
ReactiveML, a Reactive Extension to ML∗

Louis Mandel
louis.mandel@lip6.fr

Marc Pouzet
marc.pouzet@lip6.fr

Laboratoire d’Informatique de Paris 6
Université Pierre et Marie Curie

Paris, France

ABSTRACT
We present ReactiveML, a programming language dedi-
cated to the implementation of complex reactive systems as
found in graphical user interfaces, video games or simulation
problems. The language is based on the reactive model in-
troduced by Boussinot. This model combines the so-called
synchronous model found in Esterel which provides instan-
taneous communication and parallel composition with clas-
sical features found in asynchronous models like dynamic
creation of processes.

The language comes as a conservative extension of an ex-
isting call-by-value ML language and it provides additional
constructs for describing the temporal part of a system.
The language receives a behavioral semantics à la Esterel

and a transition semantics describing precisely the inter-
action between ML values and reactive constructs. It is
statically typed through a Milner type inference system and
programs are compiled into regular ML programs. The lan-
guage has been used for programming several complex sim-
ulation problems (e.g., routing protocols in mobile ad-hoc
networks).

Categories and Subject Descriptors: F.4.1 [MATHE-
MATICAL LOGIC AND FORMAL LANGUAGES]: Math-
ematical Logic–Lambda calculus and related systems; D.3.1
[PROGRAMMING LANGUAGES]: Formal Definitions and
Theory–Syntax, Semantics; D.3.2 [PROGRAMMING LAN-
GUAGES]: Language Classifications–Applicative (functional)
languages, Concurrent, distributed, and parallel languages

General Terms: Languages

Keywords: Functional programming, reactive program-
ming, semantics.

1. INTRODUCTION
Synchronous programming [4] has been introduced in the

80’s as a way to design and implement safety critical real-
time systems. It is founded on the ideal zero delay model

∗This work is supported by the French ACI Sécurité Alidecs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPDP’05, July 11–13, 2005, Lisbon, Portugal.
Copyright 2005 ACM 1-59593-090-6/05/0007 ...$5.00.

where communications and computations are supposed to
be instantaneous. In this model, time is defined logically
as the sequence of reactions of the system to input events.
The main consequence of this model is to conciliate paral-
lelism — allowing for a modular description of the system —
and determinism. Moreover, techniques were proposed for
this parallelism to be statically compiled, i.e, parallel pro-
grams are translated into purely sequential imperative code
in terms of transition systems [5, 15].

Synchronous languages are restricted to the domain of
real-time systems and their semantics has been specifically
tuned for this purpose. In particular, they forbid important
features like recursion or dynamically allocated data in or-
der to ensure an execution in bounded time and memory. In
the 90’s, Boussinot observed that it was possible to concil-
iate the basic principles of synchronous languages with the
dynamic creation of processes if the system cannot react in-
stantaneously to the absence of an event. In this way, logical
inconsistencies which may appear during the synchronous
composition of processes disappear as well as the need of
complex causality analysis to statically reject inconsistent
programs. This model was called the synchronous reactive
model (or simply reactive) and identified inside SL [11], a
synchronous reactive calculus derived from Esterel. Later
on, the Junior [16] calculus was introduced as a way to
give a semantics to the SugarCubes [12], this last one be-
ing an embedding of the reactive model inside Java. This
model has been used successfully for the implementation of
complex interactive systems as found in graphical user in-
terfaces, video-games or simulation problems [13, 12, 1] and
appears as a competitive alternative to the classical thread-
based approach.

From these first experiments, several embedding of the re-
active model have been developed [7, 12, 26, 28]. These im-
plementations have been proposed in the form of libraries in-
side general purpose programming languages. The “library”
approach was indeed very attractive because it gives access
to all the features of the host language and it is relatively
light to implement. Nonetheless, this approach can lead to
confusions between values from the host language used for
programming the instant and reactive constructs. This can
lead to re-entrance phenomena which are usually detected by
run-time tests. Moreover, signals in the reactive model are
subject to dynamic scoping rules, making the reasoning on
programs hard. Most importantly, implementations of the
reactive model have to compete with traditional (mostly se-
quential) implementation techniques of complex simulation
problems. This calls for specific compilation, optimization

and program analysis techniques which can be hardly done
with the library approach.

The approach we choose is to provide concurrency at lan-
guage level. We enrich a strict ML language with new primi-
tives for reactive programming. We separate regular ML ex-
pressions from reactive ones through the notion of a process.
An ML expression is considered to be an atomic (timeless)
computation whereas a process is a state machine whose be-
havior depends on the history of its inputs. It is made of
regular ML expressions and reactive expressions. Regular
ML expressions are executed as is without any computa-
tional impact whereas reactive expressions are compiled in
a special way. We introduce two semantics for the language.
The first one is a behavioral semantics in the style of the
logical behavioral semantics of Esterel. This semantics
defines what is a valid reaction no matter how this reac-
tion is actually computed. In order to derive an execution
mechanism, we introduce a transition semantics and prove
it to be equivalent. Compared to existing semantics for the
reactive model (e.g., Junior), these two semantics express
precisely the interaction between values from the host lan-
guage and reactive constructs. Moreover, the language is
statically typed through a Milner type system. Compared
to the library approach, we believe that the language ap-
proach leads to a safer and a more natural programming.
In particular, the language provides a notion of signals with
regular scope properties. Moreover, some parts of a pro-
gram can be compiled vs interpreted, leading to a far more
efficient execution.

Section 2 illustrates the expressiveness of the language on
some simple examples. 1 A synchronous reactive calculus
based on Boussinot’s model is defined in section 3. We em-
bed this kernel inside a call-by-value ML kernel. Section 4
presents its behavioral semantics and establish its two main
properties: in a given environment, a program is determin-
istic and always progress. Section 5 presents a transition
semantics and an equivalence theorem. Section 6 presents
the type system which comes as a natural extension of the
ML type system of the host language. Implementation is-
sues are addressed in section 7. In section 8, we discuss
related works and conclude.

2. LANGUAGE OVERVIEW

2.1 A Short Introduction to ReactiveML
ReactiveML is built above Ocaml [19] such that every

Ocaml program (without objects, labels and functors) is a
valid program and ReactiveML code can be linked to any
Ocaml library.

A program is a set of definitions. Definitions introduce,
like in Ocaml, types, values or functions. ReactiveML

adds the process definition. Processes are state machines
whose behavior can be executed through several instants.
They are opposed to regular Ocaml functions which are
considered to be instantaneous. Let us consider the pro-
cess hello_world that prints “hello” at the first instant and
“world” at the second one (the pause statement suspends
the execution until the next instant):

let process hello_world =

print_string "helloÃ";

1The distribution of ReactiveML and complete examples
can be found at www-spi.lip6.fr/~mandel/rml.

pause;

print_string "world"

This process can be called by writing: run hello_world.
Communication between parallel processes is made by

broadcasting signals. A signal can be emitted (emit), awaited
(await) and we can test its presence (present). The fol-
lowing process emits the signal z every time x and y are
synchronous.

let process together x y z =

loop

present x then present y then (emit z; pause)

end

Unlike Esterel, it is impossible to react instantaneously to
the absence of an event. Thus, the following program:

present x then () else emit x

which is incorrect in Esterel — x cannot be present and
absent in the same instant and is thus rejected by a causality
analysis — is perfectly valid in the reactive model. In this
model, the absence of x is effective in the next instant. Thus,
the previous program is equivalent to:

pause; emit x

Now, we can write the edge front detector, a typical con-
struct appearing in control systems. The behavior of the
process edge is to emit s_out when s_in is present and it
was absent in the previous instant.

let process edge s_in s_out =

loop

present s_in then pause

else (await immediate s_in;

emit s_out)

end

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

s_out

s_in

While s_in is present, the process emits no value. When
s_in is absent, no value is emitted at that instant and the
control passes through the else branch. At the next instant,
the process awaits for the presence of s_in. When s_in

is present then s_out is emitted (since s_in was necessary
absent at the previous instant). The immediate keywords
states that s_in is taking into account even if s_in appears
at the very first instant.

