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Abstract

This paper presents a programming experiment of complex ne
work routing protocols for mobile ad hoc networks within tieac-
tive language RACTIVEML.

Mobile ad hoc networks are highly dynamic networks charac-
terized by the absence of physical infrastructure. In s&ttvorks,
nodes are able to move, evolve concurrently and synchraoize
tinuously with their neighbors. Due to mobility, connectsoin the
network can change dynamically and nodes can be added or re
moved at any time. All these characteristics — concurrenitit w
many communications and the need of complex data-strueture
combined to our routing protocol specifications make the afse
standard simulation tool®(g, NS-2, OPNET) inadequate. More-
over network protocols appear to be very hard to program effi-
ciently in conventional programming languages.

In this paper, we show that th&/nchronous reactive model
as introduced in the pioneering work of Boussinot matters fo
programming such systems. This model provides adequate pro
gramming constructs — namely synchronous parallel coniposi
broadcast communication and dynamic creation — which adow
natural implementation of the hard part of the simulatiomsThe-
sis is supported by two concrete examples: the first exanspde i
routing protocol in mobile ad hoc networks and the simulafo
cuses only on the network layer. The second one is a routiwtgpr
col for sensors networks and the wholes layers are faith&ithu-
lated (hardware, MAC and network layers). More importarithe
physical environment (e.g., clouds) has also been integrito
the simulation using the toollcKy.

The implementation has been done iBA&RTIVEML, an em-
bedding of the reactive model inside a statically typedctstunc-
tional language. RACTIVEML provides reactive programming
constructs together with most of the features of AMC . More-
over, it provides an efficient execution scheme for reactios-
structs which made the simulation of real-size exampleth(sgv-
eral thousand of nodes) feasible.

t

1. Introduction

Ad hoc networks are highly dynamic networks characterizethb
absence of any physical infrastructure. In this paper, weystwo
kinds of ad hoc networks : mobile and sensor networks.

Mobile ad hoc networks are composed of nodes which evolve
concurrently and have to synchronize continuously witheoth
nodes. Among existing routing protocols, age and positiased
protocols have recently emerged because of their relgtgisiple
and efficient policies: no location service is required, diestina-
tion position discovery is achieved during the packets &ding
step where nodes make elementary forwarding decisionsdbase
solely on the coordinates of their direct neighbors and efdésti-
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nation [18]. This avoids the need for topology knowledge beyond
one-hop.

Sensor networks consist in ad hoc networks but with specific
constraints. A sensor network is composed by a large nuntber o
sensors (several thousands). Those nodes are designeda® be
small and cheap as possible. Sensor networks can be depioyed
situation with difficult access and/or no available enefidws, the
nodes are power-constrained. Indeed, the network has tevach
_certain service as long as possible, and because there rsveoyo
few infrastructure, and because of the size of the netwales
that ran out of energy are not replaced.

These networks are typical examplescofmplex dynamic sys-
tems that is, dynamic systems where not only the state of system
evolves during the execution but also its internal struetEnsuring
a correct behavior of such a network is challenging, and #teeb
way to tackle this problem is to builtiodelshat can be simulated.

For example, power consumption is crucial in sensor netsvork
All the elements of a network have some influence on power con-
sumption: the nodes architecture, the radio access furaiiies,
the communication protocols, the application, and evemwort
environment which stimulates the sensors. Thus, powerucops
tion has to be estimated in advance. This can be achievedgiro
simulation.

The characteristics of these networks — concurrency wittiyma
synchronizations and the need of complex data-structuresake
the use of standard simulation tools liks-2[1] or OPNET[27]
inappropriate. Indeed, NS-2 has been originally desigoedired
networks and does not treat well wireless networks. In algr,
it is only able to simulate small networks (1000 nodes neta/or
seems to be barely conceivable) whereas we consider laafe sc
networks.

In this paper, we show that tleynchronous reactive model
troduced by BoussinotlD, 11, 34] strongly matters for program-
ming those systems. We argue that this model provides thé goo
programming constructs — synchronous parallel compasitiith
a common global time scale, broadcast communication and dy-
namic creation — making the implementation of the hard pért o
the network surprisingly simple and efficient. We can renthek
the reactive synchronous model is not contradictory withetsyn-
chronous aspect of these networks. Synchrony only givealitie
ity to all nodes to react in a fair way as it could be done in an
imperative implementation. The model providasguage concur-
rency as opposed toun-time concurrencyreactive parallel pro-
grams are translated into conventional single-threadeffetient
programs 2, 9, 13, 36]. Whereas a similar formulation is possi-
ble in any conventional programming language using ongima-
thread per node, it would not allow to simulate large netwdidt
clear efficiency reasons.

The programs have been written REACTIVEML (RML for
short) ! an embedding of the reactive model inside a statically

1The distribution can be accessedastp: //ReactiveML. org.
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typed, strict functional language2$, 24]. REACTIVEML pro-
vides reactive programming constructs with most of theufiesst

of OCaML [23]. Reactive constructs give a powerful way to de-
scribe the dynamical part of the system whereas the hostidayeg
OCAML provides data-structures for programming the algorith-
mic (combinatorial) part. Moreover, EACTIVEML provides an
efficient execution scheme for reactive constructs whicderthe
simulation of real-size examples feasible.

for example possible to generate a trace file that is compatiith
Nam or to write its own visualization tool.

