this
function is indeed correct, that is, o does not contain any
nil values. Moreover, it is often useful to define a func-
tion that does not necessarily initialize all its output and
does not need its input to be initialized, leaving the ini-
tialization problem to the calling context of the function.
Thus, intermediate nil values should be accepted.

Moreover, a too severe criteria can lead to redundan-
cies and useless code due to over initialized expressions.
At least, these useless initializations make the code less
clear and there is little evidence that they will be elimi-
nated by the compiler.

Another simple approach could consist in giving a
default initial value to delays (e.g., false in the case
of boolean delays) in pretty much the same way as C
compilers give initial values to memories. This is by no
means satisfactory in the context of critical systems pro-
gramming since programs would rely on an implicit in-
formation. Moreover, when considering an implementa-
tion into circuits, forcing the initialization of delays (i.e,
latches) cost extra wires which must be avoided as much
as possible.

An ambitious approach could be to use verification
tools (e.g., NP-tools, Lesar) by translating the initial-
ization problem into a boolean problem. Though theoret-
ically possible, this approach may be quite expensive; it
is not modular (at least for higher-order) and certainly
useless for many programs. Moreover, keeping precise
and comprehensive diagnostics — which is crucial — is
far from being easy.

These considerations have led us to design a specific
initialization analysis. We adopt a very modest one-bit

Jean-Louis Colaço, Marc Pouzet: Type-based Initialization Analysis of a Synchronous Data-flow Language 3

approach where streams are considered to be either al-
ways defined or maybe undefined at the very first instant
only. This leads to a natural formulation in terms of a
type-system with sub-typing. In this system, an expres-
sion which is always defined receives the type 0 whereas
an expressions whose first value may be undefined re-
ceives the type 1. Then we use sub-typing to express the
natural assumption: “an initialized stream can be used
where an uninitialized one is expected”, that is, 0 ≤ 1.
Consider, for example:

node deriv x = s with

s = x - pre x

The function gets type 0 → 1 meaning that its input x

must be initialized and its output s is not. Indeed, pre x

has type 1 if x has type 0. The (-) operator needs its two
arguments to share the same type, thus, after weakening
the type of x, s receives the type 1. Thus, the following
program is rejected.

node deriv2 x = s with

s = deriv (deriv (x))

^^^^^^^^^^^

Indeed, the (underlined) expression deriv x has type 1
whereas deriv expects a value with type 0. Thanks to
the modularity of the analysis, the compiler is able to
give a precise diagnostic of the error by pointing out the
expression whose type is different from what is expected.

Type variables are naturally introduced for express-
ing type constraints between program variables. Con-
sider, for example:

node min (x,y) = z

with z = if x <= y then x else y

min receives the polymorphic type scheme ∀δ.δ × δ → δ
stating that for any type δ (δ ∈ {0,1}), if the input x

and y have the type δ, then the output z receives the
same type δ. Thus, min can be used with two different
type instances 0× 0→ 0 or 1× 1→ 1.

node low (x,y) = l

with m = min (x,y)

and l = x -> min (m, pre l)

The first instance of min is used with type 0 × 0 → 0
whereas the second one is used with type 1 × 1 → 1.
Finally, the function low receives the type 0 × 0 → 0
since m has type 0 which can be weakened into type 1
and pre l has type 1.

The one-bit abstraction comes from the observation
that equations are often written by separating the initial-
ization part from the invariant part and from the chara-
teristic of the initialization operator. Indeed, an initial-
ization operator cannot eliminate the nil value appearing
at the second instant in an expression pre(pre x) 1.

1 This is in contrast with classical imperative languages where,
once a variable is assigned, it keeps its value until its next modifi-
cation.

This explains why such expressions are rarely used in
common programs. Of course, using a pre(pre x) does
not necessarily lead to an incorrect program (see sec-
tion 3.5). Accepting them should rely on boolean proper-
ties of programs and we reject expressions like pre(pre x).

In practice, the one-bit abstraction, while being mod-
est, gives remarkably good results. The initialization anal-
ysis is modular, it addresses Lucid Synchrone as well
as Lustre programs and can be implemented using stan-
dard techniques.

3 Formalization

This section presents a synchronous data-flow kernel, de-
fines its data-flow semantics. It gives also its associated
initialization analysis presented as a standard type sys-
tem with sub-typing constraints.

3.1 A Synchronous Kernel and its Data-flow
Semantics

An expression e may be an immediate constant (i), a
variable (x), the point-wise application of an operator
to a tuple of inputs (op(e1, e2)) 2, the application of
a delay (pre) or initialization (->), a conditional
(if e then e else e), an application (e(e)), a local defi-
nition of streams (e with D), a function definition
(node f x = e in e) or a pair (e, e) and its access func-
tions.

A set of definitions (D) contains equations between
streams (x = e). These equations are considered to be
mutually recursive.

The kernel may import immediate constants (i) from
a host language (e.g., a boolean or an integer) or func-
tional values (op) which are applied point-wisely to their
inputs.

e ::= i | x | op(e, e) | pre e
| e -> e | if e then e else e | e(e)
| e with D | node f x = e in e
| (e, e) | fst e | snd e

D ::= x = e and D | x = e
i ::= true | false | 0 | ...
op ::= + | ...

