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Abstract
This paper presents a programming experiment of complex net-
work routing protocols for mobile ad hoc networks within thereac-
tive language REACTIVEML.

Mobile ad hoc networks are highly dynamic networks charac-
terized by the absence of physical infrastructure. In such networks,
nodes are able to move, evolve concurrently and synchronizecon-
tinuously with their neighbors. Due to mobility, connections in the
network can change dynamically and nodes can be added or re-
moved at any time. All these characteristics — concurrency with
many communications and the need of complex data-structure—
combined to our routing protocol specifications make the useof
standard simulation tools (e.g., NS-2, OPNET) inadequate. More-
over network protocols appear to be very hard to program effi-
ciently in conventional programming languages.

In this paper, we show that thesynchronous reactive model
as introduced in the pioneering work of Boussinot matters for
programming such systems. This model provides adequate pro-
gramming constructs — namely synchronous parallel composition,
broadcast communication and dynamic creation — which allowa
natural implementation of the hard part of the simulation. This the-
sis is supported by two concrete examples: the first example is a
routing protocol in mobile ad hoc networks and the simulation fo-
cuses only on the network layer. The second one is a routing proto-
col for sensors networks and the wholes layers are faithfully simu-
lated (hardware, MAC and network layers). More importantly, the
physical environment (e.g., clouds) has also been integrated into
the simulation using the tool LUCKY.

The implementation has been done in REACTIVEML, an em-
bedding of the reactive model inside a statically typed, strict func-
tional language. REACTIVEML provides reactive programming
constructs together with most of the features of OCAML . More-
over, it provides an efficient execution scheme for reactivecon-
structs which made the simulation of real-size examples (with sev-
eral thousand of nodes) feasible.

1. Introduction
Ad hoc networks are highly dynamic networks characterized by the
absence of any physical infrastructure. In this paper, we study two
kinds of ad hoc networks : mobile and sensor networks.

Mobile ad hoc networks are composed of nodes which evolve
concurrently and have to synchronize continuously with other
nodes. Among existing routing protocols, age and position based
protocols have recently emerged because of their relatively simple
and efficient policies: no location service is required, thedestina-
tion position discovery is achieved during the packets forwarding
step where nodes make elementary forwarding decisions based
solely on the coordinates of their direct neighbors and of the desti-
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nation [18]. This avoids the need for topology knowledge beyond
one-hop.

Sensor networks consist in ad hoc networks but with specific
constraints. A sensor network is composed by a large number of
sensors (several thousands). Those nodes are designed to beas
small and cheap as possible. Sensor networks can be deployedin
situation with difficult access and/or no available energy.Thus, the
nodes are power-constrained. Indeed, the network has to achieve a
certain service as long as possible, and because there is no or very
few infrastructure, and because of the size of the network, nodes
that ran out of energy are not replaced.

These networks are typical examples ofcomplex dynamic sys-
tems, that is, dynamic systems where not only the state of system
evolves during the execution but also its internal structure. Ensuring
a correct behavior of such a network is challenging, and the better
way to tackle this problem is to buildmodelsthat can be simulated.

For example, power consumption is crucial in sensor networks.
All the elements of a network have some influence on power con-
sumption: the nodes architecture, the radio access functionalities,
the communication protocols, the application, and even network
environment which stimulates the sensors. Thus, power consump-
tion has to be estimated in advance. This can be achieved through
simulation.

The characteristics of these networks — concurrency with many
synchronizations and the need of complex data-structures —make
the use of standard simulation tools likeNS-2 [1] or OPNET[27]
inappropriate. Indeed, NS-2 has been originally designed for wired
networks and does not treat well wireless networks. In particular,
it is only able to simulate small networks (1000 nodes networks
seems to be barely conceivable) whereas we consider large scale
networks.

In this paper, we show that thesynchronous reactive modelin-
troduced by Boussinot [10, 11, 34] strongly matters for program-
ming those systems. We argue that this model provides the good
programming constructs — synchronous parallel composition with
a common global time scale, broadcast communication and dy-
namic creation — making the implementation of the hard part of
the network surprisingly simple and efficient. We can remarkthat
the reactive synchronous model is not contradictory with the asyn-
chronous aspect of these networks. Synchrony only gives theabil-
ity to all nodes to react in a fair way as it could be done in an
imperative implementation. The model provideslanguage concur-
rency as opposed torun-time concurrency: reactive parallel pro-
grams are translated into conventional single-thread, yetefficient
programs [2, 9, 13, 36]. Whereas a similar formulation is possi-
ble in any conventional programming language using one run-time
thread per node, it would not allow to simulate large networks for
clear efficiency reasons.

The programs have been written inREACTIVEML (RML for
short) 1 an embedding of the reactive model inside a statically

1 The distribution can be accessed as:http://ReactiveML.org.
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typed, strict functional language [25, 24]. REACTIVEML pro-
vides reactive programming constructs with most of the features
of OCAML [23]. Reactive constructs give a powerful way to de-
scribe the dynamical part of the system whereas the host language
OCAML provides data-structures for programming the algorith-
mic (combinatorial) part. Moreover, REACTIVEML provides an
efficient execution scheme for reactive constructs which made the
simulation of real-size examples feasible.

The purpose of this paper is to convince of the adequacy of the
reactive model for real-size simulation problems like network pro-
tocols. As a side-effect, this protocol can also serve as an interesting
benchmark for validating and comparing the various implementa-
tions of the reactive model [2, 13, 36].

