
Divide and Recycle: Types and Compilation
for a Hybrid Synchronous Language ∗

Albert Benveniste Timothy Bourke
Benoı̂t Caillaud

INRIA Rennes
Firstname.Name@irisa.fr

Marc Pouzet
Univ. Pierre et Marie Curie

LIENS, École normale supérieure
Marc.Pouzet@ens.fr

Abstract
Hybrid modelers such as SIMULINK have become corner stones
of embedded systems development. They allow both discrete con-
trollers and their continuous environments to be expressed in a sin-
gle language. Despite the availability of such tools, there remain a
number of issues related to the lack of reproducibility of simula-
tions and to the separation of the continuous part, which has to be
exercised by a numerical solver, from the discrete part, which must
be guaranteed not to evolve during a step.

Starting from a minimal, yet full-featured, LUSTRE-like syn-
chronous language, this paper presents a conservative extension
where data-flow equations can be mixed with ordinary differential
equations (ODEs) with possible reset. A type system is proposed to
statically distinguish discrete computations from continuous ones
and to ensure that signals are used in their proper domains. We
propose a semantics based on non-standard analysis which gives
a synchronous interpretation to the whole language, clarifies the
discrete/continuous interaction and the treatment of zero-crossings,
and also allows the correctness of the type system to be established.

The extended data-flow language is realized through a source-
to-source transformation into a synchronous subset, which can then
be compiled using existing tools into routines that are both ef-
ficient and bounded in their use of memory. These routines are
orchestrated with a single off-the-shelf numerical solver using a
simple but precise algorithm which treats causally-related cascades
of zero-crossings. We have validated the viability of the approach
through experiments with the SUNDIALS library.

Categories and Subject Descriptors C.3 [SPECIAL-PURPOSE
AND APPLICATION-BASED SYSTEMS]: Real-time and embed-
ded systems; D.3.2 [Language Classifications]: Data-flow lan-
guages; D.3.4 [Processors]: Code generation, Compilers

General Terms Algorithms, Languages, Theory

Keywords Real-time systems; Hybrid systems; Synchronous lan-
guages; Block-diagrams; Compilation; Semantics; Type systems

∗ This work was supported by the SYNCHRONICS large scale initiative of
INRIA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
LCTES’11, April 11–14, 2011, Chicago, Illinois, USA.
Copyright c© 2011 ACM 978-1-4503-0555-6/11/04. . . $10.00

1. Introduction
Hybrid system modelers have become, over the last two decades,
corner stones of complex embedded system development, with em-
bedded systems involving not only control components or software,
but also physical devices. Hybrid system modelers mix discrete
time reactive (or dynamical) systems with continuous time ones.
Systems like SIMULINK1 treat explicit (or causal) models made of
Ordinary Differential Equations (ODEs), while others, like MOD-
ELICA2 can manage more general implicit (or acausal) models de-
fined by Differential Algebraic Equations (DAEs). In this paper,
we focus on modelers for explicit hybrid systems and we refer the
reader to [7] for an overview of tools related to hybrid systems
modeling and analysis.

Rather than address the formal verification of hybrid systems,
which has been studied extensively, this paper treats hybrid sys-
tem modelers from a programming language perspective, focusing
on their typing, semantics, and compilation. Hybrid modelers raise
several issues related to the lack of reproducibility of simulations
(sensitivity to simulation parameters and to the choice of simula-
tion engine), the interaction between the discrete and the continu-
ous parts, the way cascades of causally-related zero-crossings are
handled, and also to the inefficiency of the generated code. Some
of these issues are unavoidable because of approximations made by
the numerical solver or simply because signals are mathematically
not integrable. Others arise from the absence of a strong typing dis-
cipline to properly separate the continuous part, which has to be
exercised by a numerical solver, from the discrete part, which must
be guaranteed not to evolve during a step. Finally, the possible in-
teraction of the code with a numerical variable-step solver usually
requires a specific calling convention for every block to separate the
computation of outputs from the modification of internal states. In
contrast, the compiler of a synchronous language like LUSTRE [10]
or SIGNAL [3] generates far better code with, in particular, a single
step function that modifies the state in-place [4].

This paper responds to some of the weaknesses described above
by considering a hybrid extension of a synchronous language. Our
approach involves dividing such programs into continuous and
discrete parts using a novel type system, and then recycling existing
tools, viz. compilers and numerical solvers, to execute them.

Contribution and organization of the paper: Starting with a
minimal, yet full featured, LUSTRE-like synchronous language,
this paper presents a conservative extension that allows data-flow
equations to be composed with ordinary differential equations
(ODEs) with possible reset.

1 http://www.mathworks.com/products/simulink/
2 http://www.modelica.org/

http://www.mathworks.com/products/simulink/
http://www.modelica.org/

A type system is presented that distinguishes, at compile time,
discrete from continuous computations and also ensures that sig-
nals are used in their proper domains. The main intuition is that
computations are discrete only when activated on a zero-crossing
event. They otherwise describe continuous behaviors that must be
approximated by a numerical solver. The type system is conserva-
tive with respect to that of the basic synchronous language, that is,
synchronous programs are typed discrete. The synchronous (dis-
crete) subset is compiled in the usual way.

After presenting the type system, we propose a semantics based
on non-standard analysis; after an original idea due to Bliudze and
Krob [5]. This gives a synchronous interpretation of the whole sys-
tem where the base clock is both discrete and an infinite sequence
of infinitesimals. This interpretation clarifies the treatment of zero-
crossings in modelers and allows the correctness of the type system
to be established: in particular, the semantics of well-typed pro-
grams do not depend on the choice of infinitesimal.

Rather than develop a new compilation method for the extended
language, we give a source-to-source transformation that translates
from the full language into a synchronous subset. The result can be
compiled by an existing synchronous language compiler.

Finally, we show how to interface a compiled routine with a sin-
gle off-the-shelf numerical solver. A program is simulated by cy-
cling between continuous phases where the state is approximated
by the numerical solver, and discrete phases where the conse-
quences of zero-crossing events are computed. Our prototype sys-
tem is implemented using the SUNDIALS CVODE library [11].
The clear separation of compilation and simulation distinguishes it
from other more monolithic tools.

