
A Modular Memory Optimization for
Synchronous Data-Flow Languages

Application to Arrays in a Lustre Compiler

Léonard Gérard Adrien Guatto Cédric Pasteur Marc Pouzet
DI, École normale supérieure, 45 rue d’Ulm, 75230 Paris, France

Firstname.Name@ens.fr

Abstract
The generation of efficient sequential code for synchronous data-
flow languages raises two intertwined issues: control and memory
optimization. While the former has been extensively studied, for
instance in the compilation of LUSTRE and SIGNAL, the latter has
only been addressed in a restricted manner. Yet, memory optimiza-
tion becomes a pressing issue when arrays are added to such lan-
guages.

This article presents a two-level solution to the memory opti-
mization problem. It combines a compile-time optimization algo-
rithm, reminiscent of register allocation, paired with language an-
notations on the source given by the designer. Annotations express
in-place modifications and control where allocation is performed.
Moreover, they allow external functions performing in-place mod-
ifications to be safely imported. Soundness of annotations is guar-
anteed by a semilinear type system and additional scheduling con-
straints. A key feature is that annotations for well-typed programs
do not change the semantics of the language: removing them may
lead to less efficient code but will not alter the semantics.

The method has been implemented in a new compiler for a
LUSTRE-like synchronous language extended with hierarchical au-
tomata and arrays. Experiments show that the proposed approach
removes most of the unnecessary array copies, resulting in faster
code that uses less memory.

Categories and Subject Descriptors C.3 [SPECIAL-PURPOSE
AND APPLICATION-BASED SYSTEMS]: Real-time and embed-
ded systems; D.3.2 [Language Classifications]: Data-flow lan-
guages; D.3.4 [Processors]: Code generation, Compilers, Opti-
mization

General Terms Algorithms, Languages, Theory

Keywords Real-time systems; Synchronous languages; Block-
diagrams; Compilation; Optimization; Semantics; Type systems

1. Introduction
Synchronous data-flow languages [5] are widely used for the design
and implementation of embedded systems. The generation of se-
quential imperative code was addressed more than twenty years ago

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
LCTES ’12 June 12–13, 2012, Beijing, China.
Copyright c© 2012 ACM 978-1-4503-1212-7/12/06. . . $10.00

in the early work on LUSTRE [9] and SIGNAL [6] and is routinely
used in industrial tools such as SCADE. Its principle is to generate a
transition function that computes a synchronous step of the system,
which is then infinitely repeated. For tools like SCADE, code gen-
eration is done modularly, producing a single transition function
per stream function, independently of the calling contexts [7].

Two critical optimizations have to be performed during the gen-
eration of sequential code: control structure optimization and mem-
ory optimization. Control optimization tries to reduce useless code
at every reaction according to the value of certain boolean vari-
ables. Several methods have been proposed, ranging from local op-
timizations performed modularly [7] to more aggressive but non-
modular ones [15]. In this paper, we focus on the memory opti-
mization problem. It aims to minimize the allocated memory and
the number of copy operations when computing a reaction. This
becomes an important issue in production compilers like SCADE 6
due to the presence of functional iterators over large arrays [18].
Because these arrays are semantically functional — if t1 and t2 are
arrays, t1 + t2 denotes a third array and the update t1{i ← e} re-
turns a fresh copy whose i-th element is equal to e — the direct
translation into sequential code is untenable for performance rea-
sons. Arrays must be shared, with in-place modifications and use-
less copies eliminated as much as possible. Unfortunately, methods
like register reuse [15] and iterator fusion [18] treat the problem
only partially and locally to a block [21]. Recently, this problem
was addressed by S. Abu-Mahmeed et al. [1] and applied on the
data-flow language LABVIEW, but without proposing an interpro-
cedural solution which is essential for good performance.

Contribution and organization of the paper: We address the
problem in a different and more unified way by combining a static
memory allocation algorithm together with language annotations.
The memory allocation is presented as a graph coloring problem
like the well-known problem of register allocation [10]. The main
novelties are the extension to clocked streams and the handling of
synchronous registers. As the optimization is necessarily fragile, it
is coupled with language annotations that give the designer precise
control over interprocedural memory sharing. These annotations
also allow to safely import external functions performing in-place
modifications on their arguments. These annotations do not change
the semantics of programs, that is, removing them leads to the same
behavior. The soundness of annotations is enforced by a semilinear
type system [24] and additional scheduling constraints.

The method has been applied to a LUSTRE-like language,
called HEPTAGON, which extends LUSTRE with hierarchical au-
tomata and arrays. The material presented here could nonetheless
be adapted to similar languages such as SCADE and the discrete
subset of SIMULINK.

This article presents the language and memory issues with ex-
amples in Section 2. Memory allocation is considered in Section 3.

Language annotations are described in Section 4 and the semilin-
ear type system is formalized in Section 5. The changes induced on
code generation are presented in Section 6 together with bench-
marks. Future extensions and related work are respectively dis-
cussed in Section 7 and Section 8 and we conclude in Section 9.

2. Problem Statement
We informally introduce synchronous data-flow languages with a
simple example, and then illustrate the memory issues tackled in
the paper.

A simple example with two exclusive blocks. A program is made
of a list of declarations of nodes, i.e., functions acting on streams.
Each node is defined by a set of mutually recursive equations over
streams. For example, consider the node halfSum given in Figure 1
that takes an input stream x and return an output sum.

The first equation defines the stream half. fby is a unit delay
initialized with a constant value. It returns its first input concate-
nated with its second input. Thus, the value of half is the alternat-
ing sequence tt .ff . tt .ff In the remainder, a variable defined
by an equation of the form se fby e will be called a synchronous
register (to avoid confusion with registers in register allocation).

The split operator is used to filter the stream x according to the
boolean stream half (it replaces the when operator of LUSTRE).
x1 (resp. x2) is the stream made of the values of x when half is
true (resp. false). It is absent otherwise. The merge operator joins
the complementary streams sum1 and sum2: sum is equal to sum1
(resp. sum2) when half is true (resp. false). The clock of e, written
clock(e), defines the instants when the value of e is present. Here,
it is a boolean formula of the form [7]:

ck ::= base | ck on c
c ::= x | notx

where base stands for the base clock and is interpreted as the
constant stream of true values, ck on c is true when ck is true and c
is present and true. For example in Figure 1a, clock(half) = base
and clock(x1) = base on half. This notion of clock is also
important for our memory allocation algorithm.

Figure 1c shows a simplified version of the sequential code
generated from halfSum with a main simulation loop. Notice that
synchronous registers require special care: their current value is
the one computed during the previous activation. That is why their
equation is set after the code computing the variables.

Control Optimization. During code generation, an equation x = e
is translated into an assignment which is executed only when the
clock of e is true. It is important for efficiency to merge compu-
tations activated by the same clocks and not generate a separate
conditional for each equation. Without this optimization, x1, x2,
sum1, sum2 and sum would have used one conditional each. The
general form of this transformation is the basis of the compilation
of SIGNAL [2].