This kernel is essentially an ML kernel managing se-
quences as primitive values. We give it a classical Kahn
semantics [9] that we remind here shortly 3. Let Tω be
the set of finite or infinite sequences of elements over the
set T (Tω = T ∗ + T∞). The empty sequence is noted ε
and x.s denotes the sequence whose head is x and tail
is s. We also consider Tnil = T + nil as the set T com-
plemented with a special value nil. If s is a sequence,

2 For simplicity, we only consider binary operators in this pre-
sentation.

3 We keep here the original notion of the paper.

4 Jean-Louis Colaço, Marc Pouzet: Type-based Initialization Analysis of a Synchronous Data-flow Language

i# = i.i#

op#(s1, s2) = ε if s1 = ε or s2 = ε

op#(v1.s1, v2.s2) = (v1 op v2).op#(s1, s2)
if v1 6= nil and v2 6= nil

op#(v1.s1, v2.s2) = nil.op#(s1, s2)

if#(s1, s2, s3) = ε if s1 = ε or s2 = ε or s3 = ε

if#(nil.s, v2.s2, v3.s3) = nil.if#(s, s2, s3)

if#(true.s, v2.s2, v3.s3) = v2.if
#(s, s2, s3)

if#(false.s, v2.s2, v3.s3) = v3.if
#(s, s2, s3)

pre#(s) = nil.s

s1 ->#s2 = ε if s1 = ε or s2 = ε

(v1.s1) ->#(v2.s2) = v1.s2

Fig. 1. Data-flow semantics for primitives

s(i) denotes the i-th element of s if it exists. If s = x.s′

then s(0) = x and s(i) = s′(i − 1). Let ≤ be the pre-
fix order over sequences, i.e., x ≤ y if x is a prefix of
y. The ordered set (Tω,≤) is a cpo. If f is a continu-
ous mapping from sequences to sequences, we shall write
fix f = limn→∞f

n(ε) for the smallest fix point of f .

If T1, T2, ... are set of scalar values (typically values
imported from a host language), we define the domain V
as the smallest set containing Ti

∞
nil and closed by prod-

uct and exponentiation.

For any assignment ρ (mapping values to variable
names) and expressions e, we define the denotation of
an expression e by Sρ(e). We overload S(.) such that
Sρ(D) defines the denotation of stream equations. We
first give in figure 1 the interpretation over sequences
for every data-flow primitive. We use the mark # to give
the semantics of primitives over infinite sequences. For
example, i# stands for the infinite sequence made of an
immediate value; op# stands for the interpretation of the
imported primitive op. A primitive returns ε as soon as
one of its inputs is ε. Otherwise, it is applied point-wise
to its inputs. When one input item is nil, the current
output is also nil. The delay prefixes the value nil to its
inputs and the initialization operator prefixes the head
of its first input with the tail of its second input.

We can easily check that the above primitives are
continuous. The denotational semantics for other con-
structions is given in figure 2. The denotational seman-
tics is defined as usual [10]. The node/in construct intro-
duces stream functions. The semantics of a set of equa-
tions is the least fix point of the associated stream func-
tion.

Definition 1 (Well initialized) An expression e is well
initialized from k (k ∈ IN) in an environment ρ, noted
ρ |= e : k if Sρ(e) 6= ε implies that for all n ≥ k, if
Sρ(e)(n) exists then Sρ(e)(n) 6= nil. An expression is

Sρ(op(e1, e2)) = op#(Sρ(e1))(Sρ(e2))

Sρ(pre e) = pre#(Sρ(e))

Sρ(e1 -> e2) = (Sρ(e1)) -># (Sρ(e2))

Sρ(if e1 then e2 else e3) = if#(Sρ(e1),Sρ(e2),Sρ(e3))
Sρ(x) = ρ(x)

Sρ(i) = i#

Sρ(node f x = e1 in e2) = S
ρ[f←λy.Sρ[x←y](e1)]

(e2)

where y 6∈ Dom(ρ)
Sρ(e1(e2)) = (Sρ(e1))(Sρ(e2))

Sρ(e with D) = SSρ(D)
(e)

Sρ(e1, e2) = (Sρ(e1),Sρ(e2))
Sρ(fst e) = v1 if Sρ(e) = (v1, v2)
Sρ(snd e) = v2 if Sρ(e) = (v1, v2)
Sρ(x = e) = ρ[x← x∞] where

x∞ = fix λy.Sρ[x←y](e)
with y 6∈ Dom(ρ)

Sρ(x = e and D) = Sρ[x←x∞](D) where
x∞ = fix λy.S

(Sρ[x←y](D))
(e)

with y 6∈ Dom(ρ)

Fig. 2. Data-flow semantics

well initialized from k if for any ρ, ρ |= e : k. This is
noted |= e : k.

Notice that causality loops (such as x = x + 1) de-
fine streams with the value ε (for which the n-th element
is not defined). Since the paper focuses on the initializa-
tion problem only, causality loops are considered well
initialized. In practice, these loops are rejected by an-
other analysis [7] which is applied before the initializa-
tion analysis.

The initialization analysis will be restricted to a one-
bit analysis, i.e., a stream expression always verify either
|= e : 0 or |= e : 1.

3.2 The Type System

We use polymorphism to express the relationship be-
tween input and output initialization facts in operators
and nodes, and sub-typing to express the natural as-
sumption :“an initialized flow can be used where an unini-
tialized one is expected”.

3.2.1 The Initialization Type Language

Types are separated into type schemes (σ) and regu-
lar types (t). A type scheme is a type quantified over
type variables (α) and initialization type variables (δ),
together with a set of type constraints (C).

A type (t) may be a type variable (α), a function
type (t → t), a product type (t × t) or an initialization
type (d) for a stream value. An initialization type (d)
may be 0 meaning that the stream is always defined; 1
meaning that the stream is well defined at least after the

Jean-Louis Colaço, Marc Pouzet: Type-based Initialization Analysis of a Synchronous Data-flow Language 5

first instant or a variable (δ). C is a set of constraints
between initialization type variables.