We now introduce the two main control structures of the
language: the construction do e when s suspends the exe-
cution of a process e when the signal s is absent whereas
do e until s interrupts the execution of e when s is present.
We illustrate these two constructions on a suspend_resume

process which control the instant where a process is exe-
cuted.

We first define a process sustain parameterized by a sig-
nal s. sustain emits the signal s at every instant.

let process sustain s = loop emit s; pause end

We define now an other typical primitive. switch is a two
states Moore machine which is parameterized by two sig-
nals, s_in and s_out. Its behavior is to start the emission

emit s v1

emit s vn

emit s v2

await s(y) in ...

await s(x) in ...

v = (f vn ... (f v2 (f v1 d))...)

f v

d

Figure 1: Multi-emission on signal s, combined with

function f, gives the value v at the next instant.

of s_out when s_in is emitted and to sustain this emission
while s_in is absent. When s_in is emitted again, the emis-
sion of s_out is stopped and the process returns in its initial
state.

let process switch s_in s_out =

loop

await immediate s_in;

pause;

do run (sustain s_out) until s_in done

end

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

s_out

s_in

We define now the process suspend_resume parameterized
by a signal s and a process p. This process awaits the first
emission of s to start the execution of p. Then, each emission
of s alternatively suspends the execution of p and resumes
it. We implement this process with the parallel composition
of (1) a do/when construction that executes p only when the
signal active is present and (2) the execution of a switch
that controls the emission of active with the signal s.

let process suspend_resume s p =

signal active in

do run p when active

||

run (switch s active)

Notice that suspend_resume is an example of a higher-order
process since it takes a process p as a parameter.

ReactiveML also provides valuated signals. They can
be emitted (emit signal value) or awaited to get the asso-
ciated value (await signal (pattern) in expression). Dif-
ferent values can be emitted during an instant, it is called
multi-emission. ReactiveML adopts an original solution
for that: when a valued signal is declared, we have to de-
fine how to combine values emitted during the same instant.
This is achieved with the construction:

signal name default value gather function in expression

The behavior of multi-emission is illustrated in Fig. 1. We
assume signal s declared with the default value d and the
gathering function f. If values v1, ..., vn are emitted during
an instant, then all the await receive the value v at the next
instant. 2 Getting the value associated to a signal is delayed

2v = (f vn ... (f v2 (f v1 d))...)

to avoid causality problems. Indeed, as opposed to Esterel

and following the reactive approach of Boussinot, the fol-
lowing program await s(x) in emit s(x+1) is causal: the
integer value x of s (potentially resulting from the combi-
nation of several values) is only available at the end of the
instant. Thus, if x = 42 during the current reaction, the
program will emit s(43) in the following reaction. Notice
that this is different from awaiting the signal presence which
executes its continuation in the same instant.

The type of the emitted values and the type of the combi-
nation’s result can be different. This information is reported
in the type of signals. If τ1 is the type of the emitted values
on a signal s and τ2 is the one of the combination, then s

has type (τ1, τ2) event.
If we want to define a signal sum that computes the sum

of the emitted values, then we can write:

signal sum default 0 gather (+) in ...

In this case, the program await sum(x) in print_int x

awaits the first instant in which sum is emitted and then, at
the next instant, prints the sum of the values emitted. sum

has type (int, int) event
An other very useful signal declaration is the one that

collects all the values emitted during the instant which is
written simply:

signal s in ...

as a short-cut for:

signal s default Multiset.empty gather Multiset.add

in ...

Here, the default value is the empty set and the gathering
function, the addition of an element in a multiset. 3

2.2 The Sieve of Eratosthenes
We consider the sieve of Eratosthenes as it can be found

in [18] and is a classical in reactive calculus (see [8], for ex-
ample). The Eratosthenes sieve is an interesting program
because it combines signals, synchronous parallel composi-
tion and dynamic creation.

We first write the process integers which generates the
sequence of naturals from an integer value n.

let rec process integers n s_out =

emit s_out n;

pause;

run (integers (n+1) s_out)

val integers : int -> (int, ’a) event -> process

It is a recursive process that is parameterized by an integer
n and a signal s_out. Recursive calls are made through a
run. We can notice that there is no instantaneous recursion
because of the (pause) statement. The type of the process
is inferred by the compiler.

Now, we define the process filter which removes all the
multiple of some prime number. For this purpose, we de-
fine an auxiliary function not_multiple. not_multiple is
a regular Ocaml function which can be used in any other
Ocaml expression or reactive process.

let not_multiple n p = n mod p <> 0

val not_multiple : int -> int -> bool

3In the actual implementation, emitted values are gathered
in a list.

let process filter prime s_in s_out =

loop

await s_in(n) in

if not_multiple n prime then emit s_out n

end

val filter : int -> (’a, int) event ->

(int, ’b) event -> process

It is an error to write a reactive construction (such as pause)
in a regular Ocaml expression and the compiler rejects it.
For example the function let f x = pause; x is rejected.

Now, the process shift creates a new filter process
for each newly discovered prime number. We can notice
that dynamic creation is done through recursion. There-
fore, as opposed to conventional synchronous programming
languages, ReactiveML does not ensure an execution in
bounded time and memory but this is not a surprise.

let rec process shift s_in s_out =

await s_in(prime) in

emit s_out prime; (* emit a discovered prime *)

signal s default 0 gather fun x y -> x in

run (filter prime s_in s) || run (shift s s_out)

val shift :

(int, int) event -> (int, ’a) event -> process

Finally, we define the process output which prints the
prime numbers and the main process sieve.

let process output s_in =

loop await s_in (prime) in print_int prime end

val output : (’a, int) event -> process

let process sieve =

signal nat default 0 gather fun x y -> x in

signal prime default 0 gather fun x y -> x in

run (integers 2 nat)

||

run (shift nat prime)

||

run (output prime)

val sieve : process

The gathering functions of the signals nat and prime keep
only one of the emitted values.

2.3 Higher Order and Scope Extrusion
We present now an example where processes are emitted

on signals. We encode the construction Jr.Dynapar("add",

Jr.Halt()) of Junior introduced in [2] for the programming
of Agent systems. This process receives some processes on
the signal add and executes them in parallel.

let rec process dynapar add =

await add (p) in

run p || run (dynapar add)

The emission of processes with free signals can lead to a
scope-extrusion problem, a classical phenomenon in process
calculi [23]. It can be illustrated on the typical example of
a process which emits a process p1 and awaits an acknowl-
edgment of its execution in order to execute a process p2.

let process send add p1 p2 =

signal ack in

emit add (process (run p1; emit ack));

await immediate ack;

run p2

The expression process (run p1; emit ack) is the defini-
tion of an anonymous process that executes p1 and emits
ack. In this process, the signal ack is free when it is emitted
on add. ack is a local signal and add has a bigger scope, so
ack escapes its scope.