Memory Optimization. Let us consider a more complex example
to illustrate the memory problems that arise when using arrays in a
data-flow language. The auxiliary function swap takes two indices
and an array of size n (a global constant) and returns the same
array with values at the given indices swapped. The shuffle node
sequentially applies an array of permutations to an internal array
and then returns the value at a given index:

const n : int = 100
const m : int = 3
const t_0 : float^n = 0.0^n

node swap(i, j : int; t_in : float^n)
= (t_out : float^n)

var t_tmp : float^n;
let

t_tmp = [t_in with [i] = t_in[>j<]];
t_out = [t_tmp with [j] = t_in[>i<]];

tel

node shuffle(i_arr , j_arr : int^m; q : int)
= (v : float)

var t, t_prev : float^n;
let

t_prev = t_0 fby t;
t = fold <<m>> swap(i_arr , j_arr , t_prev);
v = t[>q<];

tel

float^n is the type of arrays of float of size n and 0.0^n
is the literal array filled with n 0.0 values. [t with [i] = e]
returns an array equal to t except for the element at index i which
is set to e. The language aims at critical systems so no out-of-
bounds error is permitted, t[>i<] is thus the clipped index array
access, returning the element of t at index min(max(i, 0), n− 1).
The fold iterator successively applies the swap function to the
elements of i_arr and j_arr,1 using an accumulator whose initial
value is t_prev, the previous value of t initialized to a constant
t_0.2

As the language has a functional semantics, each operation on
an array creates a new array. This choice is compatible with block-
diagram syntax and the inherently concurrent nature of the lan-
guage, but makes efficient implementation harder. In swap, a naive
implementation would allocate new arrays for t_in and t_tmp
and copy the whole array twice. A common optimization in syn-
chronous languages is to store a variable together with its previ-
ous value [15]. In shuffle, t and t_prev may thus be stored to-
gether removing one unnecessary copy. Finally, the calling conven-
tion states that inputs are passed by value, so m unnecessary copies
are done in the fold which calls m instances of swap.

Memory allocation avoids all copies inside the swap and
shuffle nodes, but keeps the copies induced by the calling con-
vention. The optimal implementation, which allocates only one
array for the synchronous register t_prev and updates it in-place,
is achieved in Section 4 by combining memory allocation with
annotations.

3. Memory Allocation
The memory allocation algorithm described in this section is pre-
sented as a graph coloring problem like register allocation. Indeed,
both problems have similar goals and constraints: to share local
variables without changing the semantics of a program. The main
novelties of our approach are the extension to clocked streams and
the handling of synchronous registers.

We recall the general definition of interference [10]:

Definition 1 (Interference (general)). Two variables interfere if
they cannot be stored in the same memory location.

This notion has to be adapted to the clocked data-flow setting.
We first define live ranges and interference on streams elements,
following the usual definitions. The resulting notion of interfer-
ence cannot be computed statically, so we adapt the definitions to
streams, using clocks and the properties of synchronous registers,
in order to get an abstract and easily computable definition.

In the following, we assume that synchronous registers are
isolated in equations of the form x = v fby y by a normalization

1 If f has type signature τ1 × ... × τp × τ −→ τ , then fold〈n〉 f has
type signature τ1^n × ... × τp^n × τ^n −→ τ^n. When m equals 2,
t = swap(i arr[1], j arr[1], swap(i arr[0], j arr[0], t prev)).
2 All these operators exist in SCADE 6.

node halfSum(x:int)=(sum:int)
var sum1 , sum2 , x1, x2 :int;

half :bool;
let

half = true fby (not half);
(x1 , x2) = split half x;
sum1 = 0 fby (sum1 + x1);
sum2 = 0 fby (sum2 + x2);
sum = merge half sum1 sum2;

tel

(a) HEPTAGON code

half tt ff tt ff tt ff tt . . .
x 1 7 4 2 9 3 1 . . .
x1 1 4 9 1 . . .

sum1 0 1 5 14 . . .
x2 7 2 3 . . .

sum2 0 7 9 . . .
sum 0 0 1 7 5 9 14 . . .

(b) Chronogram

//hS synchronous registers
typedef struct {

int sum1 , sum2;
bool half;

} hSMem;

//hS transition function
int hSStep(int x, hSMem* m){

int x1, x2, sum;
if (m->half) {

x1 = x; // split
sum = m->sum1; //merge
m->sum1 = m->sum1 + x1; // update registers

} else {
x2 = x;
sum = m->sum2;
m->sum2 = m->sum2 + x2;

}
m->half = not m->half; // update registers
return sum;

}

int main() {
hSMem m = {0, 0, true}; // register initialization
while(true) // simulation loop

out(hSStep (&m, in()));
}

(c) Simplified C code

Figure 1. The halfSum node and corresponding generated code

pass. In this case, x denotes both the stream and the register so that
is reg(x) = true. We consider every equation of a program as an
infinite set of equations, one for each step, defining instantaneous
variables. We note x = (xi)i∈N for a stream and eq = (eqj)j∈N
for an equation.

eq : x = e⇔ ∀i ≥ 0. eqi : xi = ei

eq : x = v fby e⇔
i = 0. eq0 : x0 = v
i > 0. eqi : xi+1 = if clock(x)i then ei elsexi

At each step, the value of a stream is computed if its clock is active.
A register is persistent, so its value remains the same even if its
clock is not active.

We suppose given a schedule, noted �, that is a total order on
equations compatible with data dependencies. eq � eq′ means that
eq must be computed before eq′. We note ≺ the associated strict
order. The rest of the paper does not depend on the precise schedule
chosen. We now define the live range of a variable, used to compute
interference. def(xi) is the equation defining xi and use(xi) is the
set of equations using xi.

Definition 2 (Live range). We say that xi is alive in the equation
eqj , denoted live(xi, eqj), if:

live(xi, eqj) , (def (xi) ≺ eqj) ∧
(
∃eq′ ∈ use(xi).eqj � eq′

)
Intuitively, a variable is alive between its definition and its last

use. In particular, the live range of a register spans over two steps,
as its equation defines the value for the next step. Interference can
now be defined on streams in almost the same way as in register
allocation:

Definition 3 (Interference (dynamic)). Two streams x and y inter-
fere if they are alive in the same instance of an equation:

∃i, j, eq, k. live(xi, eqk) ∧ live(yj , eqk)

This definition of interference cannot be computed statically as
it depends on the actual values of clocks. For instance, x is never
used in the equation y = merge c 0 x if c is always false. However,

we can compute a static approximation of the live range of a stream,
valid at every step, by using its associated clock. Let def (x) be
the equation defining the stream x and use(x) the set of equations
where x appears on the right-hand side. These two notions are
over-approximations of the definitions given on streams elements.
In particular, if there exist i and j such that eqj ∈ use(xi), then
eq ∈ use(x), but the converse might not be true, as in the previous
example.