More interesting is the ability to dynamically add or remae
servers (and printers) during the simulation. Such obssm in
parallel with the simulation without modifying it. The raae fea-
tures of REACTIVEML give also means to act dynamically on the
behavior of the network. For example, a function that cieateew
node with a mouse-click is about ten lines long (see se@&idn

The purpose of this paper is to convince of the adequacy of the This feature is interesting to provoke a certain behavidhefsim-

reactive model for real-size simulation problems like retapro-
tocols. As a side-effect, this protocol can also serve astenssting
benchmark for validating and comparing the various impletae
tions of the reactive modeR[ 13, 36).

The paper is organized as follows. Sectdiscuss about the
adequacy of the programming model on whiceE/RTIVEML is
based for programming network simulators. The secdipresents
briefly a routing protocol we have considered and itEAR-
TIVEML implementation. The language is very young and the
paper can thus be considered as a tutorial introductioneofath-
guage through two real examples. In order to ease the petgent
we start with a survival kit which can easily be skipped. Wé/on
give the hard part of the code and give hyperlinks to the cetepl
distribution. Sectior presents the simulation of a second protocol
used in sensor networks, taking the physical environmentan-
count. Finally, sectio® discuss related works and we conclude in
section6.

2. Why RML Mattersto Program Simulators

One first observation is that even if there exists many difienet-
work simulators, people continueto develop their own satorl
Why? Creating your own simulator guarantees that this sitoul
will perfectly fit your needs. Indeed, even if some simulatpro-
vide several levels of detail, a custom simulator can eyacttiress
the faced problem. For example, NS-2 or OPNET need thatyhe la
ers 1to 3 be described even if the designer is interestedrolayer

3 (the network layer).

Of course, writing a simulator from scratch is time consugmin
but it avoids the cost of learning an other simulator. In orie
reduce the time and effort needed for to write its own sinou)at
high level language is required.

For this purpose, we claim thattRcTIVEML which combines
reactive constructs for describing the dynamics of theesgswith
the expressiveness of @@L reduces this effort. Indeed, because
REACTIVEML is built above OQML, it keeps its main proper-
ties?: a powerful type system, user-definable algebraic datastype
definitions through pattern matching and automatic memaay-m
agement. These features are important in order to managel@om
data structures such as nodes or packets. The interest af1OC
for programming the simulation of ad hoc networks has been al
ready identified by the authors of NARY|. By adding reactive
constructs to OBML, REACTIVEML provides a means to describe
each node and their parallel composition in a more naturgl wa
This is a extra but essential advantage of tlEa&TIVEML simu-
lator with respect to the NAB version developed in @@ .

Authors of [L2] insist on the importance of a visualization
tool that helps users to understand the complex behaviohen t
simulation. Nam (Network Animator)1f], the visualization tool
of NS-2 was proposed during the VINT project. A visualizatio
tool for a network simulator is not only useful in order to giv
intuition about protocols to develop but also to aid in defing
both the simulator and the protocol stack. Sin@aRTIVEML is
being built above O@MmL, it can use any O&ML program. It is

2http://caml.inria.fr/about/index.en.html

ulated network. An other feature could be the dynamic cveadf
observers. Indeed, the graphic window for instance canrheved
during execution (to speed up the simulation) and then alysul
again to monitor the simulation. Moreover, the visualiaattool
is also an RACTIVEML program, letting the user display just is
needed on the graphic output (e.g., collision, emissiorackets).

In wireless networks, data transmission impacts the behati
a network. To generate messages, simulators can useistatiss
on the nodes. Poisson processes for instance are oftenTugsd.
environment modeling shows its limit, especially in theecabsen-
sor networks where a more accurate modeling of the envirahizie
sometimes needed. Sridharan et a§] linked the sensor network
simulator TOSSIM with MATLAB. It is possible to describe an
environment in RACTIVEML. An environment process will then
run in parallel with the rest. A better way is to rely on a dedkécl
language to model the environment. This is why we have iated
ReEAcTIVEML with L ucky, a language to describe stochastic re-
active programsg?2).

Network simulators are computer intensive applicationd an
efficiency of the programming language is thus a key point. Of
course, a dedicated simulator will certainly be more efficiban
the one obtained by using a general purpose one. The program-
ming language must itself be efficiently compiled. Becausa®
TIVEML programs are compiled into OL code without any
use of run-time concurrency (e.ghreadsor unix processes) and
which are in turn compiled into native code, we were able ho-si
ulate large scale networks with several thousand of nodese M
information about the implementation ofERCTIVEML can be
found in [24].

We illustrate these points on two examples: a mobile ad hoc
network and a sensor network.

3. Simulation of M obile Ad hoc Networks

Our first example is a simulator that evaluates disseminatieth-
ods for Age and Position Based (APB) routing protocols in ileob
ad hoc networks.

3.1 Ageand Position Based Routing

The main principle of APB routing protocols is that each node
may have an information about each other node’s locatiofs Th
information is stored in a position table and associatedhtage
that represents the time elapsed since the last time themafon
has been updated. The position table is queried by a packet to
estimate destination position.

In this routing methods, destination location discoveryés-
formed during packet transfer: a source node does not knetir de
nation location when it sends the packet, it only has an esiom
about it. We describe the EASE (Exponential Age SEarch)-rout
ing method, where a source nodeeeds to communicate with a
destinationd, as follows®

Seti := 0, age := 00, ap := sin
While a; # d do
search around; a noden; such thatuge(n;, d) < age/2;

3 For more details about EASE, sek]
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age := age(n;, d);

Setm := a; in

While m is not the closest node pbs(n;,d) do

m := next neighbor towargos(n;, d)

done;

=1+ 1;

a; := m (* the closest node gfos(n;, d) *)
done

library. In the following, we assume that the reader is refémiliar
with OCAML .