The paper is organized as follows. Section2 discuss about the
adequacy of the programming model on which REACTIVEML is
based for programming network simulators. The section3 presents
briefly a routing protocol we have considered and its REAC-
TIVEML implementation. The language is very young and the
paper can thus be considered as a tutorial introduction of the lan-
guage through two real examples. In order to ease the presentation,
we start with a survival kit which can easily be skipped. We only
give the hard part of the code and give hyperlinks to the complete
distribution. Section4 presents the simulation of a second protocol
used in sensor networks, taking the physical environment into ac-
count. Finally, section5 discuss related works and we conclude in
section6.

2. Why RML Matters to Program Simulators
One first observation is that even if there exists many different net-
work simulators, people continueto develop their own simulator.
Why? Creating your own simulator guarantees that this simulator
will perfectly fit your needs. Indeed, even if some simulators pro-
vide several levels of detail, a custom simulator can exactly address
the faced problem. For example, NS-2 or OPNET need that the lay-
ers 1 to 3 be described even if the designer is interested onlyin layer
3 (the network layer).

Of course, writing a simulator from scratch is time consuming
but it avoids the cost of learning an other simulator. In order to
reduce the time and effort needed for to write its own simulator, a
high level language is required.

For this purpose, we claim that REACTIVEML which combines
reactive constructs for describing the dynamics of the system with
the expressiveness of OCAML reduces this effort. Indeed, because
REACTIVEML is built above OCAML , it keeps its main proper-
ties2: a powerful type system, user-definable algebraic data types,
definitions through pattern matching and automatic memory man-
agement. These features are important in order to manage complex
data structures such as nodes or packets. The interest of OCAML
for programming the simulation of ad hoc networks has been al-
ready identified by the authors of NAB [15]. By adding reactive
constructs to OCAML , REACTIVEML provides a means to describe
each node and their parallel composition in a more natural way.
This is a extra but essential advantage of the REACTIVEML simu-
lator with respect to the NAB version developed in OCAML .

Authors of [12] insist on the importance of a visualization
tool that helps users to understand the complex behavior in the
simulation. Nam (Network Animator) [16], the visualization tool
of NS-2 was proposed during the VINT project. A visualization
tool for a network simulator is not only useful in order to give
intuition about protocols to develop but also to aid in debugging
both the simulator and the protocol stack. Since REACTIVEML is
being built above OCAML , it can use any OCAML program. It is

2http://caml.inria.fr/about/index.en.html

for example possible to generate a trace file that is compatible with
Nam or to write its own visualization tool.

More interesting is the ability to dynamically add or removeob-
servers (and printers) during the simulation. Such observers run in
parallel with the simulation without modifying it. The reactive fea-
tures of REACTIVEML give also means to act dynamically on the
behavior of the network. For example, a function that creates a new
node with a mouse-click is about ten lines long (see section3.4).
This feature is interesting to provoke a certain behavior ofthe sim-
ulated network. An other feature could be the dynamic creation of
observers. Indeed, the graphic window for instance can be removed
during execution (to speed up the simulation) and then displayed
again to monitor the simulation. Moreover, the visualization tool
is also an REACTIVEML program, letting the user display just is
needed on the graphic output (e.g., collision, emission of packets).

In wireless networks, data transmission impacts the behavior of
a network. To generate messages, simulators can use statistic laws
on the nodes. Poisson processes for instance are often used.This
environment modeling shows its limit, especially in the case of sen-
sor networks where a more accurate modeling of the environment is
sometimes needed. Sridharan et al. [35] linked the sensor network
simulator TOSSIM with MATLAB. It is possible to describe an
environment in REACTIVEML. An environment process will then
run in parallel with the rest. A better way is to rely on a dedicated
language to model the environment. This is why we have interfaced
REACTIVEML with L UCKY, a language to describe stochastic re-
active programs [22].

Network simulators are computer intensive applications and
efficiency of the programming language is thus a key point. Of
course, a dedicated simulator will certainly be more efficient than
the one obtained by using a general purpose one. The program-
ming language must itself be efficiently compiled. Because REAC-
TIVEML programs are compiled into OCAML code without any
use of run-time concurrency (e.g.,threadsor unix processes) and
which are in turn compiled into native code, we were able to sim-
ulate large scale networks with several thousand of nodes. More
information about the implementation of REACTIVEML can be
found in [24].

We illustrate these points on two examples: a mobile ad hoc
network and a sensor network.

3. Simulation of Mobile Ad hoc Networks
Our first example is a simulator that evaluates dissemination meth-
ods for Age and Position Based (APB) routing protocols in mobile
ad hoc networks.

3.1 Age and Position Based Routing

The main principle of APB routing protocols is that each node
may have an information about each other node’s location. This
information is stored in a position table and associated to an age
that represents the time elapsed since the last time the information
has been updated. The position table is queried by a packet to
estimate destination position.

In this routing methods, destination location discovery isper-
formed during packet transfer: a source node does not know desti-
nation location when it sends the packet, it only has an estimation
about it. We describe the EASE (Exponential Age SEarch) rout-
ing method, where a source nodes needs to communicate with a
destinationd, as follows:3

Seti := 0, age := ∞, a0 := s in
While ai 6= d do

search aroundai a nodeni such thatage(ni, d) ≤ age/2;

3 For more details about EASE, see [18]
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Figure 1. Routing a packet froms to d: anchor nodesa1 anda2

refine estimation ofd’s position.

age := age(ni, d);
Setm := ai in
While m is not the closest node ofpos(ni, d) do

m := next neighbor towardpos(ni, d)
done;
i := i + 1;
ai := m (* the closest node ofpos(ni, d) *)

done

where ai are anchor nodes that search for a better estima-
tion of destination position than the one included in the packet.
pos(n1, n2) is n2’s position as known byn1, andage(n1, n2) is
the age of this information. An illustration of this algorithm is rep-
resented in Fig.1.