Definition 4 (Live range (static)). We say that a stream x is alive
in eq, denoted live s(x, eq), if:

live s(x, eq) , (def (x) ≺ eq) ∧
(
∃eq′ ∈ use(x).eq � eq′

)
In the shuffle example, t is alive in the equations defining

t_prev and v. The similarity with Definition 2 makes it easy to see
that the live range of a stream is an approximation of the live range
of its elements (i.e. ∃i, k. live(xi, eqk)⇒ live s(x, eq)). We now
define the inclusion of clocks and the notion of disjoint clocks that
approximates the liveness information given by clocks:

Definition 5 (Inclusion of clocks). A clock ck is included in ck′,
which is denoted ck v ck′, if:

ck v ck′ ⇔ ∀i ∈ N. cki = tt ⇒ ck′i = tt

Definition 6 (Disjoint clocks). Two disjoint clocks are never both
true during the same step:

dis ck(ck1, ck2) ,
ck1 = base ∨ ck2 = base ⇒ false

ck1 = ck on c ∧ ck2 = ck on not c ⇒ true

ck1 = ck on c ∧ ck2 = ck′ on c′ ⇒ dis ck(ck, ck′)

For instance, in the halfSum example, streams x1 and x2 have
disjoint clocks and the clock of sum1 is included in the clock
of sum, which is equal to base. As a stream is only computed when
its clock is true, two variables with disjoint clocks are never both
needed during the same step so they never interfere. The value of a
synchronous register must be kept even when its clock is not true

as it may be used in a future step. As a consequence, a register
interferes with any variable whose clock is not included in the clock
of the register. Using these two ideas, we define an approximate
notion of interference:

Definition 7 (Interference (static)). We say that x and y statically
interfere, noted x�y, if one of them is a register and the clock of the
other is not included in the clock of the register, or if they are alive
in the same equation and do not have disjoint clocks. Formally:

x� y , (is reg(x) ∧ clock(y) 6v clock(x))

∨ (is reg(y) ∧ clock(x) 6v clock(y))

∨ (∃eq. live s(x, eq) ∧ live s(y, eq)

∧ ¬ dis ck(clock(x), clock(y)))

In the example swap, streams t_in, t_tmp and t_out do not
interfere as they are never both alive in the same equation. The in-
puts and outputs of a node can be addressed similarly by adding
two pseudo-equations, that are used only to compute the interfer-
ence graph and never actually appear in the generated code:

eqinit : a1, . . . , ap = read inputs()

eqreturn : = write outputs(o1, . . . , oq)

These equations state that inputs are alive at the beginning of node
execution and that outputs are alive at the end of node execution.

Definition 8 (Interference graph). An interference graph G =
(V,E,Ea) is an undirected graph where each vertex is associated
with one stream and (x, y) ∈ E if and only if x� y.

In this example of an interference graph, the map operator ap-
plies a function to each element of an input array and returns an
array of results. We suppose that the schedule � is the one given
by the code on the left (i.e eqb � eqo � eqpre o).

node p(a:float^n)
= (o:float^n)

var pre_o , b:float^n;
let

b = map <<n>>(-.)(a, pre_o);
o = map <<n> >(+.)(a, b);
pre_o = t_0 fby o;

tel

pre_oo

a b

Normalization. In order to maximize sharing opportunities, mem-
ory allocation is done after a normalization pass which creates new
equations for temporary results. Indeed, in the swap example, t_in
and t_tmp interfere as they are both used to define t_out. How-
ever, after the normalization, t_in and t_tmp no longer interfere:

v = t_in[>j<];
v_2 = t_in[>i<];
t_tmp = [t_in with [i] = v];
t_out = [t_tmp with [j] = v_2];

Algorithm. The algorithm to compute interferences closely fol-
lows the definitions. The list of live variables in each equation is
computed using Definition 4, then the interference graphs (one for
each type) are built using Definition 7. The DSATUR [8] algorithm
is used to color the graphs with a minimal number of colors. The
result of the algorithm is a set of equivalence classes, where two
variables in the same class have the same color and should be stored
together.

Memory Allocation, Scheduling and Control Optimization. We
defined liveness according to a given schedule�: the compiler per-
forms memory allocation after the scheduling pass. The trade-off
between scheduling and register allocation is a well-known prob-
lem in classic compilation (see [14] for instance). In our setting,

the order of these passes is not an issue. Indeed, performing mem-
ory allocation before scheduling would be possible by considering
only data-flow (or true) dependencies, but would always yield infe-
rior results as any valid schedule respects these dependencies and
thus induces strictly shorter live ranges.

However, in a clocked data-flow language, scheduling usually
optimizes the control structure of the generated program by cluster-
ing equations with the same activation clock. This transformation
may expand live ranges of streams, thereby limiting memory shar-
ing. We modified the existing scheduling heuristic to favor mem-
ory optimization of arrays over control, by greedily minimizing the
number of arrays alive at the same time. This heuristic is quadratic
in the number of equations.

Memory allocation successfully avoids unnecessary copies
within a node, for instance sharing t_in, t_tmp and t_out in
swap. But the call-by-value convention states that inputs are passed
by value, so one copy is made each time swap is called. These
copies can be avoided if the input t_in is passed by reference and
modified in-place in the generated code. This can be enforced by
using the language annotations presented in the next section.

4. Language Annotations
4.1 Presentation
Location annotations enable the designer to express the in-place
update of some inputs. If an input and an output are annotated with
the same location, then the generated code will update the input
in-place and return nothing.

Example. In the example of Section 2, the designer can express
that t_in should be modified in-place by annotating t_in, t_tmp
and t_out with the same location r. This is done using the notation
at r beside the type declaration:

node swap(i, j:int; t_in:float^n at r)
= (t_out:float^n at r)

var t_tmp : float^n at r;
let

t_tmp = [t_in with [i] = t_in[>j<]];
t_out = [t_tmp with [j] = t_in[>i<]];

tel

Only located variables can be given to a function that expects
located arguments. To obtain a located variable t_prev from a
non-located expression t_0, the programmer needs to explicitly
initialize a new location r with the init construction:
node shuffle(i_arr , j_arr : int^m; q : int)

= (v : float)
var t, t_prev : float^n at r;
let

init t_prev = t_0 fby t;
t = fold <<m>> swap(i_arr , j_arr , t_prev);
v = t[>q<];

tel

As a result, the synchronous register t_prev will be updated in-
place by swap and shared with t, so that no unwanted copy occurs.

The memory allocation algorithm is readily adapted to incorpo-
rate annotations: all variables with the same annotation are ensured
to be stored in the same memory location (i.e., they correspond to
the same vertex in the interference graph). However, the algorithm
may still choose to share variables even if they are annotated with
different locations.

Annotations may express that a function modifies its argument
in-place even if it is not returned by the function, e.g.:

node f(mat:int^n^n at r) = (o:int)

which states that the body of f is allowed to overwrite mat.