The need for types in hybrid modelers are explained in Sec-
tion 2, which also shows how an adequate semantic domain can
clarify the treatment of zero-crossings, and presents an example
to summarize our approach. The syntax, type system, and seman-
tics of the new language are presented in Section 3. The source-to-
source transformation is presented in Section 4, and in Section 5 we
show how its results, in a certain normal form, can be executed by
an interaction between continuous steps, computed in a numerical
solver, and discrete steps. Related work is discussed in Section 6,
before the paper is concluded in Section 7.

2. Overview
Hybrid modelers allow the composition of parallel subsystems that
may work in discrete or continuous time. The following examples
use a notation that is formally defined in Section 3: E1 and E2

is the parallel composition of equations E1 and E2, pre f is the
non-initialized unit delay, and 0.0 -> pre f is a unit delay with
an initial value of 0.0. The meaning of parallel composition is
clear when the subsystems are homogeneous, as illustrated by the
following two examples (*. is floating point multiplication):

f = 0.0 -> pre f +. s and s = 0.2 *. (x -. pre f)

and the initial value problem:

der(y’) = -9.81 init 0.0 and der(y) = y’ init 10.0

The first program can be written in any synchronous language, e.g.
LUSTRE. The semantics of f and s are infinite sequences:

∀n ∈ IN∗, fn = fn−1 + sn and f0 = 0

∀n ∈ IN, sn = 0.2 ∗ (xn − fn−1)

The second program can be written in any hybrid modeler, e.g.
SIMULINK, and its semantics is:

∀t ∈ IR+, y
′(t) = 0.0 +

∫ t

0
−9.81 dt = −9.81 t

∀t ∈ IR+, y(t) = 10.0 +
∫ t

0
y′(t) dt = 10.0− 9.81

∫ t

0
t dt

In both examples, the equations share the same time scale so their
parallel composition is precisely defined. But what would it mean
to combine two equations with different time domains as in:3

der(time) = 1.0 init 0.0 and x = 0.0 fby x +. time

or:

x = 0.0 fby x +. 1.0 and der(y) = x init 0.0

The two programs cannot be given a clear semantics: in the first
one, time is a continuous signal such that ∀t ∈ IR+, time(t) = t
whereas x is discrete. It would be tempting to define the first equa-
tion as ∀n ∈ IN∗, xn = xn−1 + time(n), x0 = time(0) and
the second as ∀n ∈ IN∗, xn = xn−1 + 1.0, x0 = 1.0, and,
∀t ∈ IR+, y(t) = 0.0 +

∫ t

0
x(t) dt, i.e. to treat x(t) as a piecewise

constant function from IR+ to IR+ with ∀t ∈ IR+, x(t) = xbtc,
but this would, in both cases, be a mistake, as x is a discrete signal
which can be represented as a sequence of values that are not re-
lated to any absolute time. That is, x3 does not define the value pro-
duced at absolute time t = 3 but only the third value in a sequence.
Conversely, for the continuous signal y, it would be meaningless
to define its third value. Thus, such compositions should definitely
be rejected since there is nothing that defines how discrete (logi-
cal) instants are related to (absolute) continuous time. Indeed, the
two programs, after being suitably rewritten (see Appendix A), are
rejected by SIMULINK, provided it is configured to stop on unspec-
ified data transfers between rates.4 Explicit conversions from con-
tinuous to discrete and back should be added.

An even more unusual behavior can be observed if an integrator
is reset. Consider, for example:

der(p) = 1.0 init 0.0
reset 0.0 every up(p -. 1.0)

and x = 0.0 fby x +. p
and der(time) = 1.0 init 0.0
and z = up(sin (freq *. time))

The signal p is initialized with value 0 and slope 1, it is reset
every time p crosses 1 (from negative to positive), and x sums
the values of p. In parallel are two unrelated equations (defining
time and z). For all t ∈ IR+, time(t) = t and z is true when
sin(freq · time) crosses 0, where freq is a constant.5 This program
should be rejected because its behavior depends on the step size
chosen by the solver which may be variable and which can be
influenced by unrelated blocks running in parallel. No implicit
conversion is really meaningful. In the same way, it should not be
possible to write an ODE such as der(y) = x init 0 in a block
only activated at discrete instants.6 The problem with all of these
programs is that they exhibit typing issues: an expression 0 fbyx,
referring to the previous value of x, is expected to run at discrete
instants, whereas the value of an integral should be computed over
continuous instants. So, what, in fact, is a good definition of a

3 x fby y = x -> pre(y)
4 The default behavior of SIMULINK is liberal and the two programs are
accepted with implicit conversions, that is, ∀t ∈ IR+, x(t) = xbtc. In this
case, a warning is printed: Warning: Illegal rate transition found involving
Unit Delay ’ExampleRateTransitionError/Unit Delay’. When using it to
transition rates, the input must be connected to the slow sample time and
the output must be connected to the fast sample time. The Unit Delay must
have a sample time equal to the slow sample time and the slow sample time
must be a multiple of the fast sample time. Also, the sample times of all
destinations must be the same value. Warning: Using a default value of 0.2
for maximum step size. The simulation step size will be equal to or less than
this value. (SIMULINK version 7.7.0.471, R2008b).
5 This is evident in the SIMULINK program of Appendix A when comparing
values of p for different values of freq in the unrelated sine wave block.
6 This ODE is written y = 1

s
(x) in SIMULINK.

discrete signal? A signal is discrete if it is activated on a discrete
clock, that is so defined:

A clock is termed discrete if it has been declared so or if it is
the result of a zero-crossing or a sub-sampling of a discrete
clock. Otherwise, it is termed continuous.