σ ::= ∀α1, ..., αk.∀δ1, ..., δn : C.t with k ≥ 0, n ≥ 0
t ::= α | t→ t | t× t | d
d ::= 0 | 1 | δ
H ::= [x1 : σ1, ..., xn : σn]
C ::= [δ1 ≤ δ′1, ..., δn ≤ δ′n]

We define the predicate C ⇒ t1 ≤ t2 stating that un-
der the hypothesis C, t1 is a sub-type of t2. Its definition
is given in figure 3. The sub-type relation is built from
the relation between base types (rules (TRIV)), extends
it to function and product types (with a contra-variant
rule for function types) and adds a transitivity rule. The
relation is lifted to sets of inequations (rules (SET) and
(EMPTY)).

3.2.2 Initial conditions, Instantiation and
Generalization

Expressions are typed in an initial environment H0:

H0 = [pre : 0→ 1,
(->) : ∀δ.δ → 1→ δ,
if . then . else . : ∀δ.δ → δ → δ → δ,
fst : ∀α1, α2.α1 × α2 → α1,
snd : ∀α1, α2.α1 × α2 → α2]

The delay operator (pre) imposes its inputs to be always
initialized whereas the initialization operator (->) does
not impose any constraints.

We define FV (t) as the set of free type variables (α,
δ) and lift it to type scheme and environments. The def-
inition classical and reminded in appendix A.

Types can be instantiated or generalized. A type
scheme ∀α1, ..., αn.∀δ1, ..., δk : C.t may be instantiated
by applying a substitution to its bound type variables
and to its initialization type variables. The resulting set
of constraints C[d1/δ1, ..., dk/δk] must be correct with
respect to the sub-type relation, i.e, derivable from the
definition of⇒. Every type variable or initialization type
variable may be generalized if it is free in the environ-
ment H. Since these variables may appear in constraints,
constraints are added to type schemes. Type instantia-
tion is such that:

1. (t, C) ∈ inst(t)
2. (t[t1/α1, ..., tn/αn][d1/δ1, ..., dk/δk], C ′)
∈ inst(∀α1, ..., αn.∀δ1, ..., δk : C.t)
if C ′ ⇒ C[d1/δ1, ..., dk/δk]

Type generalization is such that:

1. genH|C(t) = ∀α1, ..., αk.∀δ1, ..., δn : C.t
where {α1, ..., αk, δ1, ..., δn} = FV (t)− FV (H)

3.2.3 The Type System

The initialization analysis of an expression is obtained
by stating judgments of the form:

H | C ` e : t H | C ` D

The first judgment means that an expression e has ini-
tialization type t with sub-typing constraints C in an
environment H. The second one means that the recur-
sive definition D is well initialized in the environment H
and under the set of constraints C.

The definition of these two predicates is given in fig-
ure 4. This is a classical type-system with sub-typing
constraints [1,11,12]. We adopt a simpler (and less gen-
eral) presentation adapted to the initialization problem.

– a constant receives the type 0, saying that it is always
defined;

– primitive operators need their arguments to have the
same type;

– when typing a node declaration, we first type its
body, generalize its type and then type the expres-
sion where it may be used. Polymorphism is only
introduced at node declarations;

– applications are typed in the usual way;
– with declarations are considered to be recursive. This

is why H0 appears on the left of the typing judg-
ment. Note also that equations contained in decla-
rations are necessarily stream equations (rule (EQ))
since they must have an initialization type d;

– scheme types can be instantiated (rule (INST));
– finally, a type may be weakened (rule (SUB)).

Theorem 1 (Correctness). For all expressions e, if
` e : d then |= e : d

The proof follows a technique relating typing and
evaluation semantics. It is given in appendix B.

3.3 An Example

We illustrate the analysis on the following example.

node sum (x, y, z) = o where

o = (x -> y) + z

sum receives the initialization type ∀δ.δ×1× δ → δ. Let
us see how this type is obtained.

Variables are first introduced in the typing environ-
ment. We have H = [x : δ1, y : δ2, z : δ3]. As usual in
type systems with sub-typing, sub-typing rules must be
applied at every application point thus, (x -> y) re-
ceives some type δ4 under the constraint C1 = {δ1 ≤ δ4}
(the constraint δ2 ≤ 1 is verified by definition). Then
(x -> y) + z receives the type δ5 and the new set of
constraints is C2 = {δ1 ≤ δ4, δ4 ≤ δ5, δ3 ≤ δ5}. Thus, the
final type could be ∀δ1, δ2, δ3, δ4, δ5 : C2.δ1×δ2×δ3 → δ5.
Nonetheless, this type is overly complex and can be re-
placed by a simpler one, without loss in generality [2,12].

6 Jean-Louis Colaço, Marc Pouzet: Type-based Initialization Analysis of a Synchronous Data-flow Language

(TRIV-1) C ⇒ d ≤ 1 (TRIV-2) C ⇒ 0 ≤ d (TRIV-3) C ⇒ δ ≤ δ

(FUN)
C ⇒ t3 ≤ t1 C ⇒ t2 ≤ t4
C ⇒ t1 → t2 ≤ t3 → t4

(PROD)
C ⇒ t1 ≤ t3 C ⇒ t2 ≤ t4
C ⇒ t1 × t2 ≤ t3 × t4

(TRANS)
C ⇒ d1 ≤ d2 C ⇒ d2 ≤ d3

C ⇒ d1 ≤ d3
(SET)