3. A SYNCHRONOUS REACTIVE CALCU-
LUS IN ML

We introduce a reactive kernel in which programs given
in the introduction can be translated easily. 4 This kernel is
built above a call-by-value functional language with an ML

syntax. Expressions (e) are made of variables (x), imme-
diate constants (c), pairs (e, e), abstractions (λx.e), appli-
cations (e e), local definitions (let x = e in e), recursions
(recx = e), processes (proc e), a sequence (e;e), a parallel
synchronous composition of two expressions (e||e), a loop
(loop e), a signal declaration (signal x default e gather

e2 in e) with a default value e1 and a combination function
e2, a test of presence (present e then e else e), an emission
of a valued signal (emit e e), an instantiation of a process
definition (run e), a preemption (do e until e), a suspen-
sion (do e when e) and the access to the value of a signal
let e(x) in e.

e ::= x | c | (e, e) | λx.e | e e | recx = e | proc e
| e;e | e||e | loop e | present e then e else e
| signal x default e gather e in e | emit e e
| let x = e in e | let e(x) in e | run e
| do e until e | do e when e

c ::= true | false | () | 0 | . . . | + | - | . . .

In order to separate regular ML programs from reactive con-
structs, expressions (e) must verify some well formation rules
given figure 2. For this purpose, we define the predicate
k ` e where e is an expression and k ∈ {0, 1}. We shall
say that an expression e is instantaneous (or combinatorial)
when 0 ` e can be derived whereas 1 ` e means that e is re-
active (or sequential to follow classical circuit terminology).
A sequential expression is supposed to take time. The rules
are defined figure 2. A rule given in the context k (k ` e)
is a short-cut for the two rules 0 ` e and 1 ` e. So, for
example, it means that a variable or a constant can be used
in any context. An abstraction (λx.e) can also be used in an
instantaneous expression or in a process but its body must
be combinatorial. For a process definition (proc e) the body
is typed with the context 1. All the ML expressions are well
formed in any context and the expressions like run, loop, or
present can be used only in a process. We can notice that
there is no rules which conclude that an expression is well
formed only in a context 0. Hence, all the combinatorial
expressions can be used in a process.

This rules implies some choices in the design of the lan-
guage. For example, we could allow reactive expressions to

4For example, the definition let process f x = e1 in e2 is a
short-cut for let f = λx.proc e1 in e2 and let f x = e1 in e2

stands for let f = λx.e1 in e2.

k ` x k ` c

0 ` e

k ` λx.e

1 ` e

k ` proc e

0 ` e1 0 ` e2

k ` e1 e2

0 ` e1 0 ` e2

k ` (e1, e2)

0 ` e1 k ` e2

k ` let x = e1 in e2

0 ` e

1 ` run e

1 ` e

1 ` loop e

0 ` e1 0 ` e2

1 ` emit e1 e2

0 ` e

k ` recx = e

1 ` e1 1 ` e2

1 ` e1||e2

k ` e1 k ` e2

k ` e1;e2

0 ` e 1 ` e1 1 ` e2

1 ` present e then e1 else e2

0 ` e1 0 ` e2 1 ` e

1 ` signal x default e1 gather e2 in e

0 ` e1 1 ` e2

1 ` let e1(x) in e2

0 ` e1 1 ` e2

1 ` do e2 until e1

0 ` e1 1 ` e2

1 ` do e2 when e1

Figure 2: Well formation rules

appear in a pair, and thus write:

k ` e1 k ` e2

k ` (e1, e2)

but in this case, the expression (emit s, pause) may have
several semantics. If the evaluation order is from left to
right, the signal s is emitted during the first instant while
with an evaluation order from right to left the signal is emit-
ted at the second instant. An other choice is to execute both
expressions in parallel. We found it more clear to forbid the
use of reactive expressions in a pair such that the evaluation
order does not matter. A pair will only compose instanta-
neous computations.

This is essentially a two-level language, separating regular
ML expressions used for describing instantaneous computa-
tions and reactive constructs for describing the reactive part
of a system. In this way, regular ML program shall be exe-
cuted as is without any computational impact whereas reac-
tive programs will be treated specially. Compilation issues
will be discussed in section 7.

Using this kernel, we can derive other operators like the
following:

emit e
def
= emit e ()

present e1 then e2
def
= present e1 then e2 else ()

present e1 else e2
def
= present e1 then () else e2

signal s in e
def
= signal s default ∅

gather λx.λy.{x}] y in e

pause
def
= signal x in present x else ()

await immediate s
def
= do () when s

await s
def
= pause;await immediate s

await s(x) in e
def
= await immediate s;let s(x) in e

In ReactiveML, signals are always valued. Thus, a pure
signal (in the Esterel sense) is implemented with a valued
signal with value (). At the declaration point of a signal,
the programmer must provide a default value e1 and cor-
responding to the instants where the signal is not emitted
and a combination function e2. This combination function
is used to combine all the values emitted during the same
reaction. The construction signal s in p is a shortcut for
the signal declaration that collects all the values emitted
in a multiset. ∅ stands for an empty multiset and] is
the union (if m1 = {v1, ..., vn} and m2 = {v′

1, ..., v
′
k} then

m1]m2 = {v1, ..., vn, v′
1, ..., v

′
k}).

The pause statement stops the execution for one instant.
Indeed, as opposed to Esterel and following SL [11], the

absence of a signal can only be decided at the end of the cur-
rent reaction. Since x is not emitted, present x will evaluate
to false at the end of the reaction so the instruction () will
be executed during the next reaction. The await/immediate
constructs awaits for the presence of a signal. Awaiting a
valued signal can be written await s(x) in e. The access
construction let s(x) in e awaits for the end of the instant
to get the value transmitted on the signal s and starts the
execution of e on the next instant. When s is not emitted,
x takes the default value of s.

4. BEHAVIORAL SEMANTICS
In this section we formalize the execution of a Reac-

tiveML program. We base it on a behavioral semantics, in
the style of the logical behavioral semantics of Esterel [5].
We define the semantics in two steps. We defines the se-
mantics of instantaneous computations (for which 0 ` e)
before giving the semantics of sequential computations. No-
tice that sequential does not mean imperative but it is used
like in the circuit terminology. An expression is sequential
when its execution can take several instants.

4.1 Instantaneous Computations
Instantaneous expressions (such that 0 ` e) are regular

ML expression which receive a standard operational seman-
tics. For this purpose, we define the set of values (v) such
that:

v ::= c | n | (v, v) | λx.e | proc e

A value can be an immediate constant (c), a signal value n
(belonging to a numerable set N), an abstraction (λx.e) or
a value process (proc e).