Calling External Functions. Location annotations are also used
to safely import external functions that may modify their inputs
in-place. For instance, we may import an efficient sorting function
(e.g., written in C), with signature void sort(int a[100]), that
modifies its input in-place. The usual way to achieve this is to
add fake variables to enforce the necessary dependencies. Using
location annotations, the function can safely be imported as:

fun sort(a : int^100 at r) = (o:int^100 at r)

Annotations vs side-effects. In this proposal, we have chosen to
maintain the block-diagram formalism, using annotations that can
always be erased. Annotations are only used to control the effi-
ciency of generated code. The semantics of a program with correct
annotations remains the same if all annotations are removed. An
alternative could have been to introduce mutable imperative vari-
ables, explicit side-effects and sequence in the source language, and
take side-effects into account in the semantics.

4.2 Checking Annotations
Location annotations given by the programmer are unsound if two
streams associated with the same location interfere. Annotated
equations must satisfy well-formedness rules expressed as a type
system and be statically schedulable.

We use a semilinear type system, following the work of Wadler
in [24]: a value of semilinear type can be read multiple times and
then updated once. We call update an operator or function that de-
liberately modifies its argument in-place. For instance, physically
modifying one element in an array ([t with [i] = v]) or call-
ing the swap node are updates. A semilinear variable is defined
either by updating a semilinear variable at the same location or by
explicitly initializing a new location using the keyword init. The
correctness of the annotations, that is, that two variables with the
same semilinear type do not interfere, relies on the three following
properties.

Property 1 (Init). A location is only initialized once.

This is ensured by a simple syntactic check before typing that
ensures that all the locations used in the inputs or with init are
distinct.

Property 2 (Causality). If y results from an update of x, then the
equation defining y is the last use of x with respect to �.

After its update, a semilinear variable cannot be read since its
value has been overwritten, so it has to be dead (according to the
schedule �). The scheduling algorithm is modified in Section 4.3
to enforce this property.

Property 3 (Type soundness). If two streams are associated with
the same location, either one is obtained by successive updates
from the other or they are obtained by updates from two variables
defined by the application of the split operator.

This property relies on the type system presented in Section 5.
In the first case, the streams are alive one after the other, while
in the second, they have disjoint clocks. In both cases, they do
not interfere. These three properties are essential to the correctness
theorem for the system of annotations:

Theorem 4.1 (Annotation soundness). Two variables associated
with the same location do not interfere.

An annotated program is correct if it is well-typed (Property 3),
schedulable (Property 2) and its locations are initialized only once
(Property 1). A sketch of the proof of these properties and of
Theorem 4.1 is given in Appendix B.

4.3 Scheduling
In order to ensure Property 2, static scheduling occurs after semi-
linear type checking. Extra dependencies between equations are
added so that the update of a semilinear variable happens after all
reads. This may introduce cycles, making scheduling impossible.
For instance, in the node p, if variables a, b and o are annotated
with the same location, the equation defining o reads a, so it should
be scheduled before the equation defining b which updates a (i.e.
eqo ≺ eqb), but it also reads b, so it needs to be scheduled after the
equation defining b (i.e. eqb ≺ eqo). This can be fixed by introduc-
ing a copy of a (i.e., a_copy = a):

node p(a:float^n at r) = (o:float^n at r)
var b:float^n at r;

a_copy , pre_o:float^n;
let

a_copy = a;
b = map <<n>>(-.)(a, pre_o);
o = map <<n> >(+.)(a_copy , b);
pre_o = t_0 fby o;

tel

pre_o

a, b, o a_copy

The copy is not added automatically as we want to enforce the in-
variant that all streams at the same location are shared without any
hidden copy.

5. Semilinear Type Checking
This section formalizes the semilinear type system that enforces
the soundness property stated in Property 3. The system is used
as a type checker, that is, with no type inference. For the sake
of simplicity, we present a semilinear type system on a reduced
version of the synchronous data-flow kernel used as an intermediate
language during compilation.

5.1 Types
We define R> , R∪ {>}, where R is the set of locations and
> a special location representing the absence of information. We
write by convention r ∈ R and ρ ∈ R>. We denote by τ at r
a semilinear type associated with the location r and by τ at >
a non-linear type. Static expressions (se) are either values (v) or
global constants (s). A plain type (τ) in the language is either a
basic type or an array type. A type (µ) is given by a plain type and
a location. We also define a node signature (σ):

se ::= v | s τ ::= int | float | bool | τ^se
µ ::= τ at ρ σ ::= ∀r, . . . , r.µP −→ µQ

An update is a function having an input and an output with the same
semilinear type τ at r. We write P , [1 .. p], µP , µ1×· · ·×µp

and xP : µP , x1 : µ1, . . . , xp : µp (likewise for any letter). We
will also assume that µi , τi at ρi.

5.2 Abstract Syntax

n ::= node f(p; . . . ; p) = (p; . . . ; p) var p, . . . , p let D tel

eq ::= p = e | (p, . . . , p) = f(w, . . . , w)

| p = se fby w | (p, p) = split (x) x

| init〈r〉 p = se fby w | init〈r〉 p = e
w ::= x | se
e ::= w | op(w, . . . , w) | merge (x) w w

D ::= eq | D ; D

p ::= x : µ

In this kernel, function arguments are extended values (w), ei-
ther variables (x) or static expressions (se). A simple normalization

pass can put any program into this form by introducing new local
variables and equations. Although redundant, types also appear on
the left-hand side of equations in order to simplify the presentation
of the type system.

5.3 Typing Rules
The global and local typing environments, respectively written ∆
and Γ are defined by (] stands for the union of multisets):

∆ ::= ∅ | ∆ ∪ {f : σ} | ∆ ∪ {s : τ}
Γ ::= ∅ | Γ] {x : µ}

The typing judgments are:

∆,Γ ` e : µ ∆ ` se : τ ∆ ` f : σ ∆,Γ ` b ∆,Γ ` D
which respectively mean that the expression e has type µ, the static
expression se has type τ , the function f has signature σ and the
block b or equations D are well-typed, in the global and local
environments ∆ and Γ.

The typing rules are given in Figure 2. The size of some rules
comes from the presence of n-ary functions returning multiple
values, as in most block diagram languages. The most important
rules are the ones that express the linearity properties (Figure 2a).

1. The VAR rule is common to all linear type systems: it shows
that each occurrence of x in the source corresponds to one and
only one occurrence of x in the local environment, which is a
multiset.

2. WEAKENING allows the removal of unnecessary elements from
the environment.

3. The COPY and LINEAR COPY rules show the difference be-
tween semilinear and non-linear variables. For a non-linear
variable x (of type τ at >), we can duplicate its occurrence
in the environment as much as we want, in order to use them
as arguments for multiple reads. Conversely, the semilinear oc-
currence of a semilinear variable y (of type τ at r), cannot be
duplicated. It is used in the typing rule of its only update. We
can nevertheless create other occurrences of the same y with a
non-linear type, in order to use them for multiple reads.