The first contribution of the paper is a type system for a hybrid
synchronous language. The principle is to give a kind k ∈ {A, D, C}
to every expression. An expression has kind D when it must be
activated on a discrete clock, C when it must be activated on a
continuous clock, and A when it can be activated on any clock. For
example, the expressions v fby e and pre(e) are of kind D, and,
more generally, so is any (non-combinatorial) LUSTRE program.
An expression with kind D must be activated on a zero-crossing
condition up(e). On the contrary, an ODE der(x) = e init e0 is
of kind C. It must be forbidden to put it under a zero-crossing, that
is, on a discrete clock, since it must be activated continuously. For
example, the following synchronous function is well typed.7

let node counter(top, tick) = o where
o = if top then i else 0 fby o + 1

and i = if tick then 1 else 0

Its type signature is bool × bool
D→ int because the equations

defining o and i are both of kind D. The counter can now be
connected to continuous time, by, for example, activating it every
ten seconds. This is done by defining a continuous signal time with
slope 1/10 that is reset whenever time -. 1.0 crosses zero.8

let hybrid counter_ten(top, tick) = o where
der(time) = 1.0 /. 10.0 init 0.0

reset 0.0 every zero
and zero = up(time -. 1.0)
and o = counter(top, tick) every zero init 0

Its type signature is bool × bool
C→ int. The construction

counter(top, tick) every zero init 0 is an activation
condition:9 the function counter(top, tick) is called when
zero is true; otherwise, o keeps its previous value. The initial value
is 0. As the three equations have kind C so does their composition.

Consider another example; a bouncing ball with initial position
(x0, y0) and initial speed (x′0, y

′
0), written:

let hybrid bouncing(x0,y0,x’0,y’0) = (x,y) where
der(x) = x’ init x0

and der(x’) = 0.0 init x’0
and der(y) = y’ init y0
and der(y’) = -. g init y’0

reset -. 0.9 *. last y’ every up(-. y)

Every time the ball hits the ground (when −y becomes or exceeds
zero), its initial speed is reset to 0.9 *. last y’. The expression
last y’ yields the left limit of signal y’. The type signature of this
function is: float×float×float×float

C→ float×float.
After typing such programs, we turn now to considering their

compilation and execution, including the incorporation of a numer-
ical solver to approximate continuous computations. Since the lan-
guage extends an existing synchronous language with continuous
time, the interesting question is: can we dispatch the compilation
of the discrete part—a well-known problem solved by existing syn-
chronous compilers—and focus solely on the continuous part? In

7 It counts the number of ticks between two tops.
8 There are obviously far more efficient ways of modeling dedicated peri-
odic clocks in hybrid modelers. But this example does show that timers that
trigger blocks can be treated as a particular form of zero-crossing.
9 Activation conditions appear frequently in SCADE, for example. The
equivalent in SIMULINK is a block triggered on a zero-crossing event.

this paper, we present a source-to-source transformation into the
discrete subset that removes all continuous computations, i.e., all
ODE and zero-crossing expressions. The details are given in Sec-
tion 4, but as an example, consider the translation of counter_ten:

let node counter_ten([z], [ltime], (top, tick))
= (o, [upz], [time], [dtime])

where
time = 0.0 every z default ltime init 0.0

and dtime = 1.0 /. 10.0
and o = counter(top, tick) when z init 0
and upz = time -. 1.0

The extra inputs and outputs are for communicating with the nu-
merical solver, which calls (a compiled version of) this function
directly. There are two extra inputs: a vector of boolean condi-
tions ([z]) for signaling zero-crossings and a vector of continuous
state variables ([ltime]). There are three extra outputs: a vector
of zero-crossing expression values ([upz]), a vector of state values
([time]), and a vector of derivatives ([dtime]). Notice that the
state of the function (i.e., the value of delay operators) only changes
when the zero-crossing condition is true; otherwise, the function
is effectively combinatorial. The discrete function counter is left
unchanged by the translation. Now, ignoring details of syntax, the
function counter_ten can be processed by any synchronous com-
piler, and the generated transition function will satisfy the invariant:

The discrete state, i.e., the values of delays, will not change
if all of the zero-crossing conditions are false.

The numerical solver is responsible for computing the continu-
ous states ([ltime], in the example) and detecting zero-crossing
events ([upz]). Execution alternates between two phases: (1) a
continuous phase where the solver repeatedly computes new values
for continuous states and monitors the values of zero-crossing ex-
pressions, and (2) a discrete phase where the effect of zero-crossing
events is computed. The details are presented in Section 5.

3. A Hybrid Synchronous Language
In this section, we define a single assignment hybrid language, a
type system to distinguish discrete computations from continuous
ones, and a semantics based on non-standard analysis.

3.1 A single assignment language
We consider the following programming language kernel.

d ::= let k f(p) = e | d; d

e ::= x | v | op(e) | e fby e | last(x)
| up(e) | f(e) | (e, e) | let E in e

p ::= (p, p) | x

h ::= e every e || ... || e every e

E ::= x = e | der(x) = e init e reset h
| x = h default e init e
| x = h init e | E and E

A program is a sequence of global declarations (d) of n-ary
functions over signals: let k f(p) = e, where k indicates the
kind of the function (in the introductory examples, we wrote node
for k = D and hybrid for k = C).

Expressions are composed of variables (x), immediate values
(v), the application of an external primitive (op(e)), an initialized
delay (e fby e), the left limit of a signal (last(x)), a zero-crossing
(up(e)), the application of a function to its argument (f(e)), a pair
(e, e) and a local declaration (let E in e), which returns the value

of e where variables used in the expression e can be defined in the
set of equations in E.

Patterns, p, comprise variables (x) and pairs of patterns (p, p).
Other tuples are a shorthand for nested pairs.

A reset handler, denoted h, is a list of pairs of expressions and
zero-crossings (e1 every z1 || ... || en every zn). The zero-
crossing expressions z1, ..., zn are considered sequentially, that is,
if several are enabled at the same instant, only the first in the order
has any effect. When zi is the first enabled zero-crossing, then h
will take the corresponding value Xcrossing(ei), and if no zero-
crossings are enabled, it will take the value NoEvent .