Two different methods are used to update position tables in APB
routing protocols. The first one, LE (for Last Encounter), intro-
duced in [18], uses the encounter between nodes. Each node re-
members the location and time of its last encounter with every other
node. The second method, ELIP (Embedded Location Information
Protocol), uses also the encounter between nodes, but disseminates
nodes locations in data packets [6]. In this method, a source node
can include its current coordinates in every message it sends in such
a way that all the nodes that participate to the forwarding procedure
update their knowledge about the source.

To simulate these two protocols, we have to represent a set of
nodes that evolve in parallel. All of them move, communicateand
update their local position tables, which contains an estimation of
the position of all other nodes, at every simulation instant.

The goal of our simulator is to compare two dissemination
methods to be used in an APB ad hoc routing algorithm. We
did not conceive a generic simulator which can be used for any
routing protocol. Moreover, we do not focus on the efficiencyof
the routing protocol EASE, which has been proven in [18], but on
the performance of ELIP and LE, two dissemination algorithms.
The important point is that the two dissemination algorithms are
evaluated in the same conditions. For this reason, we do not have to
consider the physical and link layers and do not take into account
the interferences and packets loss. We only focus on the network
layer, and consider that when a node broadcasts a packet, allits
direct neighbors receive it.

3.2 Implementation in ReactiveML

We present here the structure of the simulator and detail some key
points. The full implementation is available at
http://ReactiveML.org/eurasip.

3.2.1 ReactiveML Survival Kit

REACTIVEML is built above OCAML . Every OCAML program
(without objects, labels and functors) is a valid REACTIVEML
program and REACTIVEML code can be linked to any OCAML

library. In the following, we assume that the reader is rather familiar
with OCAML .

A program is a set of definitions. Definitions introduce, likein
OCAML , types, values or functions. We illustrate the syntax with
the the following example. It defines the type of positions asa
record and an example of a position (4, 2). Then, we define the
function distance2 that computes the square of the Euclidean
distance between two positions.

type position = { x: int; y: int }
let pos = { x = 4; y = 2 }

val pos : position

let distance2 p1 p2 =
(p2.x - p1.x) * (p2.x - p1.x)
+ (p2.y - p1.y) * (p2.y - p1.y)

val distance2 : position -> position -> int

This is regular OCAML code and the REACTIVEML compiler
automatically computes the type signatures (printed initalic
font).

REACTIVEML adds to this functional language, theprocess
definition. Processes are state machines whose behavior canbe
executed through several instants. They are opposed to regular
OCAML functions which are considered to be instantaneous4. Con-
sider the processhello_world that prints “hello” at the first in-
stant and “world” at the second one (thepause statement suspends
the execution until the next instant):

let process hello_world =
print_string "hello ";
pause;
print_string "world"

val hello_world : unit process

This process can be instantiated using therun primitive and typing:
run hello_world.

Communication between parallel processes is made by broad-
casting signals. A signal can be emitted (emit) and awaited
(await). There is also suspension (do/when) and preemption
(do/until) constructs that use signals. We illustrate these con-
structs with a processping_pong that prints alternativelyping
andpong.

let process ping_pong =
signal s1, s2 in
loop
await s1;
print_string "ping";
emit s2

end
||
emit s1;
loop
await s2;
print_string "pong";
emit s1

end
val ping_pong : unit process

The constructsignal/in declare the two signalss1 ands2 then
two expressions are executed in parallel. The first one prints ping

4 In circuit terminology, processes aresequential functions whereas
OCAML functions are considered to becombinatorial.
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and the other one printspong. Synchronizations are made through
the signalss1 ands2.

Valued signals call for a particular treatment in case of multi-
emission. For example, what is the value ofx in the following
example where the values1 and 2 are emitted during the same
instant?

emit s 1 || emit s 2 || await s(x) in ...

There are several solutions. So, when a valued signal is declared,
we have to define how to combine values in the case of multi-
emission on a signal during the same instant. This is achieved with
the construct:

signal name default value gather function in expr

Thus, if we want to define the signals such that it computes the
sum of the emitted values, we can write:

signal s default 0 gather (+) in
emit s 1 || emit s 2 || await s(x) in print_int x
(* s : (int, int) event *)

The expressionawait s(x) in print_int x awaits the first
instant in whichs is emitted and then, at the next instant, prints3
which is the sum of the emitted values. The type(int, int) event
of the signals states that the emitted values and the combined val-
ues are integers.

The type of emitted values on a signal and the type of the
combined value are not necessarily the same. Ifτ1 is the type of
the values emitted ons andτ2 is the type of the combined value
then s type is of type(τ1,τ2) event. In this case, the default
value must have typeτ2 and the gathering function must have type
τ1 → τ2 → τ2.

In the following example, the signals collects all the values
emitted during the instant:

signal s default [] gather fun x y -> x :: y in
emit s 1 || emit s 2 || await s(x) in ...
(* s : (int, int list) event *)

Here, the default value is the empty list and the gathering function
builds the list of emitted values. So the value ofx is the list
[2; 1] 5 The notationsignal s in ... is a shortcut for this
gathering function.

We stop this short introduction to REACTIVEML here. Various
examples of programs can be found athttp://ReactiveML.org.

3.2.2 Data structures

We consider a noden. To use an age and position based routing
protocol,n must be aware about its position.n stores the informa-
tion it has about other nodes positions in a local position table. Each
entry in this position table looks like this:

[IDa, pos(n, a), date(n, a)]

Here this entry is about a nodea. pos(n, a) is an estimation ofa’s
position, anddate(n, a) indicates whenn has got this information.
n knows its immediate neighborhood represented by the set of all
the nodes under its radio range.