C ⇒ C1 C ⇒ C2

C ⇒ C1, C2

(TAUT) C, δ1 ≤ δ2 ⇒ δ1 ≤ δ2 (EMPTY) C ⇒ ∅

Fig. 3. Subtype relation

(IM) H | C ` i : 0 (OP)
H | C ` e1 : d H | C ` e2 : d

H | C ` op(e1, e2) : d

(NODE)
H,x : t | C ` e1 : t1 H, f : genH|C(t→ t1) | C ` e2 : t2

H | C ` node f x = e1 in e2 : t2

(APP)
H | C ` e1 : t2 → t1 H | C ` e2 : t2

H | C ` e1 (e2) : t1

(DEF)
H,H0 | C ` D H,H0 | C ` e : t

H | C ` e with D : t

(PAIR)
H | C ` e1 : t1 H | C ` e2 : t2

H | C ` (e1, e2) : t1 × t2
(EQ)

H[x, d] | C ` e : d

H[x, d] | C ` x = e

(AND)
H | C ` D1 H | C ` D2

H | C ` D1 and D2

(INST)
C, t ∈ inst(H(x))

H | C ` x : t
(SUB)

H | C ` e : t C ⇒ t ≤ t′

H | C ` e : t′

Fig. 4. The type system

The technique consists in identifying the variables that
are in a co-variant position (δ5) and those in a contra-
variant position (δ1, δ2, δ3). If a variable is exclusively
present in a co-variant (monotonic) position, it can be re-
placed by its lower bound; if it is exclusively in a contra-
variant (anti-monotonic) it can be replaced by its upper
bound. These substitution can be done without loss of
generality of the type thanks to the sub-typing relation.
Those that appear in both position cannot disappear
without loosing some generality. Applying this to the
previous type leads to: ∀δ5.δ5×1×δ5 → δ5 since δ3 ≤ 1.

3.4 The First Order Case

The previous presentation introduces the most general
case with higher-order constructions. Because Lustre is
a first order language, it can be specified inside our syn-
chronous kernel by imposing some syntactic constraints
overs expressions and types.

The type language is a subset of the previous one, by
taking:

σ ::= ∀δ1, ..., δn : C.b→ b
t ::= b→ b | b
b ::= d | b× b
d ::= 0 | 1 | δ

Jean-Louis Colaço, Marc Pouzet: Type-based Initialization Analysis of a Synchronous Data-flow Language 7

Up to syntactic details, valid Lustre expressions are
characterized in the following way.

node ::= node f x = y with D
e ::= i | x | op(e, e) | pre e | e -> e | x(e)

| (e, e) | fst e | snd e

In Lustre, functions (named nodes) must be defined at
top level and cannot be nested.

3.5 Limitations

Taking a modest one-bit abstraction will clearly reject
valid programs. We illustrate the limitation of the anal-
ysis on programs computing the Fibonacci sequences. At
least two versions can be considered. For example:

node fib dummy = x

with x = 1 -> pre (1 -> x + pre x)

dummy is a useless parameter. The program is accepted
by the compiler. The following program also defines the
Fibonacci sequence:

node repeat n = c

with c = true -> (count >= 1) & pre c

and count = n -> if pre count >= 0

then pre count - 1 else 0

node fib dummy = x

with x = if repeat 2 then 1

else pre x + pre (pre x)

repeat n is true during n instants and then false forever.
This program has a perfectly valid semantics. Nonethe-
less, it is rejected by our analysis since the fact that the
second values of pre(pre x) is never accessed depends
on semantics conditions which are not checked.

3.6 Clocks and initialization analysis

Lustre and Lucid Synchrone are based on the no-
tion of clocks as a way to combine slow and fast pro-
cesses. Lustre provides an operator when for filtering a
stream according to a boolean condition and an operator
current projecting a stream on the immediately faster
clock. Lucid Synchrone does not provide current but
instead an operator merge which combines two comple-
mentary streams. Their behavior is given in figure 5.

The initialization analysis checks that all the boolean
flows used as clocks are always defined (they receive the
type 0). Indeed, a nil value in a clock could lead to an
undetermined control-flow. Thus, a safe approximation
consists in giving to the when operator the initialization
type ∀δ.δ → 0→ δ. For the same reason, merge receives
type ∀δ.0→ δ → δ → δ.

The present analysis is applied to the whole Lucid
Synchrone language with no restriction. In particular,

x x0 x1 x2 x3 x4 x5 . . .

y y0 y1 y2 y3 y4 y5 . . .

h f f t t f t . . .

x when h x2 x3 x5 . . .

y whenot h y0 y1 y4 . . .

current (x when h) nil nil x3 x4 x4 x6 . . .

merge h

(x when h)
(y whenot h)

y0 y1 x2 x3 y4 x5 . . .

Fig. 5. Clock operators

sampling operators receive the initialization types given
above.

The current of Lustre raises specific difficulties.
Indeed, the operator may introduce nil values as long
as its input clock is not true at the first instant. Since
boolean values (and in particular clocks) are not inter-
preted specifically, our method fails on analyzing the
current operator.

The current operator is not a primitive operator in
Lucid Synchrone and should be programmed. Follow-
ing the syntax of the paper, we should write:

node current (init, clk, i) = o with

po = init -> pre o

and o = merge clk i (po whenot clk)

and the initialization analysis will force to give an initial
value init to po.

We did not find any real application in Scade us-
ing the current operator: sampling is made through the
activation condition operator condact which imposes to
give an initial value. condact(clk,f,i,init) takes a
clock clk, a node f, an input i and an initial value init

and it applies the node f to the input sampled on clock
clk. It emits the previous value initialized with init

when the clock is false. In our system, condact receive
the initialization type: 0× (0→ 0)× 0× 0→ 0.

Extending the analysis in order to take the current

operator into account has not been considered so far and
is a matter of future work.