For every instantaneous expression e, we define the pred-
icate e ⇓ v stating that e evaluates to the value v. We use
the notation e[x ← v] for the substitution of x by v in the
expression e.

v ⇓ v

e1 ⇓ v1 e2 ⇓ v2

(e1, e2) ⇓ (v1, v2)

e[x← recx = e] ⇓ v

recx = e ⇓ v

e1 ⇓ λx.e e2 ⇓ v2 e[x← v2] ⇓ v

e1 e2 ⇓ v

e1 ⇓ v1 e2[x← v1] ⇓ v

let x = e1 in e2 ⇓ v

4.2 Sequential Computations
The behavioral semantics describes the reaction of a ex-

pression to some input signal. We start with some auxiliary
definitions.

Let N , a numerable set of names and N1 ⊆ N , N2 ⊆ N .
The composition N1.N2 is the union of the two set and is
defined only if N1 ∩N2 = ∅.

A signal environment S is a function:

S ::= [(d1, g1, m1)/n1, ..., (dk, gk, mk)/nk]

A name ni is associated to a triple (di, gi, mi) where di

stands for the default value of ni, gi stands for a combination
function and mi is the multiset of values emitted during a
reaction. If S(ni) = (di, gi, mi), we shall write Sd(ni) = di,
Sg(ni) = gi and Sv(ni) = mi.

We use the notation (n ∈ S) when the signal n is present
(that is, Sv(n) 6= ∅) and (n 6∈ S) when the signal is absent
(that is, Sv(n) = ∅).

An event E is a function from names to multisets of values.

E ::= [m1/n1, ..., mk/nk]

We take the convention that if n 6∈ Dom(E) then E(n) = ∅.
We define the union of two events E1, E2 as the event E =
E1 t E2 such that:

∀n ∈ Dom(E1) ∪Dom(E2) : E(n) = E1(n)] E2(n)

And E = E1 u E2 is the intersection of E1 and E2:

∀n ∈ Dom(E1) ∪Dom(E2) : E(n) = E1(n) ∩ E2(n)

The + operator adds a value v to the multiset of values
associated to a signal n in a signal environment S.

(S+[v/n])(n′) =

S(n′) if n′ 6= n
(Sd(n), Sg(n), Sv(n)] {v}) if n′ = n

And we define the order relation v on events and lift it to
signal environments:

E1 v E2 iff ∀n ∈ Dom(E1) : E1(n) ⊆ E2(n)
S1 v S2 iff Sv

1 v Sv
2

The reaction of an expression e into e′ is defined in a
transition relation of the form:

N ` e
E, b
−−→

S
e′

N stands for a set of fresh signal names, S stands for a signal
environment containing input, output and local signals and
E is the event made of signals emitted during the reaction.
b is a boolean value which is true if e′ has finished.

The execution of the program is a succession of reactions
(potentially infinite). The execution is finished when the
termination status b is true. At each instant, the program
reads some inputs (Ii) and produces some outputs (Oi) (and
local signals). The execution of an instant is defined by the
smallest signal environment Si (for the order v) such that:

Ni ` ei
Ei, b
−−−→

Si

e′i

where:

Oi v Ei, and (Ii t Ei) v Sv
i

Sd
i ⊆ Sd

i+1 and Sg
i ⊆ Sg

i+1

∀n ∈ Ni+1.n 6∈ Dom(Si)

The smallest Si denotes the signal environment in which the
number of present signals is the smallest. This set contains
input as well as output signals (this is the property of in-
stantaneous broadcasting of events, that is, all the emitted
signal are seen during the current reaction). The conditions

Sd
i ⊆ Sd

i+1 and Sg
i ⊆ Sg

i+1 mean that the default value and
gathering function associated to a signal stay the same dur-
ing several reactions. We can notice that it is only necessary
to keep this information for signals which are still alive at
the end of the reaction (they do appear in e′i). The condi-
tion ∀n ∈ Ni+1.n 6∈ Dom(Si) means that Ni is a set of fresh
names.

The behavioral semantics is defined in figure 3. Let us
comment the rules.

• The rules for the sequence illustrate the use of the
termination status b. The expression e2 is executed
only if e1 terminates instantaneously (b = true).

• The behavior of the parallel composition is to execute
e1 and e2 and to terminate when both branches have
terminated

• The loop is defined by unfolding. The termination
status false guaranty that there is no instantaneous
loop.

• signal x default e1 gather e2 in e declare a new sig-
nal. The default value (e1) and the gathering function
(e2) associated to x are evaluated at the signal decla-
ration. The name x is substituted by a fresh name n
in e.

• emit e1 e2 evaluates e1 into a signal n and adds the
result of the evaluation of e2 to the multiset of emitted
values on n.

• let e(x) in e1 is used to get the value associated to a
signal. e must be evaluated in a signal n and v is the
combination of all the values emitted on n during the
instant. The function fold is defined as follows:

fold f ({v1}]m) v2 = fold f m (f v1 v2)
fold f ∅ v = v

The reaction of the program substitutes x by v in e1.
The body is executed at the next instant. This in-
struction takes one instant because, in the reactive ap-
proach, all the emitted signal are known at the end of
instant only.

• let x = e1 in e2 evaluates e1 into v and substitutes x
by v in e2. Then it evaluates e2.

• The unit expression (()) does nothing and terminates
instantaneously.

• In a present test, if the signal is present the then

branch is executed in the instant, otherwise the else

branch is executed at the next instant.

• The do/when corresponds to the suspend construction
of Esterel. The difference is that the suspension is
not made on the presence of a signal but on the ab-
sence. This is due to the reactive approach: the reac-
tion of a signal cannot depend instantaneously on the
absence of a signal.

• The behavior of do/until is the same as the kill of
SL. This is a weak preemption that takes one instant.
Indeed, we cannot have strong preemption to avoid
causality problems. For example with a strong pre-
emption the following expression is not causal:
do await s until s done; emit s.

N ` e1
E1, false
−−−−−→

S
e′1

N ` e1;e2
E1, false
−−−−−→

S
e′1;e2

N1 ` e1
E1, true
−−−−−→

S
e′1 N2 ` e2

E2, b
−−−→

S
e′2

N1 ·N2 ` e1;e2
E1tE2, b
−−−−−−→

S
e′2

N1 ` e1
E1, b1−−−−→

S
e′1 N2 ` e2

E2, b2−−−−→
S

e′2

N1 ·N2 ` e1||e2
E1tE2, b1∧b2−−−−−−−−−→

S
e′1||e

′
2

N ` e
E, false
−−−−→

S
e′

N ` loop e
E, false
−−−−→

S
e′;loop e

e1 ⇓ v1 e2 ⇓ v2 Sd(n) = v1 Sg(n) = v2 N ` e[x← n]
E, b
−−→

S
e′

N.[n] ` signal x default e1 gather e2 in e
E, b
−−→

S
e′

e1 ⇓ n e2 ⇓ v

∅ ` emit e1 e2
[{v}/n], true
−−−−−−−−→

S
()

e ⇓ n S(n) = (d, g, m) v = fold g m d

∅ ` let e(x) in e1
∅, false
−−−−→

S
e1[x← v]

e1 ⇓ v N ` e2[x← v]
E, b
−−→

S
e′2

N ` let x = e1 in e2
E, b
−−→

S
e′2

∅ ` ()
∅, true
−−−−→

S
()