We then define the type of a node as a record:

type node =
{ id: int;
mutable pos: position;
mutable date: int;
pos_tbl_le: Pos_tbl.t;

5 The parallel composition is associative and commutative, so the order of
the elements of the list associated tos is not specified.

pos_tbl_elip: Pos_tbl.t;
mutable neighbors: node list; }

whereid is the unique identifier of the node.pos is its current
position which is its coordinates on a grid with squares of one meter
square.neighbors the list of nodes that are under its coverage
range.date is the current local date of the node, essentially used to
compute the age of other nodes position information.pos_tbl_le
andpos_tbl_elip are the position tables used to simulate the LE
and ELIP dissemination protocols.

The record contains mutable fields which can be modified, and
non-mutable fields which are fixed at the creation of the con-
cerned record.pos_tbl_le andpos_tbl_elip are not mutable
because we implement them as imperative structures in the module
Pos tbl. The position tables associate a position and a date to each
node.

Packets for age and position based routing protocols contain the
following fields: the source and destination identifiers, anestima-
tion of destination position, the age of this information, and data
to be transmitted. When using ELIP, the packets can contain also
source node location.

In the simulator, packets do not contain data but contain other
information used for statistics computation. This information is
also useful for the graphical interface.

type packet =
{ header: packet_header;
src_id: int;
dest_id: int;
mutable dest_pos: position;
mutable dest_pos_age: int;
(* to compute statistics *)
mutable route: node list;
mutable anchors: node list; }

src_id, dest_id, dest_pos and dest_pos_age are used for
routing.route is the list of nodes that the packet traveled through,
andanchors is the list of anchor nodes.header indicates if the
packet is a LER or an ELIP packet.

type packet_header =
| H_LE
| H_ELIP of position option

The typeposition option indicates that ELIP packets can con-
tain the position of the source node or not.

3.2.3 Behavior of a node

The heart of the simulator is the description of a node’s behavior.
Indeed, the simulator execution is the parallel composition of all
the nodes execution.

The behavior of each node is composed of three steps. A node
(1) moves, (2) discovers its neighborhood, (3) routes packets. These
steps are combined in a processnode 6 which is parameterized by
the initial position of the nodepos_init, a functionmove that
computes its next position, and a functionmake_msg that creates
a list of destinations to reach.

let process node pos_init move make_msg =
let self = make_node pos_init in
loop
self.date <- self.date + 1;

(* Moving *)
self.pos <- move self.pos;
emit draw self;

6 http://ReactiveML.org/eurasip/elip/node.rml.html
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(* Neighborhood discovering *)
...
update_pos_tbl self self.neighbors;

(* Routing *)
pause;
let msg = make_msg self in
...
pause;

end

This process creates a record of typenode that represents the
internal state of the node. Then it enters in the permanent behavior
which is executed through three instants. In the first one, a node
updates the local date, moves and emits its new position on the
global signaldraw for the graphical interface (a screen-shot is given
in Fig. 2). At the end of the first and during the second instant, the
new neighborhood is computed and the position tables are updated
using encounters between nodes. The third and last instant is the
routing. By enclosing this part between twopause statements, we
have the guaranty that the topology can not change. We detailnow
the main steps of the process.

Mobility Nodes movements are parameterized by a mobility
functionmove. This function computes the new position of a node
according to the current position. Themove function must have the
following signature:

val move : position -> position

We can implement very simple mobility functions likerandom
moves where a node can move to one of its eight adjacent positions.

let random pos = translate pos (Random.int 8)

val random : position -> position

(Random.int 8) is the call of the functionRandom.int of the
OCAML standard library andtranslate which is a function that
returns a new position.

We can also implement more realistic mobility models like the
random way-pointone. With this mobility model, a point is chosen
randomly in the simulation area and the node moves up to this
point. When it reaches this point, a new one is chosen. This function
is interesting because it must keep an internal state.

let random_waypoint pos_init =
let waypoint = ref pos_init in
fun pos ->
if pos = !waypoint
then waypoint := random_pos();
(* move in the direction of !waypoint *)
...

val random_waypoint :
position -> position -> position

The partial application of this function with only one parameter:

random_waypoint (random_pos())

returns a mobility function that can be given as an argument to a
node.

Neighborhood In real networks, the neighborhood of a node is
obtained thanks to the physical layer. By contrast, in the simulator
it has to be computed. Neighborhood discovery is the key point of
the efficiency of the simulator. We first give a simple method to
compute the neighbors of a node, then we explain how it can be
improved.

c

n

a
b

Figure 3. Topology split into multiple squares. Noden emits its
position on the gray squares, while it listens on the one it islocated.

To compute its neighborhood, a node needs to know the position
of other nodes. In this first method, we use a signalhello to gather
all nodes coordinates. Each node emits its position onhello such
that the value associated to the signal is the list of all nodes. Thus
the code of a node looks like the following (self is the internal
state of the node):

emit hello self;
await hello(all) in
self.node_neighbors <- get_neighbors self all;

The functionget neighbors returns theall’s sublist that con-
tains the nodes under the coverage range ofself.

This neighborhood discovery method is very simple but its
drawback is that each node has to compute its distance with all
other nodes leading to a quadratic complexity in the number of
nodes. To improve this method, we split the simulation area in small
areas and associate ahello signal to each area. That way, a node
has only to compute its distance with the nodes in the areas under
its range.