3.7 Partial functions

Up to now, we have focused on the presence of nil values
in memories or in clocks. Once the analysis have been
performed, it is proven that the behavior of the program
does not depend on these nil values. In both Scade and
Lucid Synchrone, there is no explicit representation of
nil at run-time and the compilers may choose any value
of the correct type.

Partial functions must be taken into account when
dealing with the initialisation problem. For example, sev-
eral imported primitives (e.g., floating-point division /,

8 Jean-Louis Colaço, Marc Pouzet: Type-based Initialization Analysis of a Synchronous Data-flow Language

integer division, modulus) are not defined if their sec-
ond argument is zero. This means that a computation
a/b where b is nil at the very first instant, may lead to
a division by zero just because the compiler may choose
to represent this nil value by zero.

Imported partial primitives are taken into account
by choosing an appropriate type for them. For example,
the floating-point division / gets the type ∀δ.δ × 0→ δ,
stating that the second argument must always be well
initialized 4. The treatment of partial primitives is done
in both Scade and Lucid Synchrone compilers.

Note that we do not claim to statically detect divi-
sion by zero, but to avoid to have the user puzzled by
a division by zero that doesn’t appear explicitely in the
code.

4 Implementation Issues

Being a classical typing problem with sub-typing, stan-
dard implementation techniques as proposed in [2,12]
has been considered. The analysis has been implemented
both in the Lucid Synchrone compiler and in the Re-
LuC compiler. Nonetheless, we have experimented quite
different techniques in the representation of types and
the way type simplification is performed.

In both compilers, the analysis is performed after
typing and infered types are used for generating valid
initialization type skeletons. This approach leads to a
strong simplification of the implementations.

4.1 Implementation in the Lucid Synchrone Compiler

In this implementation, we have adopted a relative un-
usual representation of type and constraints, taking ad-
vantage of the simple form of types.

– sub-typing constraints are directly annotated on types
instead of being gathered in a global table. The prin-
ciple is the following: a dependence variable δ points
to its list of predecessors and successors. Thus, inter-
nally, the type language becomes:

d ::= 0 | 1 | δ≤ρ≥ρ ρ ::= d, ρ | ∅
– when a variable is unified with 0, its predecessors are

unified with 0; when a variable is unified with 1, its
successors also.

– the sub-typing rule is only done at instantiation points
(i.e, variable occurrences), using type skeletons com-
puted during the type inference phase.

– the efficiency of a type system with sub-typing re-
lies on the simplification of sub-typing constraints.
We based our implementation on the computation of
polarities as studied by Pottier [12]. Type simplifica-
tion is performed at generalization points only (i.e,
function definitions).

4 On the contrary, a total function like the integer addition +
will get the type ∀δ.δ × δ → δ.

Application domain nb. lines analysis time

transport ∼ 17000 ≤ 2 sec.

helicopter syst. ∼ 30000 ≤ 2 sec.

aircraft syst. ∼ 11000 ≤ 1 sec.

automotive syst. ∼ 1000 ≤ 0.1 sec.

Fig. 6. Benchmarks on ReLuC

These optimizations lead to an efficient implemen-
tation which is an order of magnitude faster than the
implementation in the ReLuC compiler.

4.2 Implementation in the ReLuC Lustre Compiler

As in the case of Lucid Synchrone, a type variable
is introduced for all streams and the set of constraint
is solved at each generalization point (i.e., at node def-
initions). The type is simplified by saturation of mono-
tonic type variables; note that in a first order language,
all the introduced type variables are monotonic. This al-
lows for a very simple representation of the constraint in
the types by adding a type union t. With this extension,
the type of a add node is ∀δ1, δ2.δ1 × δ2 → δ1 t δ2.

The figure 6 gives some benchmarks of the ReLuC im-
plementation on some real applications 5. These appli-
cations contains a lot of nodes having several hundreds
of inputs and outputs.

As the analysis may fail on correct programs (con-
sider a well initialized program not to be initialized), the
choice in Scade is to prevent the user with a warning
and let him prove by other means that it is effectively
correct or use the diagnosis to write a checkable specifi-
cation by adding an extra initialization.

The ReLuC initialization analyzer has been used to
validate the Scade library and it has been applied to
several big models. These experiments confirm the accu-
racy and the applicability of the approach in an indus-
trial context. This is a great improvement of the available
Scade semantic check which is safe but remains at the
level of the trivial analysis discussed in 2. It should be
integrated in a future version of the Scade compiler.

5 Discussion

In the introduction, we have motivated the interest of
un-initialized delays in synchronous data-flow languages
which call for a dedicated initialization analysis. In this
section, we elaborate further on this point, discuss alter-
native solutions for the initialization problem and com-
pare the analysis to the existing one for Scade.

In the early days of Lucid Synchrone there was no
un-initialized delays and thus a need for any initializa-
tion analysis. One had to write pre i e for the delay ini-
tialized with the static value i. Then, we introduced the

5 The compiler was running on a Pentium 3 (800Mhz) processor.

Jean-Louis Colaço, Marc Pouzet: Type-based Initialization Analysis of a Synchronous Data-flow Language 9

more general initialized delay operator fby of Lucid [3]
where the delay is initialized with the first element of a
stream (x.xs fby b = x.b, that is, a fby b = a -> pre b).
Nonetheless, it appeared that program writing was less
natural and elegant than in a language providing also
un-initialized delays such as Lustre. This is why we
finally incorporate the Lustre pre operator. Indeed,
data-flow equations are often defined by separating the
invariant part (written with pre) from the initializa-
tion part (written with ->). Using only initialized delays
tends to create extra redundancies and forces to find an
initial value for some streams whereas it is clear that
their value is useless at the very first instant.