A program is a set of definitions. Definitions introduce, like
OCAML, types, values or functions. We illustrate the syntax with
the the following example. It defines the type of positionsaas

pOS(n2 d) record and an example of a positio 2). Then, we define the

function distance2 that computes the square of the Euclidean
distance between two positions.

type position = { x: int; y: int }
let pos ={ x=4; y=21%
val pos : posttion

let distance2 pl p2 =
(p2.x - pl.x) * (p2.x - pl.x)
+ (p2.y - pl.y) * (p2.y - pl.y)

val distance2 : position —> position —-> int

This is regular O@ML code and the RACTIVEML compiler
automatically computes the type signatures (printediimilic
font).

REACTIVEML adds to this functional language, thmocess
definition. Processes are state machines whose behaviobecan

where a; are anchor nodes that search for a better estima- executed through several instants. They are opposed tdaregu

tion of destination position than the one included in thekpac
pos(ni,m2) is n2's position as known by, andage(ni,n2) is
the age of this information. An illustration of this algdmit is rep-
resented in Figl.

Two different methods are used to update position table$iB A
routing protocols. The first one, LE (for Last Encounter}raon

duced in [L8], uses the encounter between nodes. Each node re-

members the location and time of its last encounter withyeotrer
node. The second method, ELIP (Embedded Location Infoomati
Protocol), uses also the encounter between nodes, butrdisses
nodes locations in data packeg.[In this method, a source node
can include its current coordinates in every message issarsiich

a way that all the nodes that participate to the forwardirngedure
update their knowledge about the source.

To simulate these two protocols, we have to represent a set of

nodes that evolve in parallel. All of them move, communicatel
update their local position tables, which contains an estion of
the position of all other nodes, at every simulation instant

The goal of our simulator is to compare two dissemination
methods to be used in an APB ad hoc routing algorithm. We

OCawmL functions which are considered to be instantanéoGen-
sider the procesiello_world that prints “hello” at the first in-
stant and “world” at the second one (th&ise statement suspends
the execution until the next instant):

let process hello_world =
print_string "hello.";
pause;
print_string "world"

val hello_world : unit process

This process can be instantiated usingrtue primitive and typing:
run hello_world

Communication between parallel processes is made by broad-
casting signals. A signal can be emitteen{t) and awaited
(await). There is also suspensiodof/when) and preemption
(do/until) constructs that use signals. We illustrate these con-
structs with a procesping_pong that prints alternativelyping
andpong

did not conceive a generic simulator which can be used for any let process ping_pong =

routing protocol. Moreover, we do not focus on the efficienty
the routing protocol EASE, which has been provenli§][ but on
the performance of ELIP and LE, two dissemination algorghm
The important point is that the two dissemination algorishane
evaluated in the same conditions. For this reason, we doavetto
consider the physical and link layers and do not take intoact
the interferences and packets loss. We only focus on theonletw
layer, and consider that when a node broadcasts a packéts all
direct neighbors receive it.

3.2 Implementation in ReactiveM L

We present here the structure of the simulator and detaiédam
points. The full implementation is available at
http://ReactiveML.org/eurasip.

3.21 ReactiveML Survival Kit

REACTIVEML is built above OQwmL. Every OGaML program
(without objects, labels and functors) is a valiEARTIVEML
program and RACTIVEML code can be linked to any OGaL

signal sl1, s2 in

loop
await si;
print_string "ping";
emit s2

end

[l

emit si;

loop
await s2;
print_string "pong";
emit sl

end

val ping_pong : unit process

The construckignal/in declare the two signalst ands2 then
two expressions are executed in parallel. The first onegpiig

4In circuit terminology, processes arsequential functions whereas
OCawmL functions are considered to lbembinatorial
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and the other one pringsong. Synchronizations are made through
the signals1 ands?2.

Valued signals call for a particular treatment in case oftimul
emission. For example, what is the valuexofn the following
example where the valuess and 2 are emitted during the same
instant?

emit s 1 || emit s 2 || await s(x) in ...

There are several solutions. So, when a valued signal isuaet|
we have to define how to combine values in the case of multi-
emission on a signal during the same instant. This is actiieven

the construct:

signal name default value gather function in expr

Thus, if we want to define the signasuch that it computes the
sum of the emitted values, we can write:

signal s default O gather (+) in
emit s 1 || emit s 2 || await s(x) in print_int x
(¥ s : (int, int) event *)

The expressiorawait s(x) in print_int x awaits the first
instant in whichs is emitted and then, at the next instant, pridits
which is the sum of the emitted values. The typ@t, int) event

of the signals states that the emitted values and the combined val-
ues are integers.

The type of emitted values on a signal and the type of the
combined value are not necessarily the same; lis the type of
the values emitted oa and 7 is the type of the combined value
then s type is of type(71,72) event. In this case, the default
value must have type; and the gathering function must have type
T1 — T2 — T2.

In the following example, the signal collects all the values
emitted during the instant:

signal s default [] gather fun x y -> x ::
emit s 1 || emit s 2 || await s(x) in ...
(*¥ s : (int, int list) event *)

y in

Here, the default value is the empty list and the gatheringtfan
builds the list of emitted values. So the value xfis the list
[2; 11 5 The notationsignal s in ... iS a shortcut for this
gathering function.

We stop this short introduction toeRCTIVEML here. Various
examples of programs can be founchatp: //ReactiveML.org.