4. There are two ways to define a semilinear variable. The first
one is to apply an update to another variable of the same type
with the EQUATION rule. This is the case for instance for t_tmp
and t_out in the swap example. The second one consists in
initializing a new location from a non-linear variable with INIT.

5. The INITFBY rule ensures a correct use of semilinear syn-
chronous registers. As two synchronous registers should always
interfere, they can never have the same semilinear type. Except
for the presence of init〈r〉, this rule is the same as the appli-
cation of an update, writing the value used in the next instant.
The presence of init attests that the location r is initialized by
the register with the value of the previous instant. Looking back
at the shuffle example, it is clear that, in order to be able to
modify the synchronous register t_prev in-place, it has to be
defined as an update of t, which is itself an update of the pre-
vious value of t_prev. The location r is initialized at the first
instant by t_0.

6. The MERGE rule uses a single local environment to type its
arguments (unlike APP for instance) as we know that they have
disjoint clocks. The SPLIT rule creates two variables with the
same semilinear type, but it is safe since they have disjoint
clocks.

7. The EQLIST rule conforms to the equational nature of our data-
flow kernel: equation ordering does not matter and the type
system is thus independent from scheduling.

8. The NODE rule states the constraints that a node signature
must respect. Locations used in the inputs (resp. the outputs)
must be distinct from each other (WF2) (resp. (WF3)). A node
application cannot create a location: locations appearing in the
outputs must appear in the inputs (WF1). Semilinear outputs
can only be read (and not updated) as their value is needed at
the end of the step, so they are added to the local environment
with a non-linear type τ ′Q at >.

Array Operators. Semilinear typing extends to array operators:
(γ ≤ ρ stands for ρ 6= > ⇒ γ = ρ)
ARRAYUPDATE
∆,Γ ` w : τ^n at ρ ∆,Γ1 ` w1 : int ∆,Γ2 ` w2 : τ at >

∆,Γ] Γ1] Γ2 ` x : τ^n at ρ = [w with [w1] = w2]

MAP
∆ ` f : (τi at ρi)

P −→ (τ ′j at ρ′j)Q

σ = (τi^n at γi)
P −→ (τ ′j^n at γ′j)Q

well formed(σ) ∀i. γi ≤ ρi ∀j. γ′j ≤ ρ′j
∆ ` map〈n〉 f : σ

FOLD
∆ ` f : τ1 at >× . . .× τp at >× τ at ρ −→ τ at ρ γ ≤ ρ

∆ ` fold〈n〉 f : τ1^n at >× . . .× τp^n at >× τ at γ −→ τ at γ

The ARRAYUPDATE rule shows that modifying one element of an
array can either be done in-place for semilinear variables (if ρ 6= >)
or possibly with a copy for other variables (ρ = >).

The MAP and FOLD rules state all the possible signatures ac-
cording to f . Map applies f to each element of its input arrays, so
we can modify them in-place. However, if f modifies one of its in-
puts in-place, the corresponding array has to be modified in-place.
Fold iterates f over the accumulator (the last argument), which may
be modified in-place. It has to if f requires it. The other arguments
are only read.

6. Implementation and Experiments
The material presented here on a kernel language has been im-
plemented in the compiler of a richer synchronous language
called HEPTAGON. The language allows the mixing of data-flow
equations with hierarchical automata [11]. Automata are elimi-
nated by a source-to-source translation into the data-flow kernel.
The language also supports a comprehensive set of operators on
arrays [18] and a simple form of parametricity compiled to C by
macro-expansion. Apart from memory allocation, it implements
two traditional optimizations for synchronous data-flow programs:
iterator fusion [18] and data-flow minimization.3 The type checker
is implemented in a simple, syntax-directed manner.

6.1 Sequential Code Generation
Following [7], the data-flow kernel is first translated into a small
imperative intermediate language called OBC. The translation from
OBC to existing sequential languages is then straightforward. Back-
ends for C and JAVA have been implemented.

In OBC, the transition function of a node f is encapsulated with
its internal state which stores the values of the synchronous regis-
ters from f . This encapsulation, called machine, is made of a list
of state variables (declared with the registers keyword), a list
of instances of other machines used by the machine (introduced by
instances) and a step method for the transition function. The
body of the transition function is expressed in a simple imperative

3 Data-flow minimization generalizes Common Subexpression Elimination.
E.g., equations x = 1 fbyx + 1 and y = 1 fby y + 1 reduce to a single
one.

VAR

∆, {x : µ} ` x : µ

WEAKENING
∆,Γ ` e : µ′

∆,Γ] {x : µ} ` e : µ′

COPY
∆,Γ] {x : τ at >}] {x : τ at >} ` e : µ

∆,Γ] {x : τ at >} ` e : µ

LINEAR COPY
∆,Γ] {y : τ at r}] {y : τ at >} ` e : µ

∆,Γ] {y : τ at r} ` e : µ

(a) Linearity rules

CONST
∆ ` se : τ

∆, ∅ ` se : τ at >

BLOCK
∆,Γ] {xL : µL} ` D

∆,Γ ` var xL : µL let D tel

EQLIST
∆,Γ ` D ∆,Γ′ ` D′

∆,Γ] Γ′ ` D ; D′

EQUATION
∆,Γ ` e : τ at ρ

∆,Γ ` x : τ at ρ = e

INIT
∆,Γ ` e : τ at >

∆,Γ ` init〈r〉 x : τ at r = e

FBY
∆,Γ ` w : τ at > ∆, ∅ ` se : τ at >

∆,Γ ` x : τ at > = se fby w

INITFBY
∆,Γ ` w : τ at r ∆, ∅ ` se : τ at >

∆,Γ ` init〈r〉 x : τ at r = se fby w

MERGE
∆,Γ ` w1 : τ at ρ ∆,Γ ` w2 : τ at ρ ∆,Γ′ ` x : bool

∆,Γ] Γ′ ` merge (x) w1 w2 : τ at ρ

SPLIT
∆,Γ ` y : µ ∆,Γ′ ` x : bool

∆,Γ] Γ′ ` (y1 : µ, y2 : µ) = split (x) y

(b) Expression and Equation rules

APP
∆ ` f : µP −→ µ′Q (∆,Γi ` wi : µi)i=1...p

∆,Γ′]
⊎
1...p

Γi ` (xQ : µ′Q) = f(w1, . . . , wp)

NODE
∆, {xP : µP }] {x′Q : τ ′Q at >} ` b

σ = gen(µP −→ µ
′Q) well formed(σ)

∆ ` node f(xP : µP) = (x′Q : µ′Q) b : σ

INST
∆(f) = ∀rJ .µP −→ µ′Q

∀i, j ∈ J. r′i = r′j ⇒ i = j

∆ ` f : µP −→ µ′Q
[
rJ ← r′J

] GEN
{r′i}i=1...j = {ρi | i = 1 . . . p ∧ ρi 6= >}
gen(µP −→ µ′Q) = ∀r′J .µ

P −→ µ′Q

well formed(∀rJ .µP −→ µ′Q) ,

∀i, j, k.