To illustrate this, consider the discrete derivative func-
tion that computes the difference of its current input
with the previous one:

let deriv x = x - pre i x

what would be a correct value for i? Is-it 0 or some initial
value i given as an extra parameter? If the user of this
code is not satisfied with some value i, he may write in
turn dx0 -> deriv x but then, i becomes useless! The
only good program point to put this initial condition is
out of the minus operator and then far away from the
delay. When deriv is a library operator, only the user
of the operator knows what is the good initial value.

Providing only initialized delays may lead to an un-
natural programming discipline which could be compared
to the necessity to declare a variable with an initial value
in an imperative language. The risk with this discipline
is that it is not always relevant to do this and a lot of al-
gorithms use variables whose first value cannot be given
at the beginning. As a consequence the user would some-
times give a dummy value to satisfy the discipline. The
intention of the programmer would, as a consequence, be
less evident because of the presence of these dummy val-
ues. In a language that claims to address safety critical
applications we believe this must be avoided as much
as possible. In some data-flow tools (e.g., Simulink),
delays and statefull primitives must always receive an
extra initialization value. Thus, systems are well initial-
ized by construction but with the weakness mentioned
previously. We think that providing initialized and un-
initialized delays together with a simple initialization
check leads to a more natural writing of programs.

An ambitious approach to solve the initialization pro-
blem could be to rely on boolean solvers (e.g., NP-tools,
Lesar). This approach consists in generating an invari-
ant stating that the output of a program does not con-
tain any nil value. If such a proof fails a special tool to
trace back to the initialization problem on the source
code may be necessary in order to obtain a useful di-
agnostic. This method is certainly more powerful in the
sense that more complicated situation can be analyzed
(when general boolean properties are responsible for the
correct initialization). Nonetheless, the verification is not
modular and has to be done on the whole program.

On the contrary, a dedicated type system is modular
in essence. Programs are analyzed structurally making
diagnostics easier when an error is encountered. When
the type discipline is clear, the user knows how to write
programs that will pass the type checking and is able to
fix, at least locally, initialization errors. Moreover, ini-
tialization types are part of the specification of a node,
as it is usually admitted for conventional types.

The academic Lustre compiler doesn’t check at all
the good initialization of streams and the Scade/Lustre
compiler do it with a too simple algorithm that is not
able to go through equations nor nodes. Thanks to its
modularity the initialization analysis is strictly more ac-
curate than the one implemented in Scade. It is a satis-
factory answer to Scade users that sometimes complain
about the amount of false initialization alarms raised by
the available Scade code generator. All the user pro-
grams that were bench-marked with the ReLuC com-
piler were analyzed successfully: no initialization prob-
lem was detected except one and it was not a false alarm.
These experiments confirm that the program discipline
imposed by the present type system is finally less restric-
tive than the one Scade users apply usually. We believe
that the proposed analysis offers a good compromise be-
tween complexity and usability.

6 Conclusion

In this paper we have presented a type-based initializa-
tion analysis for a synchronous data-flow language pro-
viding uninitialized unary delay and a separated initial-
ization operator. Originally developed in a higher-order
setting, the system has been implemented in the proto-
type Scade-Lustre compiler and in the Lucid Syn-
chrone compiler.

Being a classical type system with sub-typing, it can
benefit from conventional implementation techniques and
some extra optimizations due to the one-bit abstraction.
The implementation is light (less than one thousand lines
of code).

Although the one-bit abstraction may appear too
coarse, it gives surprisingly good result on real size pro-
grams: the analysis is fast and gives good diagnostics.
Most of the time, rejected programs do produce un-
defined results. This is mainly due to the very nature
of synchronous data-flow languages which do not pro-
vide control structures and where streams are defined
by equations, delays and initialization operators.

Many improvements of the analysis can be consid-
ered, the most interesting being to use clock informations
synthesized during the clock calculus. This is a matter
of future work.

10 Jean-Louis Colaço, Marc Pouzet: Type-based Initialization Analysis of a Synchronous Data-flow Language

References

1. Alexander Aiken and Edward Wimmers. Type inclusion
constraints and type inference. In Seventh Conference
on Functional Programming and Computer Architecture,
pages 31–41, Copenhagen, Denmark, June 1993. ACM.

2. Alexander Aiken, Edward Wimmers, and Jens Palsberg.
Optimal Representations of Polymorphic Types with
Subtyping. In Theoretical Aspects of Computer Software
(TACS), September 1997.

3. E. A. Ashcroft and W. W. Wadge. Lucid, the data-flow
programming language. Academic Press, 1985.

4. Paul Caspi and Marc Pouzet. Synchronous Kahn Net-
works. In ACM SIGPLAN International Conference
on Functional Programming, Philadelphia, Pensylvania,
May 1996.

5. Paul Caspi and Marc Pouzet. Lucid Synchrone, a func-
tional extension of Lustre. Submitted to publication,
2001.

6. Jean-Louis Colaço and Marc Pouzet. Type-based Initial-
ization of a Synchronous Data-flow Language. In Syn-
chronous Languages, Applications, and Programming,
volume 65. Electronic Notes in Theoretical Computer
Science, 2002.

7. Pascal Cuoq and Marc Pouzet. Modular causality in a
synchronous stream language. In European Symposium
on Programming (ESOP’01), Genova, Italy, April 2001.

8. N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud.
The synchronous dataflow programming language lus-
tre. Proceedings of the IEEE, 79(9):1305–1320, 1991.

9. G. Kahn. The semantics of a simple language for paral-
lel programming. In IFIP 74 Congress. North Holland,
Amsterdam, 1974.

10. John C. Mitchell. Foundations for Programming Lan-
guages. The MIT Press, 1996.

11. François Pottier. Simplifying subtyping constraints. In
Proceedings of the 1996 ACM SIGPLAN International
Conference on Functional Programming (ICFP’96),
pages 122–133, May 1996.