We consider noden in Fig. 3. A hello signal is associated to
each square. Noden sends its position on the signals associated
to the 4 squares touched by its radio transmission (the 4 gray
squares in this figure). In the same way, nodesa, b, andc emit their
position on the signals associated to the squares that intersect their
coverage range. So, nodesa and c transmit their position on the
signal associated to the square wheren is.n receives then positions
of a andc. Using this information,n computes its distance froma
andc and concludes thatc is a neighbor whilea is not.n does not
consider nodeb because this node does not emit its position on the
signal associated to the square wheren is located.

All the hello signals are stored in a two dimensional array
hello_array. We define a functionget areas that returns the
area of a node and the list of neighbor areas that are under itsrange.

val get_areas :
position -> (int * int) * (int * int) list

Now the behavior of a node is to emit its position in all the
areas under its range and to compute its distance with all thenodes
which have emitted their position in its area. So the code of the
neighborhood discovery becomes:

(* Compute areas under the coverage range *)
let (i,j) as local_area, neighbor_areas =
get_areas self.pos.x self.pos.y

in
(* Emit the position on each of these areas *)
List.iter
(fun (i,j) -> emit hello_array.(i).(j) self)
(local_area::neighbor_areas);

http://ReactiveML.org/eurasip/elip/move.rml.html
http://ReactiveML.org/eurasip/elip/move.rml.html#random
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(a) Topology connectivity. Each green line represents two
neighbor nodes, while the black circle represents one node cov-
erage region.

(b) An example of routing paths using ELIP (blue) and LE (red)
dissemination methods. The red circle represents the search
performed by the anchor node when using LE.

Figure 2. Screen-shots of the simulator graphical interface.

(* Get the nodes that emits their position *)
await hello_array.(i).(j) (all) in
self.neighbors <- get_neighbors self all;

Fig. 4 shows the effect of the area split on execution time. In
Fig. 4(a), we compare the first method, where all the nodes emit
and listen on the same signal, to the second one, where each nodes
emits only on the areas under its radio range. Because, in thefirst
method, each node computes its distance to every other node,the
neighborhood discovery procedure spends much more time than in
the second method, where each node computes its distance to the
nodes that emit on its adjacent areas only. We observe that for the
simulation of 1500 nodes the second method is 2 times faster than
the first one. Then for 2500 nodes it is 5 times faster and for 5000
nodes it is more than 10 times faster.

We focus now on the second method, which is more appropri-
ate. As we can see in Fig.4(b), the execution time depends heavily
on the area size. This figure represents the time required forthe
simulation of a 3000 nodes topology using three different densi-
ties (average number of neighbors a node have). We observe that
dividing the topology in too many squares is not efficient. Inthis
case, each node emits its position on a large number of signals,
which requires resources. On the other hand, dividing the topol-
ogy in large squares makes that a node receives large number of
nodes positions on its signal. It spends then long time to compute
distances with nodes placed far from it. Simulation resultsshow
that 2-ranges-sided squares seems to be a good compromise for the
three densities simulated.

Routing The last step in a node execution is the packets routing,
which is described in section3.17 The important point is that
we assume that routing is instantaneous, which means that the
topology is fixed during routing. This scenario is realisticbecause
we assume that nodes move at human speed, while packets travel
as radio waves speed. Topology is then supposed to change at time

7 http://ReactiveML.org/eurasip/elip/routing.rml.html

scale of seconds or longer, while packets spend at most tens of
milliseconds from source to destination. We can then use OCAML
functions. which are supposed instantaneous, to implementthe
routing protocols.

In the simulator, we compare two location dissemination meth-
ods, both of them combined with the same forwarding algorithm.
This algorithm computes the next node which will receive the
packet. We use a classical geographical method. The packet is
forwarded to the neighbor that is the nearest (for the Euclidean
distance) to the destination. The interesting point in the function
forward is that a node can access to the internal state of other
nodes executed in parallel. REACTIVEML guarantees that this ac-
tion is not interruptible such that there is no need to protect the
access to share data like in the thread model.

3.2.4 The main process

The main process that executes the simulation starts with anini-
tialization part to define simulation parameters. Then it executesn
nodes in parallel (for/dopar is a parallel iterator), the graphical
interface and others synchronous observers.

let process main =
(* Initialization part *)
...

(* Main part *)
begin
for i = 1 to n dopar
let pos = random_pos() in
run (node pos (Move.random_waypoint pos)

Msg.make)
done
||
run (draw_simul draw)
||
...

http://ReactiveML.org/eurasip/elip/routing.rml.html
http://ReactiveML.org/eurasip/elip/routing.rml.html
http://ReactiveML.org/eurasip/elip/routing.rml.html#forward
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Figure 4. Simulation times for neighborhood discovery.

end
val main : unit process

The structure of this process is the classical structure of the main
process of a simulator.

3.3 Analysis

The simulation speed depends on the parameters: number of nodes,
coverage range, number of emitted packets, simulation areasize,
etc. These parameters are linked through the relative density, given
by the number of nodes per coverage zone, in order to get a realistic
simulation environment.

The simulations have been done on the following computer:

PC Dual-PIV 3.2Ghz, RAM 2GB
running Debian Linux 3.1

First, we analyze our program capability to simulate large net-
works. Fig.5(a)represents simulation times depending on number
of nodes. We observe that at about 8000 nodes the execution time
becomes suddenly more important. This is due to memory usage,
when there is enough nodes so that the process has to swap. In
Fig. 5(b), the memory usage looks like being quadratic in the num-
ber of nodes. This result is natural because each node has a position
table that contains positions of all other nodes. To overcome this
limitation, we can limit the number of destination nodes such that
only a subset of nodes have to be in the position tables.