A set of equations is denoted E, its elements may define a
signal x with value e (equation x = e); a signal x with deriva-
tive e, initial value e0, and reset according to a handler h (equa-
tion der(x) = e init e0 reset h),10 a piecewise-constant sig-
nal which evolves at discrete steps according to a handler h
(equation x = h init e0), a similar signal (equation x =
h default e init e0) that also changes at discrete steps but oth-
erwise falls back to a default value of e rather than keeping its
previous value, or a parallel composition of two sets of equations.
In equations of the form x = h init e0, e0 defines the (constant)
value of x at every instant strictly less than the first occurrence of a
zero-crossing in h, otherwise x keeps its previous value unless one
of the associated zero-crossings occurs.

Notation shortcuts: We provide the following shortcuts.

1. The conditional operation if e0 then e1 else e2 is a particular
case of an imported operator of arity 3.

2. The equation der(x) = e init e0 stands for the equation
der(x) = e init e0 reset e0 every up(0.0), where resets
never occur.

3. The equation der(x) = e init e0 reset h can also be writ-
ten init(x) = e0 and der(x) = e reset h.

3.2 Static Typing
We argued in the introduction for the need to statically distin-
guish discrete from continuous computations. Deciding statically
whether a signal is discrete or not is out of reach for a realistic pro-
gramming language. We thus take a more pragmatic point of view:
a signal is typed discrete if it is activated on a zero-crossing event,
and otherwise it is typed continuous.

The intuition behind the type system is to give a type of the
form t1

k→ t2 to a function f where k is a kind with three possible
values. If k = C, f can only be used in a block activated on a
continuous clock. If k = D, f must be activated by a discrete clock.
If k = A, then f can be used in expressions of any kind, that is, f is
a combinatorial function. Kinds can be compared such that for all
k, k ⊆ k and A ⊆ k. The type language is:

σ ::= ∀β1, ..., βn.t
k→ t

t ::= t× t | β | bt
k ::= D | C | A
bt ::= float | int | bool | zero

where σ defines types schemes and β1, ..., βn are type variables. A
type t can be a pair (t × t), a type variable (β) or a base type (bt),
zero stands for the type of a zero-crossing condition whose only
value constructor is up(.).

Typing must keep track of both the types of defined nodes (sig-
nal functions) and local signals. A global environment G assigns
type schemes (σ) to global identifiers and an environment H as-

10 An integral 1/s(x′) initially i with reset condition z can be
defined let hybrid integr(x’,i,z) = let der(x) = x’ init i
reset i every z in x.

signs types to variables. We write last(x) : t when x is of type
t and x has an initialized left limit, that is, when the expression
last(x) is permitted. IfH1 andH2 are two environments,H1+H2

is the union of the two, provided their domains are disjoint.

G ::= [f1 : σ1; . . . ; fn : σn]

H ::= [] | H,x : t | H, last(x) : t
Typing is defined by four predicates:

(TYP-EXP)
G,H `k e : t

(TYP-ENV)
G,H `k E : H ′

(TYP-PAT)
`pat p : t,H

(TYP-HANDLER)
G,H ` h : t

The predicate (TYP-EXP) states that under the global environment
G and local environment of signals H , expression e has type t and
kind k. The predicate (TYP-ENV) states that the equationE produces
the type environment H ′ and has kind k. The predicate (TYP-PAT)
defines the type and environment produced by a pattern p. Kinds
are not necessary for patterns. The predicate (TYP-HANDLER) states
that a reset handler h defines a value of type t.

Programs are typed under an initial global environment G0

containing, in particular, the type signature for imported primitives.
As an example, we give the signature of addition, equality, and the
conditional. They are all of kind A since they can be executed on
either a discrete clock or a continuous clock. The unit delay has
kind D. The zero-crossing function up(e) must be activated on a
continuous clock, and hence its kind is C.

(+) : int× int
A→ int

(=) : ∀β.β × β A→ bool

if : ∀β.bool× β × β A→ β

pre(.) : ∀β.β D→ β

. fby . : ∀β.β × β D→ β

up(.) : float
C→ zero

Generalization and Instantiation: Types schemes (σ) are ob-
tained from types by generalizing their free variables. Because
functions are defined globally, type variables can all be general-
ized; gen .(.) gives the generalization σ of t1 → t2:

gen (t1
k→ t2) = ∀β1, ..., βn.t1

k→ t2
if {β1, ..., βn} = FV (t1 → t2)

A type scheme can be instantiated by replacing type variables by
actual types. Inst(σ) is the set of all possible instantiations of σ.
A type t1

k→ t2 can be instantiated by replacing its kind k by any
kind k′ such that k ⊆ k′.

k ⊆ k′

(t
k′
→ t′)[t1/β1, ..., tn/βn] ∈ Inst(∀β1, ..., βn.t

k→ t′)

The typing rules are presented in Figure 1.

1. Rule (DER). The derivative of x is well typed if e1 and e2 are of
type float and h is well typed. The overall kind is C.

2. Rule (AND). Parallel equations (E1 and E2) are well typed if
E1 and E2 are well typed. Both must have the same kind.

3. Rule (EQ). An equation x = e is well typed if the types of x
and e are the same. The overall kind k is the one of e.

4. Rules (EQ-DISCRETE) and (EQ-DISCRETE-DEFAULT). An equation
x = h init e activates x at discrete instants when zero-
crossings in the handler h occur, h must be well typed and
produce a value of type t which matches the type of e. Since
e is not guarded by a zero-crossing, its kind is C which is

also the kind of the equation. For a signal x which evolves at
discrete instants, it is meaningful to write last(x) since x is
given an initial value; last(x) denotes the value of x at the
previous instant of activation. On the contrary, when a default
value is given, last(x) is forbidden in order to prevent writing
an equation like x = 0 when z default last(x) + 1 init 0,
where the semantics of xwould depend on the step of the solver
as x would be incremented continuously.

5. Rule (APP). An application f(e) is of type t′ if the instantiated
type of f is t k→ t′ and if e is of type t and kind k. Consequently,
it is not possible to use a function with kind D if the overall kind
is expected to be C (and conversely).

6. Rule (LETIN). A local definition let E in e is well typed if E
is well typed, and if e is well typed in an extended environment.
The kind of the result is the kind of the whole.

7. Rule (LAST). The left limit last(x) may only be accessed when
the environment is H, last(x) : t.

8. Rule (CONST). We illustrate it for an immediate integer constant.
Constants can be treated as global functions of arity 0.