ρ′j 6= > ⇒ ∃i. µi = µ′j (WF1)

ρi = ρk 6= > ⇒ i = k (WF2)

ρ′j = ρ′k 6= > ⇒ j = k (WF3)

(c) Function-related rules

Figure 2. Semilinear Typing Rules

language. Figure 3a (respectively 3c) shows the OBC code (respec-
tively C code) corresponding to the translation of node shuffle,
without memory optimization.

Expressing sharing in the intermediate sequential code. In the
original version of OBC [7], programs were forced to be in Static
Single Assignment (SSA) form with all arguments of a method
passed by value. In order to be able to share a location, we added
mutable variables that can be assigned multiple times and mutable
inputs that are passed by reference.

The result of the memory allocation described in Section 3 is
a set of equivalence classes, where two variables in the same class
must be stored together. Sharing is applied by a modular source-to-
source transformation in OBC. A representative is chosen in each
equivalence class (either an input or synchronous register if there
is one, otherwise any variable). All other variables in the equiva-
lence class are replaced by this representative and unused variables
are removed. An input shared with an output becomes mutable (to
express the in-place modification) and the output is removed. Fi-
nally, node calls have to take into account the removed outputs. For
instance, in the shuffle node, t_next is chosen as the represen-
tative for t and t_next, and it is passed by reference to swap, that
does not return anything after the transformation. Figures 3a and 3b
show the OBC code before and after the transformation (the swap
node without optimization is in Appendix A). In the end, all the
updates are performed in-place in the synchronous register.

6.2 Experiments
The graphs in Figure 4 show both the effects of memory optimiza-
tion alone and combined with annotations on the generated step
function. The figures are given relatively to the unoptimized results.

We use the CompCert [17] 1.9.1 C compiler to generate Pow-
erPC code, and compute worst-case execution times (WCET) with
the Open Tool for Adaptative WCET Analysis.4

As the shuffle example showed, annotations are essential as
many unnecessary copies are made when iterating over arrays.
Thanks to them, the generated code performs no array copies and is
thus much faster with memory optimization. The program is tested
with an array of size 50.

The second example sorts an array of size n in n2 steps by
swapping two elements at each step. Here, although the coloring
done by memory allocation is optimal in terms of the number
of colors, i.e., in terms of memory used (as seen in the second
graph), it awkwardly shares arrays. Annotations are used to force
one coloring which removes one unnecessary array copy.

The third example is a simplified version of a radar control panel
(about 1 kLOC), adapted from one of SCADE demos.5 Even though
the program uses only small arrays (of size 2 to 6) and records, the
use of annotations still results in performance improvements.

4 The tool is available at http://otawa.fr.
5 The Mission Computer demo is available at:
http://www.esterel-technologies.com/technology/demos

http://otawa.fr
http://www.esterel-technologies.com/technology/demos

const n = 100
const m = 3
const t_0 = 0.0^n

machine shuffle =
registers t_prev:float^n = t_0;
instances swap:swap[m];

step(i_arr , j_arr:int^m; q:int) = (v:float) {
var t:float^n;
t = this.t_prev;
for i = 0 to m-1 do

t = swap[i].step(i_arr[i], j_arr[i], t);
this.t_prev = t;
v = t[between(q, n)];

}

(a) OBC without memory optimization

machine swap =
step(i, j:int; mutable t_in:float^n) = () {

var v_2 , v:float;
v = t_in[between(i,n)];
v_2 = t_in[between(j,n)];
if (i<n && i<=0) t_in[i] = v_2;
if (j<n && 0<=j) t_in[j] = v;

}

machine shuffle =
registers mutable t_prev: float^n = t_0;
instances swap: swap[m];

step(i_arr , j_arr:int^m, q:int) = (v: float) {
for i = 0 to m-1 do

swap[i].step(i_arr[i], j_arr[i], this.t_prev);
v = this.t_prev[between(q,n)];

}

(b) OBC with memory optimization

#define between(idx , n)\
(((idx)>=(n))?(n)-1:((idx) <0?0:(idx)))

static const int n = 100;
static const int m = 3;
struct shuffle_mem {float t_prev [100];};
struct swap_out {float t_out [100];};

float shuffle_step(const int i_arr [3], const int j_arr[3],
int q, struct shuffle_mem* this) {

float t[100];
struct swap_out out;
for (int i_1 = 0; i_1 < n; ++i_1)

t[i_1] = this ->t_prev[i_1];
for (int i = 0; i < m; ++i) {

swap_step(i_arr[i],j_arr[i],t,&out);
for (int i_2 = 0; i_2 < n; ++i_2)

t[i_2] = out.t_out[i_2];
}
for (int i_3 = 0; i_3 < n; ++i_3)

this ->t_prev[i_3] = t[i_3];
return t[between(q, n)];

}

(c) C code without memory optimization

struct shuffle_mem {float t_prev [100];};

void swap_step(int i, int j, float t_in [100]) {
float v_2 , v;
v = t_in[between(i, n)];
v_2 = t_in[between(j, n)];
if (i<n && 0<=i) t_in[i] = v_2;
if (j<n && 0<=j) t_in[j] = v;

}

void shuffle_init(struct shuffle_mem* this) {
for (int i = 0; i < n; ++i)

this ->t_prev[i] = 0.000000;
}

float shuffle_step(const int i_arr [3], const int j_arr[3],
int q, struct shuffle_mem* this) {

for (int i = 0; i < m; ++i)
swap_step(i_arr[i], j_arr[i], this ->t_prev);

return this ->t_prev[between(q, n)];
}

(d) C with memory optimization

Figure 3. A node and the corresponding generated code

The last example is a simple downscaling image filter. It mainly
consists of repeated vector-style computations on pixels, repre-
sented as floating-point arrays of size 4. Here, annotations give a
small time boost, and provide negligible improvements in memory
occupancy.

Note that the optimization is performed both on structured and
scalar variables, but that the impact of the latter on execution times
and memory use are negligible. However, the generated code is
shorter and more readable, both in terms of instruction and variable
counts. The last example, composed of multiple nested automata
typical of the industrial use of SCADE, illustrates this point. As
the program is composed of one complex monolithic node, our
annotations did not give any extra benefits.

7. Discussion
Semilinear typing. A more natural approach to annotations
would have been to treat location annotations as coloring instruc-
tions for the interference graph, without any constraints, and report
an error if coloring fails. While it may appear simpler, the drawback
is that fixing incorrect annotations would require an understanding
of the interferences and the choices made by the scheduler. On the
contrary, the type system we have considered is independent from
memory allocation. It is useful even without memory allocation,

e.g., to manually express in-place modifications or import external
functions with side-effects.