3.2.2 Datastructures

We consider a node. To use an age and position based routing
protocol,n must be aware about its positionstores the informa-
tion it has about other nodes positions in a local positibfeteEach
entry in this position table looks like this:

[ID,,pos(n,a),date(n,a))

Here this entry is about a node pos(n, a) is an estimation of’s
position, andlate(n, a) indicates whem has got this information.
n knows its immediate neighborhood represented by the sdt of a
the nodes under its radio range.

We then define the type of a node as a record:

type node =
{ id: int;
mutable pos: position;
mutable date: int;
pos_tbl_le: Pos_tbl.t;

5The parallel composition is associative and commutatigethe order of
the elements of the list associatedsts not specified.

pos_tbl_elip: Pos_tbl.t;
mutable neighbors: node list; }

whereid is the unique identifier of the nodeos is its current
position which is its coordinates on a grid with squares & oreter
squaremneighbors the list of nodes that are under its coverage
rangedate is the current local date of the node, essentially used to
compute the age of other nodes position informatiars_tbl_le
andpos_tbl_elip are the position tables used to simulate the LE
and ELIP dissemination protocols.

The record contains mutable fields which can be modified, and
non-mutable fields which are fixed at the creation of the con-
cerned recordpos_tbl_le andpos_tbl_elip are not mutable
because we implement them as imperative structures in taelemo
Pos_tbl. The position tables associate a position and a date to each
node.

Packets for age and position based routing protocols aotitai
following fields: the source and destination identifiers eatima-
tion of destination position, the age of this informationdadata
to be transmitted. When using ELIP, the packets can contain a
source node location.

In the simulator, packets do not contain data but contaieroth
information used for statistics computation. This infotioa is
also useful for the graphical interface.

type packet
{ header: packet_header;

src_id: int;
dest_id: int;
mutable dest_pos: position;
mutable dest_pos_age: int;
(* to compute statistics *)
mutable route: node list;
mutable anchors: node list; }

src_id, dest_id, dest_pos anddest_pos_age are used for
routing.route is the list of nodes that the packet traveled through,
andanchors is the list of anchor nodeseader indicates if the
packet is a LER or an ELIP packet.

type packet_header
| H_LE
| H_ELIP of position option

The typeposition option indicates that ELIP packets can con-
tain the position of the source node or not.

3.2.3 Behavior of anode

The heart of the simulator is the description of a node’s bieia
Indeed, the simulator execution is the parallel compasitb all
the nodes execution.

The behavior of each node is composed of three steps. A node
(1) moves, (2) discovers its neighborhood, (3) routes packéese
steps are combined in a processie ® which is parameterized by
the initial position of the nodgos_init, a functionmove that
computes its next position, and a functimake_msg that creates
a list of destinations to reach.

let process node pos_init move make_msg =
let self make_node pos_init in
loop
self.date <- self.date + 1;

(* Moving *)
self.pos <- move self.pos;
emit draw self;

6 http://ReactiveML.org/eurasip/elip/node.rml.html
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(* Neighborhood discovering *)
update_pos_tbl self self.neighbors;

(* Routing *)

pause;

let msg = make_msg self in

pause;

end

This process creates a record of typede that represents the
internal state of the node. Then it enters in the permandravier
which is executed through three instants. In the first oneoden
updates the local date, moves and emits its new position @n th
global signaliraw for the graphical interface (a screen-shot is given
in Fig. 2). At the end of the first and during the second instant, the
new neighborhood is computed and the position tables arategd
using encounters between nodes. The third and last instdhei
routing. By enclosing this part between twause statements, we
have the guaranty that the topology can not change. We detail
the main steps of the process.

Mobility Nodes movements are parameterized by a mobility
functionmove. This function computes the new position of a node
according to the current position. Theve function must have the
following signature:

val move : position —> position

We can implement very simple mobility functions likendom
moves where a node can move to one of its eight adjacentqusiti

let random pos = translate pos (Random.int 8)

val random :@ position —-> position

(Random.int 8) is the call of the functiorRandom. int of the
OCamL standard library andranslate which is a function that
returns a new position.

We can also implement more realistic mobility models like th
random way-poinbne. With this mobility model, a point is chosen
randomly in the simulation area and the node moves up to this
point. When it reaches this point, a new one is chosen. Thigion
is interesting because it must keep an internal state.

let random_waypoint pos_init
let waypoint ref pos_init in
fun pos ->
if pos !waypoint
then waypoint := random_pos();
(* move in the direction of !waypoint *)

val random_waypoint :
position —-> position —> position

The partial application of this function with only one pareter:
random_waypoint (random_pos ())

returns a mobility function that can be given as an argumeat t
node.

Neighborhood In real networks, the neighborhood of a node is
obtained thanks to the physical layer. By contrast, in theukitor

it has to be computed. Neighborhood discovery is the keytmdin
the efficiency of the simulator. We first give a simple method t
compute the neighbors of a node, then we explain how it can be
improved.

Figure 3. Topology split into multiple squares. Nodeemits its
position on the gray squares, while it listens on the onddtdated.

To compute its neighborhood, a node needs to know the positio
of other nodes. In this first method, we use a sigrallo to gather
all nodes coordinates. Each node emits its positiohelio such
that the value associated to the signal is the list of all so@iaus
the code of a node looks like the followingel£ is the internal
state of the node):

emit hello self;
await hello(all) in
self .node_neighbors <- get_neighbors self all;

The functionget_neighbors returns theall'’s sublist that con-
tains the nodes under the coverage rangseaf.

This neighborhood discovery method is very simple but its
drawback is that each node has to compute its distance with al
other nodes leading to a quadratic complexity in the numiber o
nodes. To improve this method, we split the simulation amesariall
areas and associaténallo signal to each area. That way, a node
has only to compute its distance with the nodes in the aredsrun
its range.