9. Rules (VAR) and (VAR-LAST). If x is defined with type t, it can
be used with the same type and with any kind.

10. Rule (PAIR). A pair (e1, e2) is of type t1 × t2 if e1 is of type t1
and e2 is of type t2. As in the parallel composition of equations,
e1 and e2 must have the same kind k.

11. Rules (PAT-PAIR) and (PAT-VAR). These rules build an initial
environment for patterns (either inputs or outputs).

12. Rule (DEF-NODE). A function definition for f has the type sig-
nature t1

k→ t2 if its input pattern p has type t1 and its result q
has type t2 with kind k. The type signature is generalized.

13. Rule (DEF-SEQ). Function definitions are typed sequentially,
augmenting the global environment.

14. Rule (HANDLER). A handler h is well typed if every expression
ei is of type t and zi is of type zero; ei must have kind D since
it is only activated on a zero-crossing event. This precludes
putting a continuous system under a zero-crossing.11

PROPERTY 1 (Subtyping). The following property holds:

G,H `A e : t⇒ (G,H `C e : t) ∧ (G,H `D e : t)

Proof : Direct induction on the proof tree of G,H `A e : t.

3.3 A sketch of the semantics
There is not space enough to describe the semantics of the language
in complete detail. Thus we present only its main principles and an
illustrative sketch. The semantics relies on non-standard analysis,
following our previous proposal [2] where a detailed motivation
and mathematical justification are given. As far as this paper is
concerned, the approach allows us to give a uniform semantics to
the whole language and to establish properties of its compilation.

Cascades of causally-related zero-crossings are a major concern
in the compilation of hybrid systems modeling languages [13, 14,
17]. This motivated Lee et al. [13, 14] to consider so-called super-
dense time, in which several successive instants can occur at a
single point of real-time. We contend that the semantic domain
provided by non-standard analysis is an elegant alternative. In this
section, we provide a glimpse of non-standard analysis and a sketch
of how it is used to establish the semantics of our language.

11 It is exactly the restriction imposed by SIMULINK where integrators are
forbidden inside triggered blocks.

The sets ?R and ?N of non-standard reals and integers: We
denote by ?R and ?N the non-standard extensions of R and N,
respectively. Two properties are especially important: ?R and ?N
are both totally ordered, with R and N being respective sub-orders.
?N contains elements ?n that are infinitely large, in that ?n > n
for any n ∈ N. ?R contains elements ∂ that are infinitesimal, in
that 0 < ∂ < t for any t ∈ R+, (R+ are the non-negative reals).
The set BaseClock(∂) = {n∂ | n ∈ ?N} is isomorphic to ?N
as a total order. Also, for every t ∈ R+ and any ε > 0, there
exists t′ ∈ BaseClock(∂) such that |t′ − t| < ε, expressing that
BaseClock(∂) is dense in R+. BaseClock(∂) is thus a natural
candidate for a time index set and ∂ is the corresponding time basis.
Note that BaseClock(∂) supports the aforementioned super-dense
time. For t = tn = n∂ ∈ BaseClock(∂):

•t = tn−1 is the previous instant
t• = tn+1 is the next instant

A clock T is a subset of BaseClock(∂), from which it inherits the
total order by restriction. A signal s with clock domain T and co-
domain V is a total function s : T 7→ V . If T is a clock and b a
signal b : T 7→ B, then T on b defines a subset of T comprising
those instants where b(t) is true:

T on b = {t | (t ∈ T) ∧ (b(t) = true)} (1)

If s : T 7→ ?R, we denote the instants when s crosses zero by:

T on up(s) = {t• | (t ∈ T) ∧ (s(•t) ≤ 0) ∧ (s(t) > 0)} (2)

Given a clock T , base(T) returns its base clock.

base(T on s) = base(T)
base(BaseClock(∂)) = ∂

(3)

Discrete versus Continuous: Let s be a signal with clock domain
T . It is typed discrete (D(T)) either if it has been so declared, or if
its clock is the result of a zero-crossing or a sub-clock of a discrete
clock. Otherwise it is typed continuous (C(T)). We thus have:

1. C(BaseClock(∂))

2. If C(T) and s : T 7→ ?R then D(T on up(s))

3. If D(T) and s : T 7→ B then D(T on s)

4. If C(T) and s : T 7→ B then C(T on s)

There are two reasons to define “discrete” in this way: 1) it
is a syntactic criterion and can thus be statically checked; 2) it
generally matches the intuition of a discrete clock. If f : R+ 7→ R
is continuous, then all instants belonging to

zero(f) =def {t ∈ ?R+ | (f(•t) ≤ 0) ∧ (f(t) > 0)}
are isolated (i.e., pairwise separated by non-empty intervals), and it
is a discrete set in the mathematical sense. Functions like f , from
which zero-crossings are constructed, would typically possess such
properties. But, of course, for tricky signals, sets of zero-crossings
may very well be Zeno. It is simply not possible, however, to
statically check whether a clock is mathematically discrete.

The data-flow semantics for the differential equation and the
zero-crossing expression are presented in Figure 2:

1. integr#(T)(s)(s0)(hs) defines the integration of the signal s
initialized with value s0 and reset according to hs . Let s′ be
the result of the integration. At the first instant, s′(t0) is set to
s0(t0). Afterward, if no zero-crossings are enabled, the current
value s′(t) is equal to the previous value s′(•t) plus the product
of the previous differential s(•t) and the step-size ∂. If a zero-
crossing is found, s′(t) takes the value of the handler hs .

2. up#(T)(s) is the result of a zero-crossing. It returns the value
true when the signal s crosses 0 (from negative to positive).
The effect is only visible at the next cycle of BaseClock(∂).