Extensions. Most of the additional features of the HEPTAGON
language are implemented by source-to-source transformations to a
data-flow kernel close to the one presented in Section 5.2. Perform-
ing memory allocation on this kernel is simpler while retaining all
possibilities for optimization. This is not surprising since this ker-
nel shares much similarity with the SSA form used in compilers
such as GCC [19]. The only change needed is a simple extension
of the notion of disjoint clocks to share synchronous registers be-
tween states of an automaton separated by a reset. The compiler is
also able to share fields inside a record, by treating them individ-
ually in the interference graph. The changes required to adapt the
semilinear type system to the full language are also minimal.

8. Related Work
The problem of eliminating array copies, also known as the aggre-
gate update problem [16], is shared by all functional languages.
As a consequence, many solutions to this problem have been pro-
posed. They can be divided into three families. The first relies on
data structures at run time, such as a garbage collector or reference
counting. In the special case of arrays, one can use persistent ar-
rays [12], where only modifications to an array are stored instead
of copying the whole array.

��

���

���

���

����

�
�
�
���

�
�
�
�
��
�
�
��

�
�����

�
�

�
�
�
�
���

��

�
�
�
��
�
��
�����

�������������������������

��

���

���

���

����

�
�
�
���

�
�
�
�
��
�
�
��

�
�����

�
�

�
�
�
�
���

��

�
�
�
��
�
��
�����

�����������������

��

���

���

���

����

�
�
�
���

�
�
�
�
��
�
�
��

�
�����

�
�

�
�
�
�
���

��

�
�
�
��
�
��
�����

�������������������

Figure 4. Experimental results: worst-case execution time, maximum memory use and generated code size (lower is better)

The second family of solutions tries to to tackle the problem at
compile time. Static analyses try to find the last use of variables,
to know when an update can safely be done in-place. This infor-
mation on the live-range of variables can be found using heuris-
tics [22], abstract interpretation [20] or through Hindley-Milner
type inference [3]. All these methods are coupled with a dynamic
system such as reference counting to deal with cases that cannot
be decided statically. Another related method is deforestation [23],
which eliminates temporary data structures by transforming the
code. All these static optimizations are fragile and do not allow
direct control on memory sharing, as it is possible with explicit an-
notations.

The third family of solutions uses type systems to only accept
programs where memory can be reused. They are based on linear
logic [13]: a variable of linear type can only be used once, and
can thus be updated in-place. This restriction of a single use is too
strong to be used in a real programming language. Many proposals
have been made to relax it whilst maintaining strong enough in-
variants to enable memory sharing. One solution is to syntactically
limit a scope where a linear variable can be considered as non-
linear [24], or to mix linear and non-linear types in the language, as
in uniqueness typing [4]. The type system presented here is based
on the same principles, the main novelty being the use of locations,
which is made necessary by the presence of n-ary functions.

The choices made here, in particular in terms of calling con-
vention, are similar to those made in [22], although our formalism
is more generic. The closest work is that of S. Abu-Mahmeed et
al. [1] and applied to LABVIEW. They propose a greedy algorithm
that chooses successively, using a notion of cost, an operation to do
in-place until dependencies make it impossible to choose another
one. Our approach is more general in that it not only focuses on in-
place modifications but that it can also share unrelated variables. In
addition, we also propose a solution to interprocedural memory op-
timization. However, their notion of cost could be used to improve
our greedy scheduling algorithm.

In the field of data-flow synchronous languages, a classic mem-
ory optimization consists in storing prex and x in the same mem-
ory location [15]. This can be done if all the reads of prex occur
before the definition of x. In our formalism, it implies that x and
prex do not interfere, so this optimization is a particular case of
the more general approach presented here.

9. Conclusion
This paper has presented a method for optimizing memory when
compiling synchronous data-flow programs to sequential code. The
method combines a static memory allocation algorithm with ex-
plicit language annotations. Memory allocation is expressed as a
graph coloring problem, which links it to the classic register al-
location problem. The soundness of annotations is checked by a

semilinear type system and additional scheduling constraints. This
ensures that annotations do not change the original functional se-
mantics of the language but only its efficient code generation. A
possible extension is the automatic inference of the annotations.

References
[1] S. Abu-Mahmeed, C. Mccosh, Z. Budimlić, K. Kennedy, K. Ravin-

dran, K. Hogan, P. Austin, S. Rogers, and J. Kornerup. Scheduling
tasks to maximize usage of aggregate variables in place. In CC ’09:
Proceedings of the 18th International Conference on Compiler Con-
struction, pages 204–219, Berlin, Heidelberg, 2009. Springer-Verlag.

[2] T. Amagbegnon, L. Besnard, and P. Le Guernic. Implementation of the
Data-flow Synchronous Language SIGNAL. In Programming Lan-
guages Design and Implementation (PLDI), pages 163–173. ACM,
1995.

[3] H. G. Baker. Unify and conquer. In LFP ’90: Proceedings of the
1990 ACM conference on LISP and functional programming, pages
218–226, New York, NY, USA, 1990. ACM.

[4] E. Barendsen and S. Smetsers. Uniqueness type inference. In PLILPS
’95: Proceedings of the 7th International Symposium on Programming
Languages: Implementations, Logics and Programs, pages 189–206,
London, UK, 1995. Springer-Verlag.

[5] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. Le Guernic,
and R. De Simone. The synchronous languages twelve years later. In
Proceedings of the IEEE, pages 64–83, 2003.

[6] A. Benveniste, P. LeGuernic, and Ch. Jacquemot. Synchronous pro-
gramming with events and relations: the SIGNAL language and its
semantics. Science of Computer Programming, 16:103–149, 1991.

[7] D. Biernacki, J.-L. Colaço, G. Hamon, and M. Pouzet. Clock-directed
modular code generation for synchronous data-flow languages. In
LCTES ’08: Proceedings of the 2008 ACM SIGPLAN-SIGBED confer-
ence on Languages, compilers, and tools for embedded systems, pages
121–130, New York, NY, USA, 2008. ACM.

[8] D. Brélaz. New methods to color the vertices of a graph. Commun.
ACM, 22(4):251–256, 1979.

[9] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. Lustre: a declar-
ative language for real-time programming. In POPL ’87: Proceed-
ings of the 14th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, pages 178–188, New York, NY, USA, 1987.
ACM.

[10] G. J. Chaitin, M.A. Auslander, A. K. Chandra, J. Cocke, M. E. Hop-
kins, and P. W. Markstein. Register allocation via coloring. Computer
Languages, 6(1):47 – 57, 1981.

[11] J.-L. Colaço, B. Pagano, and M. Pouzet. A conservative extension
of synchronous data-flow with state machines. In ACM International
Conference on Embedded Software (EMSOFT’05), Jersey city, New
Jersey, USA, September 2005.

[12] P. F. Dietz. Fully persistent arrays (extended array). In WADS ’89:
Proceedings of the Workshop on Algorithms and Data Structures,
pages 67–74, London, UK, 1989. Springer-Verlag.

[13] J.-Y. Girard. Linear logic. Theoretical computer science, 50(1):1–102,
1987.

[14] J. R. Goodman and W.-C. Hsu. Code scheduling and register alloca-
tion in large basic blocks. In ICS ’88: Proceedings of the 2nd interna-
tional conference on Supercomputing, pages 442–452, New York, NY,
USA, 1988. ACM.