e ⇓ n n ∈ S N ` e1
E, b
−−→

S
e′1

N ` present e then e1 else e2
E, b
−−→

S
e′1

e ⇓ n n 6∈ S

∅ ` present e then e1 else e2
∅, false
−−−−→

S
e2

e ⇓ n n 6∈ S

∅ ` do e1 when e
∅, false
−−−−→

S
do e1 when n

e ⇓ n n ∈ S N ` e1
E, false
−−−−→

S
e′1

N ` do e1 when e
E, false
−−−−→

S
do e′1 when n

e ⇓ n n ∈ S N ` e1
E, true
−−−−→

S
e′1

N ` do e1 when e
E, true
−−−−→

S
()

e ⇓ n n ∈ S N ` e1
E, b
−−→

S
e′1

N ` do e1 until e
E, b
−−→

S
()

e ⇓ n n 6∈ S N ` e1
E, b
−−→

S
e′1

N ` do e1 until e
E, b
−−→

S
do e′1 until n

e ⇓ proc e1 N ` e1
E, b
−−→

S
e′1

N ` run e
E, b
−−→

S
e′1

Figure 3: Behavioral Semantics

• run e evaluates the expression e into a process defini-
tion and executes it.

Now, we establish the main properties of the behavioral
semantics stating that the reaction is deterministic: for a
given signal environment there is only one way a program
can react. And if a program is reactive [5] (there exists one S

such that N ` e
E, b
−−→

S
e′), then there exists a unique smallest

signal environment in which it can react. The proofs are
given in the extended version of the paper [21].

The combination of this properties insures that every re-
active programs can be executed in ReactiveML. Notice,
this property is not verified a priori in Esterel and needs
a causality analysis.

Lemma 1. For every expression e, the behavioral seman-
tics of e is deterministic, i.e:
∀e, ∀S,∀N :
if ∀n ∈ Dom(S) : Sg(n) = f and f(x, f(y, z)) = f(y, f(x, z))

and N ` e
E1, b1−−−−→

S
e′1 and N ` e

E2, b2−−−−→
S

e′2

then (E1 = E2 ∧ b1 = b2 ∧ e′1 = e′2)

The associativity and commutativity of the gathering func-
tion expresses the fact that the order of emissions during an
instant is not specified. It is a strong constraint. But even
if it is not satisfied a program can be deterministic. For ex-
ample if there is no multi-emissions the gathering function
does not have to be associative and commutative.

Lemma 2. For every expression e, let S such that

S =
n

S | ∃E, N, b : N ` e
E, b
−−→

S
e′
o

then there exists a (unique) smallest signal environment (uS)
such that

∃E, N, b : N ` e
E, b
−−→
uS

e′

The proof of this lemma is based on the following lemma
which states that if an expression can react in two differ-
ent environments then it can react in the intersection of
these environments. This lemma is based on the absence of
instantaneous reaction to the absence of a signal. Indeed
contrary to Esterel the absence of a signal can not gener-
ate the emission of other signals. For example, in Esterel,
the following program emits s2 if s1 is absent, but in Re-

activeML the emission of s2 is delayed to the next instant
such that the absence can emit signals during the instant:
present s1 then () else emit s2.

Lemma 3. Let S1, S2, S3 and e such that N1 ` e
E1, b1−−−−→

S1

e1 and N2 ` e
E2, b2−−−−→

S2

e2 and Sv
3 = Sv

1 u Sv
2 then there

exists E3, N3, b3 and e3 such that N3 ` e
E3, b3−−−−→

S3

e3 and

b3 ⇒ (b1 ∧ b2) and E3 v (E1 u E2) and N3 ⊆ (N1 ∩N2).

5. OPERATIONAL SEMANTICS
The previous semantics is not operational since it express

what the reaction should verify and not how reactions are
computed. In particular, the signal environment has to be
guessed. We present now a small step semantics where the
reaction build the signal environment. An instant is made
into two steps. The first one is an extension of the reduction

semantics of ML. The second one, name the end of instant’s
reaction, prepares the next instant’s reaction.

5.1 Reduction Semantics
The reaction of an instant starts with a sequence of reac-

tions of the form:

e/S → e′/S′

Contrary to the previous semantics, the signal environment
S is built during the reaction.

To define the reaction →, we start with the axioms for
the relation of head reduction (

ε
−→) figure 4.

• The let’s axiom substitutes x by v in e.

• The rule of the sequence remove the left branch when
this is a value.

• When the two branches of a parallel are values, the
parallel is reduced into the value ().

• The loop duplicates its body.

• The run instruction applied to a process definition ex-
ecutes it.

• emit n v is reduced into () and adds v to the multiset
of values emitted on n.

• The present construction can be reduced only if the
signal is present in the environment.

• The declaration of a signal x substitutes x by n in e.
n is a fresh name taken in N . n is added to the signal
environment with the default value v1 and the gather-
ing function v2. Initially, the multiset of values asso-
ciated to n is empty.

• When the body of a do/until construct is a value, it
means that it reaction is finished. So, the do/until

can be reduced into ().

• The do/when can be reduced into () only when its
body is a value and when the signal is present.

From this axioms, we define the reduction →:

e/S
ε
−→ e′/S′

Γ(e)/S → Γ(e′)/S′

env ⇓ v

Γ(env)/S → Γ(v)/S

n ∈ S e/S → e′/S′

Γ(do e when n)/S → Γ(do e′ when n)/S′

where Γ is a context with one hole. With the first rule, if
an expression e head reduces to e′, then e can be reduced
in any context. The second rule defines the execution of
combinatorial expressions. env must be an expression which
is not a value to avoid infinite reductions. The last rule is
the suspension. The body of a do/when can be executed
only if the signal is present.

The contexts are defined as follow:

Γ ::= [] | let x = Γ in e | Γ;e
| Γ||e | e||Γ | run Γ | emit Γ e | emit e Γ
| let Γ(x) in e | present Γ then e else e
| signal x default Γ gather e in e
| signal x default e gather Γ in e
| do e until Γ | do Γ until n | do e when Γ

The contexts for the parallel composition show that the eval-
uation order is not specified. In the implementation of Re-

activeML, the scheduling is fixed such that the execution
is always deterministic but this is not specified.

5.2 End of Instant’s Reaction
The reactive model is based on the absence of instanta-

neous reaction to the absence of a signal such that the treat-
ment of the absence to prepare the reaction for the next
instant can only be done at the end of instant.

The reaction of an instant is stopped when there is no
more → reductions possible. From this point, the signal en-
vironment cannot change, there is no more signal emission.
So, all the signals not emitted are consider to be absent.

The rules for the end of instant’s reaction are of the form:
S ` e →eoi e′ and are defined figure 5. We can notice
that the rules are not given for all the expressions because
they are applied only when the program cannot be reduced
with →. Let’s comment the rules of figure 5:

• Values do not change at the end of an instant.

• The reaction of the parallel composition is the reaction
of the two branches.

• Only the left branch of the sequence reacts because the
right branch is not activated during the instant.

• If there is a present instruction, the signal is con-
sidered to be absent. So the else branch has to be
executed at the next instant.