12. François Pottier. Simplifying subtyping constraints: a
theory. Information & Computation, November 2001.

13. Marc Pouzet. Lucid Synchrone, version 2. Tutorial
and reference manual. Université Pierre et Marie
Curie, LIP6, Mai 2001. Distribution available at:
www-spi.lip6.fr/lucid-synchrone.

14. SCADE. http://www.esterel-technologies.com/scade/.

A Auxiliary definitions

We define the set FV (t) as the disjoint union of free
type variables (α) and free initialisation type variables
(δ): FV (t) = FT (t) + FI (t). The function FV. is lifted

to type schemes and environments.

FT (∀α1...αm.σ) = FT (σ)− {α1, ..., αm}
FV (∀δ1...δk : C.t) = FT (t)
FT (t1 → t2) = FT (t1) ∪ FT (t2)
FT (t1 × t2) = FT (t1) ∪ FT (t2)
FT (α) = {α}
FV (d) = ∅
FI (∀α1...αm.σ) = FI (σ)
FI (∀δ1...δk : C.t) = (FI (t) ∪ FI (C))− {δ1, ..., δk}
FI ([δ′1 ≤ δ1, ..., δ′n ≤ δn]) = {δ′1, ..., δ′n, δ1, ..., δn}
FI (t1 → t2) = FI (t1) ∪ FI (t2)
FI (t1 × t2) = FI (t1) ∪ FI (t2)
FI (α) = ∅
FI (d) = FI (d)
FI (δ) = {δ}
FI (0) = ∅
FI (1) = ∅
FV ([σ1/x1, . . . , σn/xn]) = ∪ni=1FV (σi)

B Proof of the Initialisation Analysis

We define a valuation V from variables (δ) to the set
{0,1} and lift it to types in the usual way. We shall
interpret the basic type 0 with the integer value 0 and
the basic type 1 with the integer value 1.

We define interpretation functions I.(.) relating type
schemes and set of values. We overload the notation for
evaluation environments and for constraints. An inter-
pretation I.(.) is such that:

v ∈ IV(d) iff for all k ≥ V(d),
if v(k) is defined
then v(k) 6= nil

v ∈ IV(t1 → t2) iff for all v1 such that
v1 ∈ IV(t1), v(v1) ∈ IV(t2)

(v1, v2) ∈ IV(t1 × t2) iff v1 ∈ IV(t1) and v2 ∈ IV(t2)
v ∈ IV(∀α1, ..., αk.σ) iff for all t1, ..., tk,

v ∈ IV(σ[t1/α1, ..., tk/αk])
v ∈ IV(∀δ1, ..., δn : C.t) iff for all d1, ..., dn, such that

IV(C[d1/δ1, ..., dn/δn]),
v ∈ IV(t[d1/δ1, ..., dn/δn])

ρ ∈ IV(∅)
ρ[x← v] ∈ IV(H[x : σ]) iff ρ ∈ IV(H) ∧ v ∈ IV(H)
IV([d1 ≤ d′1, ..., dn ≤ d′n]) iff IV(d1) ⊆ IV(d′1) ∧ ...∧

IV(dn) ⊆ IV(d′n)

V(d) returns an integer equal to 0 or 1 and IV(d) de-
fines a set of streams. For example, IV(0) defines streams
which are always well initialized whereas IV(1) may con-
tain streams with a nil value at their first instant. Then,
we associate a set of functional values to function types
t1 → t2, Cartesian products of sets to product types.
Then, a value belongs to the interpretation of a univer-
sally quantified type when it belong to all its instances
verifying the sub-typing constraints.

Jean-Louis Colaço, Marc Pouzet: Type-based Initialization Analysis of a Synchronous Data-flow Language 11

Remark 1 (Causality). For any continuous stream func-
tion f from (Dω,≤) to (Dω,≤) (where ≤ stands for the
prefix order overs streams), for any initialisation type d
and valuation V, if f(ε) ∈ IV(d) then fix f ∈ IV(d). This
means that the initialisation information of a stream re-
cursion depends only on one iteration.

Indeed, ε ∈ IV(d). Then, either f(ε) = ε or f(ε) =
x.s. In the first case, fix f = limn→∞(fn(ε)) = ε ∈ IV(d)
and it corresponds to a causality loop. In the later case,
f is strictly increasing and f(ε) = x.s and for all n,
fn(ε)(0) = (fix f)(0) = x. Thus, f(ε) ∈ IV(d) implies
that fix f ∈ IV(d).

The theorem 1 is based on the two following lem-
mas. The first one states the correctness of the relation
between types.

Lemma 1 (Relation). The two properties hold.

1. If C ⇒ t1 ≤ t2 then for all valuation V such that
IV(C), we have IV(t1) ⊆ IV(t2).

2. if C ′ ⇒ C then for all valuation V, if IV(C ′) then
IV(C).

Proof: The lemma is proved by recurrence on the proof
structure of C ⇒ t1 ≤ t2.

The following one states a more general property
than theorem 1. The theorem is obtained by instanti-
ating t with d and considering empty environments and
constraints.

Lemma 2 (Correctness). The two properties hold.

1. for all environment H, expression e, type t and con-
straints C, if H | C ` e : t then for all valua-
tion V and evaluation environment ρ, if IV(C) and
ρ ∈ IV(H) then Sρ(e) ∈ IV(t).

2. for all environments H, constraint C, definition D,
if H | C ` D holds then for all valuation V such that
IV(C), for all ρ, if ρ ∈ IV(H) then Sρ(D) ∈ IV(H).