We consider node in Fig. 3. A hello signal is associated to
each square. Node sends its position on the signals associated
to the 4 squares touched by its radio transmission (the 4 gray
squares in this figure). In the same way, nodds andc emit their
position on the signals associated to the squares thaséutetheir
coverage range. So, nodesand ¢ transmit their position on the
signal associated to the square wheis. n receives then positions
of @ andc. Using this informationn. computes its distance from
andc and concludes thatis a neighbor while: is not.n does not
consider nodé because this node does not emit its position on the
signal associated to the square wheiis located.

All the hello signals are stored in a two dimensional array
hello_array. We define a functiorget_areas that returns the
area of a node and the list of neighbor areas that are undanis.

val get_areas :
posttion -> (int * int) * (int * int) list

Now the behavior of a node is to emit its position in all the
areas under its range and to compute its distance with atidtes
which have emitted their position in its area. So the codehef t
neighborhood discovery becomes:

(* Compute areas under the coverage range *)
let (i,j) as local_area, neighbor_areas
get_areas self.pos.x self.pos.y
in
(* Emit the position on each of these areas *)
List.iter
(fun (i,j) -> emit hello_array.(i).(j) self)
(local_area: :neighbor_areas);
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(a) Topology connectivity. Each green line represents two
neighbor nodes, while the black circle represents one node ¢
erage region.

(b) An example of routing paths using ELIP (blue) and LE (red)
dissemination methods. The red circle represents the tsearc
performed by the anchor node when using LE.

Figure 2. Screen-shots of the simulator graphical interface.

(* Get the nodes that emits their position *)
await hello_array.(i).(j) (all) in
self .neighbors <- get_neighbors self all;

Fig. 4 shows the effect of the area split on execution time. In
Fig. 4(a) we compare the first method, where all the nodes emit
and listen on the same signal, to the second one, where edek no
emits only on the areas under its radio range. Because, ifirshe
method, each node computes its distance to every other tiezle,
neighborhood discovery procedure spends much more timdrtha
the second method, where each node computes its distanice to t
nodes that emit on its adjacent areas only. We observe th#ido
simulation of 1500 nodes the second method is 2 times fadzer t
the first one. Then for 2500 nodes it is 5 times faster and f6050
nodes it is more than 10 times faster.

We focus now on the second method, which is more appropri-
ate. As we can see in Fig(b), the execution time depends heavily
on the area size. This figure represents the time requirethéor
simulation of a 3000 nodes topology using three differemtsige
ties (average number of neighbors a node have). We obseate th
dividing the topology in too many squares is not efficientthis
case, each node emits its position on a large number of signal
which requires resources. On the other hand, dividing tpelto

ogy in large squares makes that a node receives large nurhber o

nodes positions on its signal. It spends then long time topzden
distances with nodes placed far from it. Simulation ressktsw
that 2-ranges-sided squares seems to be a good comproimiise fo
three densities simulated.

Routing The last step in a node execution is the packets routing,
which is described in sectioB.1’ The important point is that
we assume that routing is instantaneous, which means that th
topology is fixed during routing. This scenario is realidgiegcause

we assume that nodes move at human speed, while packets trave

as radio waves speed. Topology is then supposed to charigeeat t

7 http://ReactiveML.org/eurasip/elip/routing.rml.html

scale of seconds or longer, while packets spend at most fens o
milliseconds from source to destination. We can then use@.C
functions. which are supposed instantaneous, to implertrent
routing protocols.

In the simulator, we compare two location disseminationtmet
ods, both of them combined with the same forwarding algorith
This algorithm computes the next node which will receive the
packet. We use a classical geographical method. The pasket i
forwarded to the neighbor that is the nearest (for the Eealid
distance) to the destination. The interesting point in tecfion
forward is that a node can access to the internal state of other
nodes executed in parallelERCTIVEML guarantees that this ac-
tion is not interruptible such that there is no need to protee
access to share data like in the thread model.

3.2.4 Themain process

The main process that executes the simulation starts witihian
tialization part to define simulation parameters. Then éoexesn
nodes in parallelflor/dopar is a parallel iterator), the graphical
interface and others synchronous observers.

let process main =
(* Initialization part *)

(* Main part *)

begin
for i = 1 to n dopar
let pos = random_pos() in

run (node pos (Move.random_waypoint pos)
Msg.make)
done
I

run (draw_simul draw)


http://ReactiveML.org/eurasip/elip/routing.rml.html
http://ReactiveML.org/eurasip/elip/routing.rml.html
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end

val main : unit process

The structure of this process is the classical structureeoiitain
process of a simulator.

3.3 Analysis

The simulation speed depends on the parameters: numbedes$ no
coverage range, number of emitted packets, simulation sirea
etc. These parameters are linked through the relative tyegsien
by the number of nodes per coverage zone, in order to getiatieal
simulation environment.

The simulations have been done on the following computer:

PC Dual-PIV 3.2Ghz, RAM 2GB
running Debian Linux 3.1

First, we analyze our program capability to simulate large n
works. Fig.5(a) represents simulation times depending on number
of nodes. We observe that at about 8000 nodes the executien ti
becomes suddenly more important. This is due to memory usage

r neighborhood discovery.

3.4 Dynamic Extension

In ad hoc networks, protocols must be robust to topology gesn
which includes nodes join and leave. Thus, nodes can be added
removed dynamically.