• The let n(x) in e gets the values associated to the sig-
nal n and combines them with the function fold g m d
to obtain the value v. Then x is substituted by v in
e for the next instant. If n has not been emitted v is
equal to d

• The preemption occurs at the end of instant. If the
signal that control the do/until is present, the expres-
sion has to be preempted. In this case, the do/until

is rewritten into ().

• For the do/when, if the signal is present then the body
must be activated at the end of instant. If the signal
is absent, the body is not activated because it has not
been activated during the instant.

5.3 Execution of a Program
The reaction of an instant is defined by the relation:

ei/Si ⇒ e′i/S′
i

If we note Ii the inputs of the reaction and Oi the outputs,
the signal environment have the following properties. All the
signals that are not in Ii are initially absent (Sv

i = Ii). The
outputs are a subset of the signal environment at the end of
the reaction (Oi v S′

i). The default values and the gathering
functions are kept for an instant to the other (S ′d

i ⊆ Sd
i+1

and S′g
i ⊆ Sg

i+1).
The execution of an instant is made of two steps. The

reduction of ei until a fix point is reached. Then there is the
end of instant’s reaction.

ei/Si ↪→ e′′i /S′
i S′

i ` e′′i →eoi e′i

ei/Si ⇒ e′i/S′
i

Where e/S ↪→ e′/S′ if e/S →∗ e′/S′ and e′/S′ 6→. The
relation →∗ is the reflexive and transitive closure of →.

let x = v in e/S
ε
−→ e[x← v]/S v;e/S

ε
−→ e/S v1||v2/S

ε
−→ ()/S loop e/S

ε
−→ e;loop e/S

run (proc e)/S
ε
−→ e/S emit n v/S

ε
−→ ()/S + [v/n] present n then e1 else e2/S

ε
−→ e1/S if n ∈ S

signal x default v1 gather v2 in e/S
ε
−→ e[x← n]/S[(v1, v2, ∅)/n] if n 6∈ Dom(S)

do v until n/S
ε
−→ ()/S do v when n/S

ε
−→ ()/S if n ∈ S

Figure 4: Head reduction

S ` v →eoi v

S ` e1 →eoi e′1 S ` e2 →eoi e′2

S ` e1||e2 →eoi e′1||e
′
2

S ` e1 →eoi e′1

S ` e1;e2 →eoi e′1;e2

n 6∈ S

S ` present n then e1 else e2 →eoi e2

S(n) = (d, g, m) v = fold g m d

S ` let n(x) in e→eoi e[x← v]

n 6∈ S S ` e→eoi e′

S ` do e until n→eoi do e′ until n

n ∈ S

S ` do e until n→eoi ()

n ∈ S S ` e→eoi e′

S ` do e when n→eoi do e′ when n

n 6∈ S

S ` do e when n→eoi do e when n

Figure 5: End of instant

5.4 Equivalence
In this section we show the equivalence between the two

semantics.
We start with the proof that if an expression e reacts

into an expression e′ with the small step semantics then it
can react in the same signal environment with the big step
semantics.

Lemma 4. For every Sinit and e such that e/Sinit ⇒ e′/S

then there exists N , b such that N ` e
E, b
−−→

S
e′ with E =

Sv\Sv
init.

Proof. By induction on the number of → reductions in
e/Sinit ⇒ e′/S.

• If there is no → reduction possible, we have to prove
that the reduction →eoi is the same that the big step
semantics (cf. lemma 5).

• If there is at least one → reduction, we have to prove
that one → reduction followed by a big step reaction
is equivalent to one big step reaction (cf. lemma 6).

The proof is based on the following properties:

Lemma 5. If e/S 6→ and S ` e →eoi e′ then there exists

N and b such that N ` e
∅, b
−−→

S
e′.

Proof. The proof is made by structural induction. We
have just to notice that if an expression e reacts with the
big step semantics into e′ and the termination status is true

(N ` e
E, true
−−−−→

S
e′) then e′ behaves as () (∀N ′, S′. N ′ `

e′
∅, true
−−−−→

S′

e′).

Lemma 6. If e/S0 → e1/S1 and N ` e1
E′, b
−−−→

S
e′ with

S1 v S then N ` e
E, b
−−→

S
e′ with E = E′ t (Sv

1\S
v
0)

Proof. The proof is made into two parts. First we prove
the same property for the

ε
−→ reduction. Then we show that

this is true in any context.

Now the following lemma shows that if an expression can
react with the two semantics then the signal environment
and the expression obtained at the end of the reaction are
the same.

Lemma 7. For every Sinit and e such that:

• N1 ` e
E1, b1−−−−→

S1

e1 where S1 is the small signal environ-

ment such that Sinit v S1

• e/Sinit ⇒ e2/S2

• ∀n ∈ Dom(S2) : Sg
2 (n) = f and f(x, f(y, z)) = f(y, f(x, z)),

then e1 = e2 and S1 = S2

Proof. With lemma 4, there exists N2, E2 and b2 such

that N2 ` e
E2, b2−−−−→

S2

e2 and we can notice, by construction,

S2 is the smallest signal environment such that Sinit v S2.
N1 and N2 are the sets of fresh names use during the

reactions. With some renaming, we can have a set N such

that N ` e
E1, b1−−−−→

S1

e1 and N ` e
E2, b2−−−−→

S2

e2.

With lemma 2, we know that there is a unique smallest
signal environment in which an expression can react with the
big step semantics so S1 = S2. Now with the determinism
(lemma 1) we have E1 = E2, b1 = b2 and e1 = e2.

The details of the proofs are given in an extended version
of the paper [21]. 5

5It is available at www-spi.lip6.fr/~mandel/rml.

6. STATIC TYPING
We provide a type system as a conservative extension of

the Milner type system of ML [22]. In doing so, we have
to deal with signals and in particular values which can be
transmitted on signals. The type language is:

σ ::= ∀α1, . . . , αn.τ
τ ::= T | α | τ → τ | τ × τ | process | (τ, τ) event
T ::= int | bool | . . .

Types are separated in regular types (τ) and type schemes
(σ). A type (τ) may be a basic type (T), a type variable (α),
a function type (τ1 → τ2), a product type (τ1 × τ2) or a pro-
cess type (process) or the type of a signal ((τ1, τ2) event).
In the type of a signal, τ1 is the type of the emitted value
and τ2 is the type of the read value (obtained after collecting
all the emitted values during an instant).

A typing environment H has the following form:

H ::= [x1 : σ1; . . . ; xk : σk]

The instantiation and generalization is defined like the
following:

τ ′[τ1/α1, . . . , τn/αn] ≤ ∀α1, . . . , αk.τ
Gen(τ, H) = ∀α1, ..., αn.τ

where {α1, ..., αk} = FV (τ)− FV (H)

Expressions are typed in an initial typing environment TC
such that:

TC = [true : bool; fst : ∀α, β. α × β → α; ...]

Expressions are typed by asserting the judgment H ` e : τ
which states that the expression e has type τ in the typing
environment H. The predicate is defined in figure 6.

The typing rules for ML expressions are not modified. In
the typing of signal, the default value (e1) has the type
of the associated value and the gathering function (e2) is a
function of an emitted value and of the combination of the
previous emitted values and returns the new combination.
The rule for emit checks that the first argument has a signal
type, and that the first parameter of this type and the type
of the value emitted are the same. let e1(x) in e gets the
value associated to a signal. So, if e1 has type (τ, τ ′) event,
x must have type τ ′. The instantiation run e is applied to a
process. Finally, the present, until and when constructions
can be applied to any signal.