(DER)
G,H `C e1 : float G,H `C e2 : float G,H ` h : float

G,H `C der(x) = e1 init e2 reset h : [last(x) : float]

(AND)
G,H `k E1 : H1 G,H `k E2 : H2

G,H `k E1 and E2 : H1 +H2

(EQ)
G,H `k e : t

G,H `k x = e : [x : t]

(EQ-DISCRETE)
G,H ` h : t G,H `C e : t

G,H `C x = h init e : [last(x) : t]

(EQ-DISCRETE-DEFAULT)
G,H ` h : t G,H `C e : t G,H `C e0 : t

G,H `C x = h default e init e0 : [x : t]

(APP)

t
k→ t′ ∈ Inst(G(f)) G,H `k e : t

G,H `k f(e) : t′

(LETIN)
G, H,H0 `k E : H0 G, H,H0 `k e : t

G,H `k let E in e : t

(LAST)
G,H + [last(x) : t] `k last(x) : t

(CONST)
G,H `k 4 : int

(VAR)
G,H + [x : t] `k x : t

(VAR-LAST)
G,H + [last(x) : t] `k x : t

(PAIR)
G,H `k e1 : t1 H `k e2 : t2

G,H `k (e1, e2) : t1 × t2

(PAT-PAIR)
`pat p1 : H1 `pat p2 : H2

`pat p1, p2 : t1 × t2, Hp1 +Hp2

(PAT-VAR)
`pat x : t, [x : t]

(DEF-NODE)
`pat p : t1, Hp G,Hp `k e : t2

G ` let k f(p) = e : [f : genG(t1
k→ t2)]

(DEF-SEQ)
G ` d1 : G1 G,G1 ` d2 : G2

G ` d1; d2 : G1 +G2

(HANDLER)
∀i ∈ {1, .., n} G,H `D ei : t G,H `C zi : zero

G,H ` e1 every z1 || ... || en every zn : t

Figure 1. The typing rules

integr#(T)(s)(s0)(hs)(t) = s′(t) where
s′(t) = s0(t) if t = min(T)
s′(t) = s′(•t) + ∂s(•t) if handler#(T)(hs)(t) = NoEvent
s′(t) = v if handler#(T)(hs)(t) = Xcrossing(v)

up#(T)(s)(t) = false if t = min(T)
up#(T)(s)(t•) = true if (s(•t) ≤ 0) ∧ (s(t) > 0) and (t ∈ T)
up#(T)(s)(t•) = false otherwise

Figure 2. The semantics of the differential equation and the zero-crossing expression

4. Compilation
The non-standard semantics is not operational. It serves rather as
a reference to establish the correctness of several program trans-
formations. By compilation, we mean the transformation needed to
obtain an operational execution of the program. In this paper, we
only consider execution with a single numerical solver. There are
two problems to address:

1. The compilation of the discrete part, that is, the synchronous
subset of the language.

2. The compilation of the continuous part which is to be linked to
a black-box numerical solver.

In fact, the discrete part can be compiled by existing synchronous
compilers, and we thus need only treat on the continuous part.

We propose a source-to-source transformation of the program
into the discrete subset. This transformation removes all continu-
ous computations, i.e., all ODE and zero-crossing expressions. The
resulting code can then be compiled to give a transition function
that computes one (discrete or continuous) step of the whole sys-
tem. This function is passed to a numerical solver, along with a
list of the continuous variables to be approximated, and the zero-
crossings to be observed. Details are given in Section 5.

The translation is defined by four functions Tra(e), TraEq(E),
TraDef (d), and TraZ (h). We use the following notation: zv de-
notes a vector of (incoming) zero-crossing variables [z1, . . . , zn]
(each of type bool); upv is a vector of (outgoing) zero-crossing
expression values [up1, . . . , upn] (each of type float); lxv and
xv are vectors of continuous state variables, [lx1, . . . , lxk] and
[x1, . . . , xk] respectively (each element has type float); dxv is
a vector of continuous derivatives [dx1, . . . , dxk] (each of type
float). We write [z1, . . . , zn] @ [z′1, . . . , z

′
m] for the concatena-

tion of two vectors [z1, . . . , zn, z
′
1, . . . , z

′
m]. To simplify the pre-

sentation, we write [] for the empty equation (consider for example
= 0, where denotes a wild card).
Tra(e) defines the normalization of an expression and re-

turns a tuple 〈e′, zv , upv , lxv , xv , dxv , E〉. TraEq(E) normal-
izes an equation and returns a tuple 〈zv , upv , lxv , xv , dxv , E′〉.
TraDef (d) defines the normalization of a declaration and returns
a new declaration d′. TraZ (h) normalizes a zero-crossing handler
and returns a tuple 〈h, zv , upv , lxv , xv , dxv , E〉.

The transformation is defined recursively, and follows two prin-
ciples: (1) For every zero-crossing computation up(e), a new input
variable zi and a new output variable upi are added. Every occur-
rence of up(e) is replaced by the variable zi. An equation of the
form upi = e is added to define the new output. (2) For every

Tra(op(e)) = let 〈e′, zv , upv , lxv , xv , dxv , E〉 = Tra(e) in
〈op(e′), zv , upv , lxv , xv , dxv , E〉

Tra(y) = 〈y, [], [], [], [], [], []〉

Tra(v) = 〈v, [], [], [], [], [], []〉

Tra(last(y)) = 〈last(y), [], [], [], [], [], []〉

Tra(up(e)) = let 〈e′, zv , upv , lxv , xv , dxv , E〉 = Tra(e) in
〈z, z.zv , u.upv , lxv , xv , dxv , u = e′ and E〉
where z and u are fresh variables

Tra(e1 fby e2) = let 〈e′1, zv1, upv1, lxv1, xv1, dxv1, E1〉 = Tra(e1) in
let 〈e′2, zv2, upv2, lxv2, xv2, dxv2, E2〉 = Tra(e2) in
〈e′1 fby e′2, zv1 @ zv2, upv1 @ upv2, lxv1 @ lxv2,
xv1 @ xv2, dxv1 @ dxv2, E1 and E2〉

Tra((e1, e2)) = let 〈e′1, zv1, upv1, lxv1, xv1, dxv1, E1〉 = Tra(e1) in
let 〈e′2, zv2, upv2, lxv2, xv2, dxv2, E2〉 = Tra(e2) in
〈(e′1, e′2), zv1 @ zv2, upv1 @ upv2, lxv1 @ lxv2, xv1 @ xv2, dxv1 @ dxv2, E1 and E2〉