Now, we compare our simulator with NAB, a simulator devel-
oped by the authors of EASE. The Fig.6(a) represents the execu-
tion time for a simulation where each node emits a packet at each
instant. This type of simulation with a lot of mobility and communi-
cations is interesting to evaluate the dissemination algorithms. The
numbers shows that NAB is less efficient than the REACTIVEML
implementation but this comparison is unfair. Indeed NAB simu-
lates the MAC layer such that routing a packet is much more time
consuming than in our simulator. Because neighborhood discovery
is time consuming (about 25% of the simulation time with the op-
timized version), an interesting comparison with NAB is thus the
packets-free simulations. In this case, we compare only theneigh-
borhood discovery. The MAC layer does not affect the simulation
such that, the two simulators have to do exactly the same thing.
The execution time is given in Fig.6(b). We can observe that the
expressiveness of the signal communication gives us a very simple
way to define an efficient algorithm. Moreover, our simulatoruse
less memory than NAB.

3.4 Dynamic Extension

In ad hoc networks, protocols must be robust to topology changes,
which includes nodes join and leave. Thus, nodes can be addedor
removed dynamically.

Preemptible nodes are defined using the constructdo/until
that executes its body until a signal is emitted:

let process
preemptible_node pos_init move make_msg kill =

do
run (node pos_init move make_msg)

until kill done

Here, when the signalkill is emitted, the node is removed from
the simulation.

Figure7 gives the memory usage of a simulation that removes a
node at each instant. It shows that the garbage collector works well
and deallocate processes which are removed.

A more interesting point is the dynamic creation of processes.
In REACTIVEML, dynamic creation is made through recursion. We
define the recursive processadd that creates new nodes as follow:

let rec process add new_node start =
await new_node (pos) in
run (add new_node start)
||
await immediate start;
run (node pos

(random_waypoint (random_pos()))
make_msg)

This process is parameterized by two signals:new_node and
start. new_node is emitted (with an initial position) when a new
node is created. The signalstart is emitted at each new moving
step, it is used to synchronize the new node with the other ones. In-
deed, the new node must start with its moving step when all nodes
move.

4. Simulation of Sensor Networks
In this part, we will detail the programming of an other simulator
in REACTIVEML. This is simulator for sensor networks and, this
time, we do a finer simulation with all the layers of the network.
We call it GLONEMO(for global network model 8.

8 Screen-shot Fig.8

http://ReactiveML.org/eurasip/glonemo
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Figure 5. Simulations depending on the number of nodes with a topologydensity D=20.
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Figure 8. Screen-shots of the simulator graphical interface. The reddisk represents a toxic cloud. Black disks are nodes withoutenergy.

In our example, the network has to warm when a toxic cloud is
detected and the goal is to design low energy consumption routing
protocols.

4.1 Structure of the Simulator

4.1.1 Hardware Model

In order to have an accurate model of the energy consumption,a
model of the hardware is needed. Indeed, without this modeling, the
energy would have to be evaluated using other observations (like
the number of packet sent) and abstractions. The accurate model
of the hardware was easily described in REACTIVEML, it contains
several automata one for each consuming part, the radio, theCPU
and the memory.

4.1.2 Medium Access Control

The radio module is an important source of consumption for the
sensor nodes. To reduce that consumption, there exists specific
Medium Access Control(MAC) protocols for sensor networks.
Those protocols minimize the time the radio is alight [28, 14].
Thus, to analyze the energy consumption of a sensor network,the
MAC layer cannot be omitted. Furthermore, this simulator could
be used to evaluate different MAC protocols.

The sensor networks MAC protocol that has been imple-
mented here is a Preamble Sampling MAC protocol (see fig9)
like WiseMAC [14] and BMAC [28]. In the preamble sampling

Preamble DATA

Sleep Sleep Sleep

Carrier Sense, Listen B has a DATA packet to send

Receive 

B

A

Figure 9. Medium Access Control: the preamble sampling tech-
nique.

technique, a preamble precedes each data packet for alerting the re-
ceiving node. All nodes in the network sample the medium witha
common period, but their relative schedule offsets are independent.
If a node finds the medium busy after it wakes up and samples the
medium, it continues to listen until it receives a data packet or the
medium becomes idle again. The size of the preamble is set to be
equal to the preamble sampling period.

It was rather easy (about 150 lines) to implement this protocol
with REACTIVEML. Moreover, even if REACTIVEML is a syn-
chronous language, we simulate the clock drift of the nodes.

4.1.3 Routing

As for the MAC layer, the routing protocols are also specific in
sensor networks. Two of these are flooding and Directed Diffu-
sion [21]. We implemented both. In flooding, each node receiving
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Figure 11. The automaton described by Lucky

a packet repeats it by broadcasting unless it had previouslysent
this packet. This mechanism is useful for the management of the
network indeed some messages have to reach the whole network.

Directed diffusion is a data-centric routing that is used tocollect
data in sensor networks. In the network there is one (possibly
several) node called sink that collects the data of the network. This
routing protocol has three steps, see figure10. (a) The sink first
floods an interest message, which is a task description to thewhole
network, (b) the sensors set up gradients and (c) when a source
has data for the interest, it sends the packet to the sink along the
interest’s gradient path.

4.1.4 Application

A sensor network is dedicated to a particular application. The
whole protocol stacks depends on the application. In our example,
the network that we simulate has to send an alarm to a specific node
called the sink in case of danger. The danger is here related to the
environment, in fact the role of the network is to avert when atoxic
cloud is detected.

4.1.5 Environment

The environment is the source of (almost) all activity that occurs
in the network. It is not realistic to have independent stimuli that
activate the sensors [33]. A sensor network simulator has to include
a model of the environment. Here, the model of the environment
has been implemented using LUCKY.

LUCKY [22] is a programming language for the description of
non deterministic reactive systems. It is a part of the LURETTE[31]
tool box, an automatic testing tool for reactive programs.