[15] N. Halbwachs, P. Raymond, and C. Ratel. Generating efficient code
from data-flow programs. In Third International Symposium on Pro-
gramming Language Implementation and Logic Programming, Pas-
sau, Germany, August 1991.

[16] P. Hudak and A. Bloss. The aggregate update problem in functional
programming systems. In POPL ’85: Proceedings of the 12th ACM
SIGACT-SIGPLAN symposium on Principles of programming lan-
guages, pages 300–314, New York, NY, USA, 1985. ACM.

[17] X. Leroy. Formal verification of a realistic compiler. Commun. ACM,
52:107–115, July 2009.

[18] L. Morel. Array Iterators in Lustre: From a Language Extension to Its
Exploitation in Validation. EURASIP Journal on Embedded Systems,
2007.

[19] D. Novillo. TreeSSA a new optimization infrastructure for GCC. In
Proceedings of the 2003 GCC Developers’ Summit, pages 181–193,
2003.

[20] M. Odersky. How to make destructive updates less destructive. In
POPL ’91: Proceedings of the 18th ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, pages 25–36, New
York, NY, USA, 1991. ACM.

[21] B. Pagano. The optimization of iterators and updates for functional
arrays in scade 6. Personal communication, June 2010.

[22] P. Schnorf, M. Ganapathi, and J. L. Hennessy. Compile-time copy
elimination. Softw. Pract. Exper., 23(11):1175–1200, 1993.

[23] P. Wadler. Deforestation: transforming programs to eliminate trees.
In Proceedings of the Second European Symposium on Programming,
pages 231–248, Amsterdam, The Netherlands, 1988. North-Holland
Publishing Co.

[24] P. Wadler. Linear types can change the world! In IFIP TC 2 Working
Conference on Programming Concepts and Methods, Sea of Galilee,
Israel, pages 347–359. North Holland, 1990.

A. swap without memory optimization

machine swap =
step(i: int , j: int , t_in: float^n)

= (t_out: float^n) {
var v_2: float; v: float; t_tmp: float^n;
v_2 = t_in[between(j, n)];
v = t_in[between(i, n)];
if (i<n && 0<=i) {

for i_4 = 0 to i-1 do
t_tmp[i_4] = t_in[i_4]

t_tmp[i] = v_2;
for i_5 = i+1 to n-1 do

t_tmp[i_5] = t_in[i_5]
} else {

t_tmp = t_in
}
if (j<n && 0<=j) {

for i_2 = 0 to j-1 do
t_out[i_2] = t_tmp[i_2]

t_out[j] = v;
for i_3 = j+1 to n-1 do

t_out[i_3] = t_tmp[i_3]
} else {

t_out = t_tmp
}

}

B. Proof of correctness of the annotation system
Definition 9 (Root). We call x the root of location r if x : τ at r and
x is either an input or a variable defined by init〈r〉 x = e. We denote
root(r) = x.

Property 4 (Init). There is only one root for each location r.

Proof. By definition of init.

Property 5. If x is semilinear and is a register, then x is a root.

Proof. See INITFBY rule.

Definition 10 (Update relation). We say that x is an update of y, denoted
y B x, if x, y : τ at r and one of the following applies :

• (x1, . . . , xq) = f(w1, . . . , wp) with f : (τi at ρi)
P −→

(τ ′j at ρ′j)Q, xi = x, wj = y and ri = r′j .
• x = y
• x = merge (c) w1 w2 with wj = y
• (x1 : µ, x2 : µ) = split (c) y with xi = x

It should be noted that there is no case corresponding to the INITFBY
rule.

Definition 11 (Update order). We define the (partial) order D as the
smallest reflexive transitive antisymmetric relation such that yBx⇒ yDx.

Property 6. If x is semilinear, then x is either a root or there exists a y
such that x is an update of y.

Proof. By induction on the typing rules.

Property 7. If x : τ at r then root(r) D x.

Property 8 (Type soundness). If two variables are associated with the
same location, either one is obtained by successive updates from the other
or they are obtained by updates from two variables resulting of a split.
Formally, if x, y : τ at r then one of the following condition is true:
• y D x (resp. x D y).
• There exists z, zx, zy : τ at r such that z D x, z D y, zx D x, zy D y,
zx 6 Dy, zy 6 Dx and (zx, zy) = split (c) z (or the opposite).

Proof. If yDx (resp xDy), then y (resp x) is the maximum we are looking
for. Otherwise, let’s denote S = {z | z D x ∧ z D y}. We know that
root(r) ∈ S. There exists z such that root(r) B z. If z is still in S, we
can iterate with z. Eventually, we find z0 such that z0 6 Dx and z0 D y (or
reciprocally) (we know that we have not encountered x or y, otherwise we
would have been in one of the first two cases). We also know that there exists
zx, zy : τ at r such that zx D x and zy D y and (zx, zy) = split (c) z0
(or the opposite), as this is the only case where two variables can be updates
of a variable.

Property 9 (Causality). If x is an update of y, then the equation defining
x is the last use of y:

y B x⇒ ∀eq ∈ use(y). eq � def(x)

Proof. If y B x, then def(x) is the only update of y and its last use, as
guaranteed by the modified scheduling algorithm (see Section 4.3).

Property 10. If y D x then x and y do not interfere.

Proof. If yDx then there exists y1, . . . , ym such that yBy1 . . .BymBx.
Then ∀eq ∈ use(y). use(y). eq � def(y1) � use(y1) � . . . � def(x)
by applying m times Property 9 and by transitivity of �. It means that
∀eq.live s(y, eq)⇒ ¬live s(x, eq), so x and y do not interfere.

Theorem B.1 (Annotation soundness). Two variables associated with the
same location do not interfere:

∃τ, r. x, y : τ at r ⇒ ¬ (x � y)

Proof. Let x, y : τ at r.
Case 1 x and y are registers.
This is impossible as a semilinear register is the unique root of its location
(Property 4 and 5).

Case 2 y is a register, x is not.
Then y is the root of location r so y D x. By Property 10, we have that x
and y do not interfere.

Case 3 x and y are not registers.
• Either yDx (or reciprocally) then x and y do not interfere (Property 10).

• Or there exists z, zx, zy such that z, zx D x and z, zy D y and
(zx, zy) = split c z by Property 3. Then we can show that x (resp. y)
is on the same clock or a slower clock than zx (resp. zy), which proves
that x and y have disjoint clocks. As they are not registers, it follows
that x and y do not interfere.

	Introduction
	Problem Statement
	Memory Allocation
	Language Annotations
	Presentation
	Checking Annotations
	Scheduling

	Semilinear Type Checking
	Types
	Abstract Syntax
	Typing Rules

	Implementation and Experiments
	Sequential Code Generation
	Experiments

	Discussion
	Related Work
	Conclusion
	swap without memory optimization
	Proof of correctness of the annotation system