Tra(let E in e) = let 〈zv1, upv1, lxv1, xv1, dxv1, E1〉 = TraEq(E) in
let 〈e′, zv2, upv2, lxv2, xv2, dxv2, E2〉 = Tra(e) in
〈e′, zv1 @ zv2, upv1 @ upv2, lxv1 @ lxv2, xv1 @ xv2, dxv1 @ dxv2, E1 and E2〉
assuming unique names for variables in E

Tra(f(e)) = let 〈e′, zv , upv , lxv , xv , dxv , E〉 = Tra(e) in
〈f(e′), zv , upv , lxv , xv , dxv , E〉
if KindOf (f) ∈ {A, D}

Tra(f(e)) = let 〈e′, zv , upv , lxv , xv , dxv , E〉 = Tra(e) in
〈r, z.zv , up.upv , lx .lxv , x.xv , dx .dxv , (r, up, x, dx) = f(z, lx , e′) and E〉
if KindOf (f) = C and where r, z, up, lx , x, and dx are fresh variables

TraEq(x = e) = let 〈e′, zv , upv , lxv , xv , dxv , E〉 = Tra(e) in
〈zv , upv , lxv , xv , dxv , x = e′ and E〉

TraEq(der(x) = e init e0 reset h) = let 〈e′, zv , upv , lxv , xv , dxv , E〉 = Tra(e) in
let 〈e′0, zv0, upv0, lxv0, xv0, dxv0, E0〉 = Tra(e0) in
let 〈h′, zvh, upvh, lxvh, xvh, dxvh, Eh〉 = TraZ (h) in
〈zv @ zv0 @ zvh, upv @ upv0 @ upvh,
lx .(lxv @ lxv0 @ lxvh), x.(xv @ xv0 @ xvh), dx .(dxv @ dxv0 @ dxvh),
(x = h′ default lx init e′0) and (dx = e′) and E and E0 and Eh〉

where lx and dx are fresh variables

TraEq(x = h init e) = let 〈e′, zv , upv , lxv , xv , dxv , E〉 = Tra(e) in
let 〈h′, zvh, upvh, lxvh, xvh, dxvh, Eh〉 = TraZ (h) in
〈zv @ zvh, upv @ upvh, lxv @ lxvh, xv @ xvh, dxv @ dxvh,
(x = h′ init e′) and E and Eh〉

TraEq(x = h default e init e0) = let 〈e′, zv , upv , lxv , xv , dxv , E〉 = Tra(e) in
let 〈e′0, zv0, upv0, lxv0, xv0, dxv0, E0〉 = Tra(e0) in
let 〈h′, zvh, upvh, lxvh, xvh, dxvh, Eh〉 = TraZ (h) in
〈zv @ zv0 @ zvh, upv @ upv0 @ upvh, lxv @ lxv0 @ lxvh, xv @ xv0 @ xvh,
dxv @ dxv0 @ dxvh, (x = h′ default e′ init e′0) and E and E0 and Eh〉

TraEq(E1 and E2) = let 〈zv1, upv1, lxv1, xv1, dxv1, E
′
1〉 = TraEq(E1) in

let 〈zv2, upv2, lxv2, xv2, dxv2, E
′
2〉 = TraEq(E2) in

〈zv1 @ zv2, upv1 @ upv2, lxv1 @ lxv2, xv1 @ xv2, dxv1 @ dxv2, E
′
1 and E′2〉

TraZ (e1 every z1 || ... || en every zn) = let 〈z′i, zv i, upv i, lxv i, xv i, dxv i, Ei〉 = TraEq(zi) in
〈e1 every z′1 || · · · || en every z′n, zv1 · · ·@ zvn, upv1 · · ·@ upvn,
lxv1 · · ·@ lxvn, xv1 · · ·@ xvn, dxv1 · · ·@ dxvn, E1 · · · and En〉

TraDef (let k f(y) = e) = let 〈e′, zv , upv , lxv , xv , dxv , E〉 = Tra(e) in
let D f(zv , lxv , y) = let E in (e′, upv , xv , dxv)
if k = C

TraDef (let k f(y) = e) = let k f(y) = e if k ∈ {A, D}

Figure 3. The source-to-source transformation

ODE der(x) = e init e0, a new input variable lx and two new
output variables x and dx are added.

For every function definition f , KindOf (f) defines its kind
k ∈ {A, D, C}. The definition of the translation is shown in Figure 3.

1. The application of an operation op(e) to an expression is trans-
lated into an operation that gathers all the information about e.

2. A variable y, a constant v, and last(y) are left unchanged.

3. For an expression such as e1 fby e2 or (e1, e2), we gather
information from e1 and e2: and then take the unions of the
various components.

4. Local definitions let E in e are effectively flattened. This is
sound, provided variables are renamed appropriately, because
continuous expressions cannot have side-effects and may thus
be reordered without changing the meaning of a program.

5. A zero-crossing expression up(e) is translated into a fresh vari-
able z, which is added to the list of input boolean variables, the
equation u = e is added to the set of equations, and u is added
to the list of output variables.

6. There are two cases to consider for the application f(e). If f is
combinatorial (kind A) or discrete (kind D) then the function call
is unchanged. If, however, f is a function involving continuous
computations, then it has been compiled into a function expect-
ing two extra arguments and returning three extra outputs. We
thus replace the function call f(e) by an equation of the form
(r, upz, x, dx) = f(z, lx , e) where r is the result of calling the
function, upz is the vector of zero-crossing values to observe,
lx is the vector of updated states, and dx is the vector of deriva-
tives. Each new variable is added to the appropriate vector.

7. For each derivative der(x) = e init e0 reset h is added a
new variable lx to receive the (left-limit) state value calculated
by the solver, and two new equations that define a state value x
(which is identical to lx in continuous steps but which may be
reset in discrete steps) and a derivative value dx . Note that, in
a later stage of translation, all occurrences of last(x) must be
replaced by the corresponding lx .

8. Other equations define variables which are modified at discrete
instants only. This does not introduce any extra variables.