Preemptible nodes are defined using the consttu¢tintil
that executes its body until a signal is emitted:

let process
preemptible_node pos_init move make_msg kill =
do
run (node pos_init move make_msg)
until kill done

Here, when the signaill is emitted, the node is removed from
the simulation.

Figure7 gives the memory usage of a simulation that removes a
node at each instant. It shows that the garbage collectdsweell
and deallocate processes which are removed.

A more interesting point is the dynamic creation of processe
In REACTIVEML, dynamic creation is made through recursion. We
define the recursive proceséd that creates new nodes as follow:

when there is enough nodes so that the process has to swap. In

Fig. 5(b), the memory usage looks like being quadratic in the num-
ber of nodes. This result is natural because each node hagiapo
table that contains positions of all other nodes. To overctinis
limitation, we can limit the number of destination nodeshstlwat
only a subset of nodes have to be in the position tables.

Now, we compare our simulator with NAB, a simulator devel-
oped by the authors of EASE. The Fi(a) represents the execu-
tion time for a simulation where each node emits a packetdt ea
instant. This type of simulation with a lot of mobility androanuni-
cations is interesting to evaluate the dissemination alyos. The
numbers shows that NAB is less efficient than theaRTIVEML
implementation but this comparison is unfair. Indeed NABIsi
lates the MAC layer such that routing a packet is much more tim
consuming than in our simulator. Because neighborhooddsy
is time consuming (about 25% of the simulation time with tpe o
timized version), an interesting comparison with NAB isghbe
packets-free simulations. In this case, we compare onlyéigh-
borhood discovery. The MAC layer does not affect the sinirat
such that, the two simulators have to do exactly the samej.thin
The execution time is given in Fig(b). We can observe that the
expressiveness of the signal communication gives us a reples
way to define an efficient algorithm. Moreover, our simulaiee
less memory than NAB.

let rec process add new_node start

await new_node (pos) in

run (add new_node start)

Il

await immediate start;

run (node pos
(random_waypoint (random_pos()))
make_msg)

This process is parameterized by two signalsw_node and
start. new_node is emitted (with an initial position) when a new
node is created. The signatart is emitted at each new moving
step, itis used to synchronize the new node with the othes.dne
deed, the new node must start with its moving step when aksod
move.

4. Simulation of Sensor Networ ks

In this part, we will detail the programming of an other siator

in REACTIVEML. This is simulator for sensor networks and, this
time, we do a finer simulation with all the layers of the netiwor
We call it GLoNEMO(for global network model 8.

8Screen-shot FigB
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|+ Simulation Glonemeo: 1000 nodes

Figure 8. Screen-shots of the simulator graphical interface. Theligidrepresents a toxic cloud. Black disks are nodes witaoatgy.

In our example, the network has to warm when a toxic cloud is

detected and the goal is to design low energy consumpticimgou
protocols.

4.1 Structureof the Simulator
411 HardwareMod€

In order to have an accurate model of the energy consumgion,
model of the hardware is needed. Indeed, without this moggthe
energy would have to be evaluated using other observatlies (
the number of packet sent) and abstractions. The accuradelmo
of the hardware was easily described iBARTIVEML, it contains
several automata one for each consuming part, the radi& e
and the memory.

4.1.2 Medium Access Control

The radio module is an important source of consumption fer th
sensor nodes. To reduce that consumption, there existsfispec
Medium Access Control(MAC) protocols for sensor networks.
Those protocols minimize the time the radio is aligh8,[14].
Thus, to analyze the energy consumption of a sensor netwak,
MAC layer cannot be omitted. Furthermore, this simulatauldo
be used to evaluate different MAC protocols.

The sensor networks MAC protocol that has been imple-
mented here is a Preamble Sampling MAC protocol (se®)ig
like WiseMAC [14] and BMAC [28]. In the preamble sampling

A SI%pH Sleep HSIeep Receive§
B | I || Preamble [pATA

H Carrier Sense, Listen

B hasa DATA packet to send

Figure 9. Medium Access Control: the preamble sampling tech-
nique.

technique, a preamble precedes each data packet for glévéime-
ceiving node. All nodes in the network sample the medium with
common period, but their relative schedule offsets areaddent.
If a node finds the medium busy after it wakes up and samples the
medium, it continues to listen until it receives a data packehe
medium becomes idle again. The size of the preamble is set to b
equal to the preamble sampling period.

It was rather easy (about 150 lines) to implement this patoc
with REACTIVEML. Moreover, even if RACTIVEML is a syn-
chronous language, we simulate the clock drift of the nodes.

4.1.3 Routing

As for the MAC layer, the routing protocols are also specific i
sensor networks. Two of these are flooding and Directed Diffu
sion [21]. We implemented both. In flooding, each node receiving
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Figure 11. The automaton described by Lucky

a packet repeats it by broadcasting unless it had previaesty
this packet. This mechanism is useful for the managemertieof t
network indeed some messages have to reach the whole network

Directed diffusion is a data-centric routing that is useddbect
data in sensor networks. In the network there is one (pgssibl
several) node called sink that collects the data of the mitvildis
routing protocol has three steps, see figli€e (a) The sink first
floods an interest message, which is a task description twhioée
network, (b) the sensors set up gradients and (c) when aesourc
has data for the interest, it sends the packet to the sinlgdtosn
interest’s gradient path.

414 Application

A sensor network is dedicated to a particular applicatione T
whole protocol stacks depends on the application. In oumeia,
the network that we simulate has to send an alarm to a specii n
called the sink in case of danger. The danger is here relatdubt
environment, in fact the role of the network is to avert wheoxac
cloud is detected.