The safety of the type system is proved with standard
techniques [25].

7. IMPLEMENTATION, EXPERIMENTS
We followed a very pragmatic approach in the design of

the language and efficiency was one of our major concern.
We built ReactiveML as an extension of a subset of Ocaml

(without objects, labels and functors) which can mix reac-
tive processes and regular Ocaml expressions. We choose
Ocaml with the following idea in mind: Ocaml will provide
modular data and control structures for programming the
algorithmic part of the system whereas reactive constructs
will provide modular control structures for describing the
temporal aspect. The compilation of a ReactiveML pro-
gram processes as follows: programs are first typed before
being translated into Ocaml code. This code can in turn
be linked with other ReactiveML programs or Ocaml li-
braries. This translation leaves unchanged regular ML ex-
pressions (only the type information is used) whereas every

reactive construction is translated into a combinator defined
in Ocaml. Reactive programs can finally be executed by
linking them with an ad-hoc Ocaml library.

As opposed to classical synchronous programs, reactive
programs are no more statically scheduled. Programs are
rather scheduled dynamically or interpreted according to the
actual dependences between instructions reading or emitting
signals in the programs. The scheduling strategy we have
implemented is a greedy strategy reminiscent to a technique
introduced by Hazard 6, known as one of the most efficient
scheduling technique for Junior. The precise description
of the scheduling technique we have implemented in Reac-

tiveML is outside the scope of this paper. Let us give an
intuitive presentation.

The scheduling is based on the use of waiting queues such
that an action is fired only when the signal it is waiting for is
emitted. During the execution, the interpreter keeps track
of the set W of actions waiting for the presence of a signal
during one instant. When W is not empty at the end of the
instant, pertinent informations are transfered to the next
instant.

In order to implement a greedy scheduling technique, we
associate two waiting queues for every signal. One queue is
used for instructions waiting only one instant (e.g., present)
and the other queue is used for instructions that can wait for
more than one instant (e.g., do/when). Thus, if the execution
of some code is stopped on the test of a signal then the code
to be executed is recorded in the appropriate waiting queue.
Otherwise, its continuations are put in the set of actions
to be executed in the current instant (C). Therefore the
execution of an instant consists in the execution of all the
ready actions of C. The end of the instant is decided when
C is empty. Instructions which are in the short-term waiting
queues can be treated to prepare the next instant.

With this scheduling strategy, a fast access to signals (for
presence information and waiting queues) is crucial. Almost
all implementations of the reactive approach use dedicated
hash tables during the execution for representing the signal
environment. In our implementation signals are represented
as regular values which are automatically garbage collected
by Ocaml when possible. Moreover, the presence informa-
tion and associated waiting queues is done in constant time.
The efficient representation of signals together with the ab-
sence of busy waiting during the execution are central in
order to be able to program real-size problems.

Several applications have been written in ReactiveML,
ranging from simple graphical systems to complex simula-
tion problems. In particular, we have rewritten classical cel-
lular automata programs written in Loft by Boussinot [10]
to serve as benchmarks for testing the efficiency of our im-
plementation. This example puts emphasis on the absence
of busy waiting. Quiescent cells are stopped on the wait-
ing of an activation signal such that only active cells are
executed. Figure 7 compares the execution times given for
Loft, ReactiveML and an imperative version written in
Ocaml. The imperative version scans the array of cells with
for loops. The numbers show that ReactiveML and the
Loft library written in Care both as fast.

The main application written in ReactiveML is a simula-

6Through being well known in the synchronous community,
this technique has unfortunately never been published so far
and can only be appreciated through a careful reading of the
code.

τ ≤ H(x)

H ` x : τ

τ ≤ TC(c)

H ` c : τ

H ` e1 : τ1 H ` e2 : τ2

H ` (e1, e2) : τ1 × τ2

H ` e1 : τ1 H[x : Gen(τ1, H)] ` e2 : τ2

H ` let x = e1 in e2 : τ2

H[x : τ1] ` e : τ2

H ` λx.e : τ1 → τ2

H ` e1 : τ1 → τ2 H ` e2 : τ1

H ` e1 e2 : τ2

H ` e : unit

H ` proc e : process

H ` e : process

H ` run e : unit

H ` e1 : τ1 H ` e2 : τ2

H ` e1;e2 : τ2

H ` e1 : τ1 H ` e2 : τ2

H ` e1||e2 : unit

H ` e : τ

H ` loop e : unit

H ` e1 : (τ1, τ2) event H ` e2 : τ1

H ` emit e1 e2 : unit

H ` e1 : τ2 H ` e2 : τ1 → τ2 → τ2 H[s : (τ1, τ2) event] ` e : τ

H ` signal s default e1 gather e2 in e : τ

H ` e1 : (τ1, τ2) event H[x : τ2] ` e : τ

H ` let e1(x) in e : τ

H ` e : (τ, τ ′) event H ` e1 : τ H ` e2 : τ

H ` present e then e1 else e2 : τ

H ` e1 : (τ1, τ2) event H ` e : τ

H ` do e until e1 : unit

H ` e1 : (τ1, τ2) event H ` e : τ

H ` do e when e1 : unit

Figure 6: The Type System

% of active cells 0 % 4 % 42 % 60 % 83 %
Ocaml 0.74 s 0.75 s 0.76 s 0.77 s 0.77 s
Loft 0.02 s 0.11 s 0.93 s 1.57 s 2.09 s
ReactiveML 0.05 s 0.08 s 0.89 s 1.46 s 1.94 s

Figure 7: Average of execution time of one instant for a 500x500 Fredkin’s cellular automata.

tor of a complex network routing protocol for mobile ad-hoc
networks [3, 20], done in collaboration with F. Benbadis
(from the Network team at LIP6, Paris). Mobile ad-hoc
networks are highly dynamic networks characterized by the
absence of physical infrastructure. In such networks, ev-
ery node is able to move, nodes evolve concurrently and
synchronize continuously with their neighbors. Due to mo-
bility, connections in the network can change dynamically
and nodes can be added or removed at any time. All these
characteristics — concurrency with many communications
and the need of complex data-structure — combined to the
routing protocol specifications make the use of standard sim-
ulation tools (e.g., NS, OPNET) inadequate and network
protocols appear to be very hard to program efficiently in
conventional programming languages. The ReactiveML

implementation showed that the reactive model introduced
by Boussinot provides adequate programming constructs —
namely synchronous parallel composition, broadcast com-
munication and dynamic creation — which allow for a nat-
ural implementation of the hard part of the simulation. The
complete implementation (with graphical interface, statis-
tics) is about 1000 lines. Experiments show that the Reac-

tiveML version is two order of magnitude faster than the
original C version; it was able to simulate more that 1000
nodes where the original C version failed (after 200 nodes)
and is faster than the ad-hoc version directly programmed
in NAB [24]. A project is under way for using ReactiveML

for simulating network sensors, taking into account the tem-
poral aspects of nodes (e.g., energy consumption or failure)
and to connect ReactiveML with automatic test sequences
generators such as Lurette [17].