A L UCKY program defines a set of input variables, a set of
output variables and an automaton with constraints on transitions.
The outputs generated respect the constraints that may involve the
inputs and the previous values of the outputs. The executionof a
LUCKY program is a synchronous system. At each step, the LUCKY
process reads the inputs takes a transition where constraints can be
satisfied and generates random outputs that satisfy the constraints.

In GLONEMO, the environment is a (toxic) cloud moving ac-
cording to the direction and speed of the wind. The model consists
in two processes, one for a two-dimensional wind, which doesnot
vary a lot and an other for a cloud. The LUCKY code for thewind
process is the following:

inputs { }
outputs {

wind_x : float;
wind_y : float;

}
start_node { init }
transitions {
init -> perm // transition T0
~cond

wind_x = 0.0 and wind_y = 0.0;

perm -> perm // transition T1
~cond

abs (wind_x - pre wind_x) < 1.0 and
abs (wind_y - pre wind_y) < 1.0 and

abs wind_x < 5.0 and abs wind_y < 5.0
}

This LUCKY program defines a two states automaton (see
fig 11) with two output variableswind_x andwind_y. The con-
straints on the outputs are defined at the transitions. For those con-
ditions, the keyword of the language in LUCKY is ~cond. Here,
transitionT0 sets the initial values ofwind_x andwind_y to 0.0
and the transitionT1 guaranty that at each activation the values of
the output variables are closed to their previous values.

The cloud is a disk whose center has the coordinatescloud_x
and cloud_y. Similarly, it is defined by an automaton where
wind_x and wind_y are the inputs andcloud_x and cloud_y
the outputs.

inputs {
wind_x : float;
wind_y : float;

}
outputs {
cloud_x: float;
cloud_y: float;

}
start_node { init }
transitions {
init -> perm // transition T0
~cond

cloud_x = 0.0 and cloud_y = 0.0;

perm -> perm // transition T1
~cond

(if wind_x >= 0.0
then ((cloud_x - pre cloud_x) >= 0.0
and (cloud_x - pre cloud_x) <= wind_x)

else ((cloud_x - pre cloud_x) <= 0.0
and (cloud_x - pre cloud_x) >= wind_x))

and
(if wind_y >= 0.0
then ((cloud_y - pre cloud_y) >= 0.0
and (cloud_y - pre cloud_y) <= wind_y)

else ((cloud_y - pre cloud_y) <= 0.0
and (cloud_y - pre cloud_y) >= wind_y))

}

These LUCKY programs can be imported into REACTIVEML
and turned into processes parameterized by their input and output
variables. Parameters become REACTIVEML signals. The behavior
of the process is to read the value associated to the input signals and
to emit the value computed by LUCKY on the output signal at each
step.

Let us illustrate it with the example of the cloud.

external.luc cloud_lucky
{wind_x : float; wind_y : float;}
{cloud_x: float; cloud_y: float;} = ["cloud.luc"]

val cloud_lucky :
(’a, float) event * (’b, float) event ->
(float, ’c) event * (float, ’d) event ->
unit process

Here, we create a process namedcloud_lucky. The inputs
wind_x andwind_y must be signals of type(’a, float) event
such that the value associated to the signals are floats. The outputs
cloud_x andcloud_y have type(float, ’a) event since the
process emits values of typefloat. In the same way, we can create
the processwind_lucky.
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Figure 10. Routing: An example of directed diffusion.

To observe particular behaviors for the cloud without having to
program them, it is useful for the user to be able to modify thecould
position during the simulation.

When the simulator is executed with a graphical interface, the
fan process reads keyboard inputs and generates a particular wind.
This process has the following interface:

val fan :
(float, ’a) event * (float, ’b) event ->
unit process

So, interactive simulations can simply be done by the parallel
composition of the processeswind_lucky and fan. Winds pro-
duced by the LUCKY process and thefan are combined through
the signalswind_x andwind_y:

signal wind_x default 0.0 gather (+.) in
signal wind_y default 0.0 gather (+.) in
run (wind_lucky () (wind_x,wind_y))
||
run (fan (wind_x,wind_y))

4.2 Benchmarks and Scalability

Sensor networks are huge systems composed by thousands or even
millions of nodes. Thus, a simulator dedicated to sensor networks
must be able to simulate such a high number of elements. In this
section, we discuss about the capacity of GLONEMO to execute
such networks. We measure both the time of the simulation and
the memory usage.

GLONEMO focuses on the energy consumption. That is why a
fine grain simulation is needed. Indeed, to model the energy con-
sumption in an accurate way, a model of the hardware is intro-
duced in the execution of the simulator. The time scale for that
is really small comparing to the times involved at the network lay-
ers. In GLONEMO, the execution of one logical instant represents
10−2 seconds. Thus to simulate the behavior of a network during
one hour, we need 360000 instants. For a 10000 nodes network,
such a simulation takes about 11 hours. On figure12(a), we printed
the execution time of one single instant in terms of the number of
nodes. This time appears to be linear with the number of nodes. For
a 140000 nodes network, the execution time of one instant takes
about 1.4 second. This is a long simulation but regarding themem-
ory (fig 12(b)), this simulation takes only 700 Megabytes and can
thus be done on everyday computers.

On figure13, we plot the speed and memory of a given simu-
lation with a fix number of nodes. The memory needed to run the
simulation is constant (see fig13(b)). This ensures that a simulation
will not begin to swap in the middle of the execution. Moreover, the
time taken to execute one instant is constant during the whole sim-
ulation (see fig13(a)). This is important to run long simulations.