4.1.5 Environment

The environment is the source of (almost) all activity the¢uwrs

in the network. It is not realistic to have independent stirthat
activate the sensor83)]. A sensor network simulator has to include
a model of the environment. Here, the model of the envirorimen
has been implemented using/tKy.

Lucky [22] is a programming language for the description of
non deterministic reactive systems. It is a part of tieRETTE[31]
tool box, an automatic testing tool for reactive programs.

A Lucky program defines a set of input variables, a set of
output variables and an automaton with constraints onitrans.
The outputs generated respect the constraints that malyéntree
inputs and the previous values of the outputs. The execuati@n
Lucky program is a synchronous system. At each step, thedy
process reads the inputs takes a transition where cortstczin be
satisfied and generates random outputs that satisfy théramnts.

In GLONEMO, the environment is a (toxic) cloud moving ac-
cording to the direction and speed of the wind. The modelistss
in two processes, one for a two-dimensional wind, which dus
vary a lot and an other for a cloud. Theytky code for thewind
process is the following:

inputs { }
outputs {
wind_x : float;
wind_y : float;
}

start_node { init }
transitions {
init -> perm // transition TO
“cond
wind_x

0.0 and wind_y = 0.0;
perm -> perm // transition T1
“cond

abs (wind_x - pre wind_x) < 1.0 and
abs (wind_y - pre wind_y) < 1.0 and

abs wind_x < 5.0 and abs wind_y < 5.0

This LucKky program defines a two states automaton (see
fig 11) with two output variablesrind_x andwind_y. The con-
straints on the outputs are defined at the transitions. esetbon-
ditions, the keyword of the language iruEky is ~cond. Here,
transitionTO sets the initial values afind_x andwind_y t0 0.0
and the transitiorT1 guaranty that at each activation the values of
the output variables are closed to their previous values.

The cloud is a disk whose center has the coordinaetesd_x
and cloud_y. Similarly, it is defined by an automaton where
wind_x andwind_y are the inputs andloud_x and cloud_y
the outputs.

inputs {
wind_x : float;
wind_y : float;
}
outputs {
cloud_x: float;
cloud_y: float;
}

start_node { init }

transitions {

init -> perm // transition TO
“cond

cloud_x

0.0 and cloud_y = 0.0;
perm -> perm // transition T1
“cond
(if wind_x >= 0.0

then ((cloud_x - pre cloud_x) >= 0.0

and (cloud_x - pre cloud_x) <= wind_x)
else ((cloud_x - pre cloud_x) <= 0.0

and (cloud_x - pre cloud_x) >= wind_x))

and

(if wind_y >= 0.0
then ((cloud_y - pre cloud_y) >= 0.0

and (cloud_y - pre cloud_y) <= wind_y)
else ((cloud_y - pre cloud_y) <= 0.0

and (cloud_y - pre cloud_y) >= wind_y))

These luckY programs can be imported intoERCTIVEML
and turned into processes parameterized by their input atplio
variables. Parameters becomeAR TIVEML signals. The behavior
of the process is to read the value associated to the inmalsignd
to emit the value computed bydcky on the output signal at each
step.

Let us illustrate it with the example of the cloud.

external.luc cloud_lucky

{wind_x : float; wind_y : float;}

{cloud_x: float; cloud_y: float;} = ["cloud.luc"]
val cloud_lucky :

(’a, float) event * (’b, float) event ->

(float, ’c) event * (float, ’d) event ->

unit process

Here, we create a process nametloud_lucky. The inputs
wind_x andwind_y must be signals of typé’a, float) event
such that the value associated to the signals are floats. (fpats
cloud_x andcloud_y have type(float, ’a) event Since the
process emits values of tyg@ oat. In the same way, we can create
the processind_lucky.
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Figure 10. Routing: An example of directed diffusion.

To observe particular behaviors for the cloud without hgvim
program them, it is useful for the user to be able to modifyciingd
position during the simulation.

When the simulator is executed with a graphical interfale, t
fan process reads keyboard inputs and generates a particalér wi
This process has the following interface:

val fan :
(float, ’a) event * (float,
unit process

’b) event ->

So, interactive simulations can simply be done by the palrall
composition of the processednd_lucky and fan. Winds pro-
duced by the bUcky process and théan are combined through
the signalsiind_x andwind_y:

signal wind_x default 0.0 gather (+.) in
signal wind_y default 0.0 gather (+.) in
run (wind_lucky O (wind_x,wind_y))

[

run (fan (wind_x,wind_y))

4.2 Benchmarksand Scalability

Sensor networks are huge systems composed by thousand=nor ev
millions of nodes. Thus, a simulator dedicated to sensawaris
must be able to simulate such a high number of elements. $n thi
section, we discuss about the capacity afcdBEMO to execute

5. Related Works

Because network simulators are extensively used in theanktw
community research, many relevant simulators have beeel-dev
oped. Let us describe the distinguishing features of sontieeon.

In 2000, Breslau et al1P] defend the need of a single simulator
for the research community. This was the VINT project legdim
the NS-2 simulatorJ]. Indeed, NS-2 is one of the most popular
simulator in the research community. It is a packet-leveluator
that was first designed for wired networks. NS-2 is a discrete
event simulator. The interest of having one single simul&do
enable comparison between different protocols withoutribed
to implement the protocol we want to compare with. Indeed; NS
2 offers a large protocol library. However, even if NS-2 pdes
several levels of abstraction (four according 1], it is more
effective to implement the exact level of abstraction needéis
is why some people still write stand-alone simulators. Mueg,
NS-2 is not really scalable and is convenient for simulatngw
hundred nodes only.