8. CONCLUSION AND RELATED WORKS
In this paper, we have presented an extension of an exist-

ing strict ML language with reactive constructs. The result
language is dedicated to the implementation of complex dy-
namic systems as found in graphical interfaces, video games
and simulation problems.

Compared to existing embedding of the reactive approach
in either an imperative language [8] or an object-oriented
language [2], the present work provides a complete semantics
of the embedding. This allows a precise understanding of
the communication between the two levels and reveals, in
particular, classical problems appearing in process calculi
such as scope-extrusion phenomena.

The Fair Threads [9, 28] are an extension of the reac-
tive approach that allows to mix cooperative and preemptive
scheduling. In this model several synchronous schedulers
can be executed in an asynchronous way. The threads can
move from a scheduler to an other dynamically or can be
executed asynchronously out of all schedulers. The threads
that can be executed alone must be implemented over the
system threads, it limits the number of such threads and
it leads to efficiency problems. Contrary to ReactiveML,
in the Fair Threads, there is only top-level concurrency:
we cannot write (e1||e2);e3, and there is no hierarchical
control structures.

ULM [6] is a language dedicated to mobility. It also bor-
rows the principles of synchronous reactive programming in-
troduced by Boussinot and embed it inside a call-by-value
λ-calculus. In ULM, references are encoded like signals: ac-
cessing a reference which is not local is delayed until it be-
comes present. We did not address mobility issues and thus,
accessing a reference is instantaneous. In ReactiveML,
synchronization can only be done through the use of a sig-
nal and reactive construct must appear in particular places
of the program. In comparison, ULM allows to insert reac-
tive constructs (e.g., pause) anywhere in an expression. As

a consequence, some overhead is imposed on the execution
on regular ML expressions. Indeed, reactive code is trans-
formed into continuation-passing style by CPS transforma-
tion, whereas Ocaml code does not have to be modified.
We know that ML code cannot be interrupted, so we do not
have to introduce some mechanism to save the execution
context.

ConcurrentML [27] is a language that support concur-
rent programming and functional programming. As opposed
to ReactiveML, it is asynchronous. The communication
between processes is made by communication channels or
shared memory. To control concurrent access to the mem-
ory, ConcurrentML uses semaphores, mutex locks and
condition variables, whereas in ReactiveML we do not
have to use them because instantaneous actions are atomic.

Functional Reactive Programming [29] and Lucid

Synchrone [14] combines reactive and functional program-
ming. Compared to ReactiveML, they are based on a data
flow approach which leads to a very different style of pro-
gramming.

The language is still young and several extensions can be
considered. One of them concerns efficient implementation
techniques in order to use ReactiveML for programming
real-size simulation problems and to be a convincing alter-
native to traditional methods. For example, the recognition
of subparts of a reactive program which can be compiled
(that is, statically scheduled) is still open. Whereas causal-
ity inconsistencies are eliminated in the model of Boussinot,
the scope extrusion phenomena (which is absent in existing
synchronous languages) make this compilation difficult and
calls for new program analysis.

9. REFERENCES
[1] R. Acosta-Bermejo. Reactive operating system,

reactive java objects. In NOTERE’2000, Paris,
November 2000. ENST.

[2] R. Acosta-Bermejo. Rejo Langage d’Objets Réactifs et
d’Agents. PhD thesis, Ecole des Mines de Paris, 2003.

[3] F. Benbadis, M. Dias de Amorim, and S. Fdida. ELIP:
Embedded location information protocol. In IFIP
Networking 2005 Conference, 2005.

[4] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs,
P. Le Guernic, and R. de Simone. The Synchronous
Languages Twelve Years Later. Proceedings of the
IEEE, 2003.

[5] G. Berry. The constructive semantics of esterel, 1998.

[6] G. Boudol. ULM a core programming model for global
computing. In Proceedings of the European Symposium
on Programming, 2004.

[7] F. Boussinot. Reactive C: An extension of C to
program reactive systems. Software Practice and
Experience, 21(4):401–428, Apr 1991.

[8] F. Boussinot. Concurrent programming with Fair
Threads: The LOFT language, 2003.

[9] F. Boussinot. FairThreads: mixing cooperative and
preemptive threads in C. Research report 5039,
INRIA, 2003.

[10] F. Boussinot. Reactive programming of cellular
automata. Technical Report 5183, INRIA, 2004.

[11] F. Boussinot and R. de Simone. The SL synchronous
language. Software Engineering, 22(4):256–266, 1996.

[12] F. Boussinot and J-F. Susini. The sugarcubes tool box

- a reactive java framework. Software Practice and
Experience, 28(14):1531–1550, 1998.

[13] F. Boussinot, J-F. Susini, F. Dang Tran, and
L. Hazard. A reactive behavior framework for dynamic
virtual worlds. In Proceedings of the sixth
international conference on 3D Web technology, pages
69–75. ACM Press, 2001.

[14] P. Caspi and M. Pouzet. Synchronous kahn networks.
In ACM SIGPLAN International Conference on
Functional Programming, Philadelphia, Pensylvania,
May 1996.

[15] N. Halbwachs, P. Raymond, and C. Ratel. Generating
efficient code from data-flow programs. In Third
International Symposium on Programming Language
Implementation and Logic Programming, Passau
(Germany), August 1991.

[16] L. Hazard, J-F. Susini, and F. Boussinot. The Junior
reactive kernel. Research report 3732, INRIA, 1999.

[17] E. Jahier, P. Raymond, and P. Baufreton. Case
studies with Lurette V2. In Proceedings of the First
International Symposium on Leveraging Applications
of Formal Method, 2004.

[18] G. Kahn. The semantics of a simple language for
parallel programming. In IFIP 74 Congress. North
Holland, Amsterdam, 1974.

[19] X. Leroy. The Objective Caml system release 3.08.
Documentation and user’s manual. INRIA, 2004.

[20] L. Mandel and F. Benbadis. Simulation of Mobile Ad
hoc Network Protocols in ReactiveML. In Synchronous
Languages, Applications, and Programming,
Edinburgh, Scotland, April 2005. ENTCS.

[21] L. Mandel and M. Pouzet. ReactiveML, a reactive
extension to ML (extended version).
http://www-spi.lip6.fr/~mandel/rml.

[22] R. Milner. A theory of type polymorphism in
programming. Journal of Computer and System
Science, 17:348–375, 1978.

[23] R. Milner. Communicating and Mobile Systems: The
π-Calculus. Cambridge University Press, 1999.

[24] Network in A Box. http://nab.epfl.ch/.

[25] Benjamin C. Pierce. Types and Programming
Languages. MIT Press, 2002.

[26] R. Pucella. Reactive programming in Standard ML. In
Proceedings of the IEEE International Conference on
Computer Languages, pages 48–57. IEEE Computer
Society Press, 1998.

[27] John H. Reppy. Concurrent Programming in ML.
Cambridge University Press, 1999.

[28] M. Serrano, F. Boussinot, and B. Serpette. Scheme
fair threads. In Proceedings of the 6th ACM SIGPLAN
international conference on Principles and practice of
declarative programming, pages 203–214, 2004.

[29] Zhanyong Wan and Paul Hudak. Functional Reactive
Programming from first principles. In Proc. ACM
SIGPLAN’00 Conference on Programming Language
Design and Implementation, 2000.