GLONEMO, written in REACTIVEML, is able to simulate in an
accurate way more than 100000 nodes.

5. Related Works
Because network simulators are extensively used in the network
community research, many relevant simulators have been devel-
oped. Let us describe the distinguishing features of some ofthem.

In 2000, Breslau et al. [12] defend the need of a single simulator
for the research community. This was the VINT project leading to
the NS-2 simulator [1]. Indeed, NS-2 is one of the most popular
simulator in the research community. It is a packet-level simulator
that was first designed for wired networks. NS-2 is a discrete
event simulator. The interest of having one single simulator is to
enable comparison between different protocols without theneed
to implement the protocol we want to compare with. Indeed, NS-
2 offers a large protocol library. However, even if NS-2 provides
several levels of abstraction (four according to [12]), it is more
effective to implement the exact level of abstraction needed. This
is why some people still write stand-alone simulators. Moreover,
NS-2 is not really scalable and is convenient for simulatinga few
hundred nodes only.

To overcome the limitation in scalability of NS-2, people pro-
poseParallel Discrete Event Simulation[17] where the simulator
is distributed among several machines. GTNetS [32] is developed
with this paradigm. This is a complementary approaches to a cen-
tralised implementation as provided in REACTIVEML. The two
dedicated simulators implemented in REACTIVEML appear to be
scalable enough to run this way.

Sensor networks are new kind of ad hoc networks that interest
the research community. Those networks have different character-
istics and new constraints, thus new simulators are needed.Because
one of the key issue in sensor networks is the power consumption,
people began to develop simulators that take into account the en-
ergy consumption. Avrora [37] and Atemu [29] are cycle-accurate
simulators (RTL level). With that level of detail scalability is prob-
ably hopeless.

Finally, it would have been difficult to implement the two sim-
ulators in a synchronous language like LUSTRE[20], ESTEREL[7]
or SIGNAL [19] for at least two reasons: the use of complex data
structures that are shared between the reactive part and thecompu-
tational one, and the dynamic creation that is not allowed inthese
languages.

6. Conclusion and Perspectives
From the observation that generic network simulators are not al-
ways satisfactory and that users still develop their own simulators
from scratch, we propose the use of the reactive model to program
them. This model is dedicated to the programming of systems with
a lot of parallel processes and communications and this is typically
the case of network simulators.

Two different simulators have been considered: a coarse-grained
one (ELIP) and a fine-grained one (GLONEMO). Both simulators,
with the graphical interface, were defined in less than 2000 lines of
REACTIVEML. It is easy to define the data structures describing
nodes and packets. Moreover, the reactive model appeared tobe
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Figure 12. Simulation times and memory as a function of number of nodes.
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Figure 13. Simulation of 10000 nodes during 20 days.

well adapted for both the description of mobility in ELIP andto the
modular description of different the protocol layers in GLONEMO.
Finally, the underlined model of concurrency of reactive programs
states that all the node of the network react synchronously during a
reaction. This makes the correspondence between the logical time
and the simulation time.

The link between REACTIVEML and LUCKY allowed to simu-
late the physical external environment in GLONEMO. This point is
particularly important for sensor networks since a naive model of
the environment does not give relevant simulation results.

The simulators were efficient enough and robust to obtain the
useful simulation metrics [4, 5, 6]. It is clearly possible to develop
more efficient simulators than ELIP and GLONEMO but it appears
that there were a good compromise between the development time
and the simulators efficiency.

This works offers several perspectives, some concerning the
simulators by themselves and some concerning REACTIVEML.For
the GLONEMO simulator, it would be interesting to have several
levels of simulation: a fine-grained simulator in order to have an
accurate estimation of the energy consumption and then a faster
simulator that gives information about the higher layers. Under-
standing how to write such a multi-level simulator is a challenging
direction.

A natural extension of the language is to equip it with a de-
bugger. A top-level̀a la OCAML and inspired by the REACTIVE
SCRIPTS[8] has been implemented. It allows to define interactively
REACTIVEML programs and to control the execution. Defining a
more conventional debugger for a reactive language is largely an
open problem.

Another direction is the use of formal validation techniques
and tools for reactive programs. Technically, this means extracting
models in a form usable by the validation tools. For GLONEMO,
for example, we would like to prove two kinds of properties. The
first is the validation of theabstractionsthat are needed for the
model to be of a reasonable complexity. For instance, we think
that we should never include in the model a full description of the
hardware, at the abstraction level that is needed for precise energy
evaluations, i.e., the RTL level. But if we include an abstraction
of it, we shouldprove that: 1) it is indeed an abstraction of the
real hardware, and 2) the composition with the rest of the model
preserves this abstraction. The second kind is the verification of
global properties such as:after time T, the system still has more
than x % of the nodes alive.

Verifying reactive program with dynamic creation of processes
is still largely an open problem. Establishing close relations be-
tween the reactive model and process algebra could give someuse-
ful insight [3].



The key perspective is to use REACTIVEML not only to simu-
late ad hoc networks but also others embedded systems. Thereis a
first experiment with the simulation of a gyroscopic system.This
example is taken from the avionic industry, it deals with thetreat-
ment of position variations of an airplane [26]. An interesting point
here is how to extract the embedded (real-time) software from the
REACTIVEML program.
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manual. Technical report, Unité Mixte de Recherche 5104 CNRS -
INPG - UJF, 2004.

[23] Xavier Leroy. The Objective Caml system release 3.09. Documenta-
tion and user’s manual. Technical report, INRIA, 2006.

[24] Louis Mandel. Conception, Sémantique et Implantation de Reac-
tiveML : un langage à la ML pour la programmation réactive. PhD
thesis, Université Paris 6, 2006.
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