To overcome the limitation in scalability of NS-2, peoplepr
poseParallel Discrete Event Simulatiofl7] where the simulator
is distributed among several machines. GTN&3 [s developed
with this paradigm. This is a complementary approaches &na c
tralised implementation as provided inERCTIVEML. The two
dedicated simulators implemented ire RCTIVEML appear to be
scalable enough to run this way.

Sensor networks are new kind of ad hoc networks that interest
the research community. Those networks have differentacier-
istics and new constraints, thus new simulators are ne@geause

such networks. We measure both the time of the simulation and one of the key issue in sensor networks is the power consampti

the memory usage.

GLONEMO focuses on the energy consumption. That is why a
fine grain simulation is needed. Indeed, to model the eneogy ¢
sumption in an accurate way, a model of the hardware is intro-
duced in the execution of the simulator. The time scale fat th
is really small comparing to the times involved at the netway-
ers. In G.ONEMO, the execution of one logical instant represents
102 seconds. Thus to simulate the behavior of a network during

people began to develop simulators that take into accoenerh
ergy consumption. Avrorad[/] and Atemu R9] are cycle-accurate
simulators (RTL level). With that level of detail scalabjlis prob-
ably hopeless.

Finally, it would have been difficult to implement the two sim
ulators in a synchronous language likedTRE[20], ESTEREL[7]
or SIGNAL [19] for at least two reasons: the use of complex data
structures that are shared between the reactive part aconieu-

one hour, we need 360000 instants. For a 10000 nodes network tational one, and the dynamic creation that is not allowetthése

such a simulation takes about 11 hours. On fidi@@) we printed
the execution time of one single instant in terms of the nunalbe
nodes. This time appears to be linear with the number of ndaters

a 140000 nodes network, the execution time of one instamistak
about 1.4 second. This is a long simulation but regardingrtbm-

ory (fig 12(b)), this simulation takes only 700 Megabytes and can
thus be done on everyday computers.

On figure13, we plot the speed and memory of a given simu-
lation with a fix number of nodes. The memory needed to run the
simulation is constant (see fi@(b)). This ensures that a simulation
will not begin to swap in the middle of the execution. Morepviee
time taken to execute one instant is constant during theensiot-
ulation (see figl3(a). This is important to run long simulations.

GLONEMO, written in REACTIVEML, is able to simulate in an
accurate way more than 100000 nodes.

languages.

6. Conclusion and Per spectives

From the observation that generic network simulators ateaho
ways satisfactory and that users still develop their owruitors
from scratch, we propose the use of the reactive model taanog
them. This model is dedicated to the programming of systeitis w
a lot of parallel processes and communications and thigpisaiy
the case of network simulators.

Two different simulators have been considered: a coarsieen
one (ELIP) and a fine-grained one (GNEMO). Both simulators,
with the graphical interface, were defined in less than 20@lof
REACTIVEML. It is easy to define the data structures describing
nodes and packets. Moreover, the reactive model appearee to
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Figure 13. Simulation of 10000 nodes during 20 days.

well adapted for both the description of mobility in ELIP adhe
modular description of different the protocol layers in@EMO.

Finally, the underlined model of concurrency of reactivegrams
states that all the node of the network react synchronousingl a
reaction. This makes the correspondence between the ldigiea
and the simulation time.

The link between RACTIVEML and Lucky allowed to simu-
late the physical external environment in@EMO. This point is
particularly important for sensor networks since a naiveleh@f
the environment does not give relevant simulation results.

The simulators were efficient enough and robust to obtain the
useful simulation metrics4] 5, 6]. It is clearly possible to develop
more efficient simulators than ELIP and. GNEMO but it appears
that there were a good compromise between the developmest ti
and the simulators efficiency.

This works offers several perspectives, some concernieg th
simulators by themselves and some concernieg® IvVEML. For
the GLONEMO simulator, it would be interesting to have several
levels of simulation: a fine-grained simulator in order toédan
accurate estimation of the energy consumption and thenter fas
simulator that gives information about the higher layeradér-
standing how to write such a multi-level simulator is a okadjing
direction.

A natural extension of the language is to equip it with a de-
bugger. A top-levek la OCAML and inspired by the RACTIVE
ScRrIPTS[8] has been implemented. It allows to define interactively
REACTIVEML programs and to control the execution. Defining a
more conventional debugger for a reactive language is liaaye
open problem.

Another direction is the use of formal validation technigjue
and tools for reactive programs. Technically, this mearisaeting
models in a form usable by the validation tools. FardBIEMO,
for example, we would like to prove two kinds of propertief.eT
first is the validation of theabstractionsthat are needed for the
model to be of a reasonable complexity. For instance, wekthin
that we should never include in the model a full descriptibthe
hardware, at the abstraction level that is needed for @exgisrgy
evaluations, i.e., the RTL level. But if we include an abstiicn
of it, we shouldprovethat: 1) it is indeed an abstraction of the
real hardware, and 2) the composition with the rest of theehod
preserves this abstraction. The second kind is the verditatf
global properties such asfter time T, the system still has more
than x % of the nodes alive

Verifying reactive program with dynamic creation of proses
is still largely an open problem. Establishing close relasi be-
tween the reactive model and process algebra could give ssee
ful insight [3].



The key perspective is to useERCTIVEML not only to simu-
late ad hoc networks but also others embedded systems. ishere
first experiment with the simulation of a gyroscopic systédihis
example is taken from the avionic industry, it deals with titeat-
ment of position variations of an airplan2g]. An interesting point
here is how to extract the embedded (real-time) softwarma fitee
REACTIVEML program.
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