Proof: The lemma is proved by recurrence on the struc-
ture of the proof tree.

Rule (IM)e = i. Let V and ρ such that IV(C) and ρ(x) ∈
IV(H(x)). We have S∅(i) = Sρ(i) = i# ∈ I∅(0) = IV(0).

Rule (INST)e = x. Let H(x) = σ. Let t, C ′ ∈ inst(σ).
Let V such that IV(C ′). Let ρ such that for all x ∈
Dom(H), ρ(x) ∈ IV(σ). Either σ = t or some variables
are universally quantified.

– If σ = t then H,x : t | C ` x : t and the property
holds trivially.

– According to the definition of I.(.),
ρ(x) ∈ IV(∀α1, ..., αn.∀δ1, ..., δk : C.t) iff for all t1, ..., tn
and for all d1, ..., dk such that IV(C[d1/δ1, ..., dk/δk]),
ρ(x) ∈ IV(t[t1/α1, ..., tn/αn][d1/δ1, ..., dk/δk]).
According to the definition of inst(.),
C ′ ⇒ C[d1/δ1, ..., /δk]. Since IV(C ′), according to
lemma 1 (prop. 2), we have IV(C[d1/δ1, ..., dk/δk]).
Thus, ρ(x) ∈ IV(t[t1/α1, ..., tn/αn][d1/δ1, ..., dk/δk])
which is the expected result.

Rule (OP)Direct recurrence.

Rule (APP) e = e1(e2)Let H be the typing environment
and ρ, the corresponding evaluation environment.

Suppose the property holds for e1 and e2, that is
Sρ(e1) ∈ IV(t1 → t2) and Sρ(e2) ∈ IV(t1).
According to the property of I.(.), for any v1 ∈ IV(t1),
(Sρ(e1))(v1) ∈ IV(t2).
Thus, (SV(e1))(SV(e2)) = SV(e1(e2)) ∈ IV(t2) which is
the expected result.

Rule (NODE)e = node f x = e1 in e2. There are two
cases.

Either genH|C(t→ t1) = t → t1 or some variables
can be generalized.

– Case 1. Let V such that IV(C). Let vx ∈ IV(t) and
ρ ∈ IV(H). We have ρ[x← vx] ∈ IV(H[x : t]).
Applying the recurrence hypothesis to the left premise,
Sρ[x←vx](e1) ∈ IV(t1). This is true for any vx ∈ IV(t)
thus, according to the definition of I.(.), λy.Sρ[x←y](e1) ∈
IV(t→ t1) (with y 6∈ Dom(ρ)).
Applying the recurrence hypothesis to the second
premise, we can state that for all vf ∈ IV(t → t1),
Sρ[f←vf](e2) ∈ IV(t2). Thus, Sρ(node f x = e1 in e2)
equals Sρ[f←λy.Sρ[x←y](e1)](e2) (according to the def-

inition of node) which belongs to IV(t2) and this is
the expected result.

– Case 2. Half of the proof stays the same and differs
for the first premise. Let V such that IV(C). Let vx ∈
IV(t) and ρ ∈ IV(H).
We have ρ[x ← vx] ∈ IV(H[x : t]). Applying the re-
currence hypothesis to the left premise, we can state
that Sρ[x←vx](e1) ∈ IV(t′).
This is true for any vx ∈ IV(t) thus, according to the
definition of I.(.), λy.Sρ[x←y](e1) ∈ IV(t→ t′) (with
y 6∈ Dom(ρ)). Now, let α1, ..., αn 6∈ FV (H).
Then λy.Sρ[x←y](e1) ∈ IV(∀α1, ..., αn.t → t′). Let
δ1, ..., δk 6∈ (FV (t→ t′) ∪ FV (C)). λy.Sρ[x←y](e1) ∈
IV(∀α1, ..., αn.∀δ1, ..., δk : C.t→ t′).
Now, applying the recurrence hypothesis to the sec-
ond premise, we can state that for all vf ,
if vf ∈ IV(∀α1, ..., αn.∀δ1, ..., δk : C.t → t′) then
Sρ[f←vf](e2) ∈ IV(t2). Sρ[f←λy.Sρ[x←y](e1)](e2) =

Sρ(node f x = e1 in e2) ∈ IV(t2) which is the ex-
pected result.

Rule (DEF)By recurrence, using property 2.

12 Jean-Louis Colaço, Marc Pouzet: Type-based Initialization Analysis of a Synchronous Data-flow Language

Rule (PAIR)Direct recurrence.

Rule (EQ)Let V such that IV(C). For all vx ∈ IV(d) and
ρ ∈ IV(H), that is, ρ[x ← vx] ∈ IV(H[x : d]), we can
state that Sρ[x←vx](e) ∈ IV(d) (recurrence hypothesis).
Now, ε ∈ IV(d) and Sρ[x←ε](e) ∈ IV(d). Using remark 1,
then x∞ = fix λy.(Sρ[x←y](e)) ∈ IV(d) which is the ex-
pected result.

Rule (AND)D = (x = e) and D′. Let V such that IV(C).
For all ρ, if ρ ∈ IV(H) then Sρ(x = e) = ρ[x ← x∞] ∈
IV(H) applying the recurrence hypothesis on the first
premise. Moreover, H(x) = d (according to rule (EQ)).
Applying the recurrence on the second premise, we can
state that for all vx ∈ IV(d), if ρ[x← vx] ∈ IV(H[x : d])
then Sρ[x←vx](D

′) ∈ IV(H[x : d]). Since x∞ ∈ IV(d),
Sρ(D) = Sρ[x←x∞](D

′) ∈ IV(H) which is the expected
result.

Rule (SUB)Direct application of lemma 1.