9. In reset handlers ei every zi, the expressions ei are discrete
and thus not translated.

10. A function definition with kind C is translated into a discrete
function extended with two new inputs and three new outputs.

11. Functions with k ∈ {A, D} are left unchanged.

5. Interfacing with a numerical solver
The compilation scheme introduced in the previous section has
been implemented using the SUNDIALS library (version 2.4.0).

5.1 Ocaml interface to Sundials
SUNDIALS [11] is a collection of numerical solvers for non-
linear, differential, and algebraic equations. One of which, called
CVODE, solves ODE initial value problems. We have imple-
mented an Ocaml interface to the CVODE variable-step solver,12

which provides a convenient programming environment that sim-
plifies development—for instance, the solver is configured through
algebraic data types rather than multiple function calls, error con-
ditions are signaled by exceptions rather than return codes, and
callback routines can be higher-order closures. Vectors are passed
to and from CVODE as Ocaml BigArrays to minimize copying.

12 It lacks parallel nvectors, but is otherwise comprehensive.

DI C D
/ init

zc

no-zc zc
no-zc / reinit

Figure 4. Basic structure of the simulation algorithm

5.2 The simulation algorithm
The CVODE solver approximates continuous states and detects
zero-crossings, but some extra routines are needed for initializa-
tion and discrete transitions. The simplicity of these routines is a
direct consequence of the properties guaranteed by the type system
of Section 3.2, and the structure of functions produced by the com-
pilation algorithm described in Section 4. While we pay attention
to the details of the solver, ultimately we treat it, with all its sophis-
ticated internal numerical algorithms, simply as a black box for
approximating continuous signals and detecting interesting events
with reasonable accuracy.

The step function. The simulation algorithm takes the top-level
function resulting from the transformation and compilation of a
hybrid data-flow program, and combines it with calls to the Ocaml
CVODE interface to produce another function that simulates the
system from t = 0 for a given or unbounded period.

The nodes of the original program are transformed exactly as
described in Section 4. Some extra routines are needed to map
to and from arrays of the appropriate size, but the details are rel-
atively straightforward. The transformed nodes are readily com-
piled into Ocaml functions by compilers like the one of Lucid Syn-
chrone [19]. The final result is a single function that need only take
four arrays as arguments, since inputs and outputs are typically han-
dled by imperative calls from within the (discrete) functions of a
data-flow program.

Simulation phases. The basic structure of the simulation algo-
rithm is shown in Figure 4. The algorithm begins in an initial
discrete phase, DI , where the step function is called to initialize
both its internal state and an array of continuous states. The latter
are used as initial values to create a session with the CVODE li-
brary. After which the algorithm alternates between a continuous
phase, C, and a discrete phase, D.

TheDI andD phases differ from each other in four main ways.
First, several CVODE initialization functions are called on leaving
the former, while only the reinitialization function is called on
leaving the latter. Second, none of the zero-crossings can be true in
the call to the step function from DI , whereas at least one will be
true in the call from D. Third, the call to the step function from DI

updates all discrete and continuous states with their initial values,
while fromD it may only update a subset of the states. In both cases
the step function is called in exactly the same way; the difference in
behavior is due only to its internal state; this kind of initialization
reaction is typical for a synchronous language kernel. Fourth, no
new zero-crossings can be generated in DI because there are no
last values against which to compare the zero-crossing values.

Note that starting the algorithm in a discrete phase is the only
way of having a discrete reaction at t = 0, since the continuous
solver ignores zero-crossings after initialization (and reinitializa-
tion) until the values of the corresponding expressions are not zero.

The C phase is entered after initialization. In this phase, the
numeric solver is repeatedly executed to approximate the evolution
of continuous states and to search for zero-crossings. The solver in
turn makes two types of callbacks: one for the values of continuous

state differentials, and the other for the values of zero-crossing
expressions.13 The step function is called in both cases.

For differential calls, none of the zero-crossings will be enabled,
and as such the type system guarantees that the continuous state ar-
ray will never be modified by the step function (though it may be
read, of course). This is essential: in the continuous phase, con-
tinuous states may only be changed indirectly through their cor-
responding differential values. Moreover, neither will the internal
discrete states of a well-typed program change in such reactions.
It is for this reason that the step function can be called repeatedly
by the solver in the continuous phase without having to shuffle and
cache arrays of discrete variables.14

Similar statements can be made about the calls to evaluate zero-
crossing expressions. In fact, the step function updates both the val-
ues of the differential and the zero-crossing value arrays in both sit-
uations. This has no effect on the results of a simulation, and it is,
in any case, only a slight inefficiency easily remedied by the addi-
tion of extra boolean flags (which would be, essentially, activation
clocks for the differential and zero-crossing value variables).

The algorithm cycles in the continuous phase, constantly in-
creasing the value of the simulation time, until the solver reports
that one or more zero-crossings have been found. The algorithm
then enters the D phase. At least one zero-crossing will be enabled
when the step function is called from the D phase, so a discrete
computation will occur, and also possibly a discrete state change.

Note that while a step function may be activated several times
within a C phase, only the continuous states, which are managed
by the solver, may change. Within D phases, however, the step
function is executed exactly once for each set of triggering events.
Thus it is safe for it to change internal variable values, and even,
in more complete versions of the language, to perform imperative
actions (like sampling inputs values, or logging data for graphing).

Cascaded zero-crossings Different possibilities in the treatment
of cascaded zero-crossings within theD phase give rise to different
semantic models.

In the delta-delay model employed in this paper, zero-crossings
that occur within the step function during the D phase are not
detected immediately. Rather, after calling the step function, new
values for the zero-crossing array are calculated by comparing the
elements of a previous zero-crossing value array with those most
recently calculated by the step function. If no new zero-crossings
are detected, the algorithm returns to theC phase. Otherwise it exe-
cutes another discrete step; any number ofD phases may thus occur
consecutively; indeed, they may continue to occur indefinitely.

An alternative instant-cascade model has, in some ways, a
stronger affinity with the usual approach taken in synchronous
languages, and also with the approach taken in SIMULINK. In this
model, new zero-crossings are detected immediately within the step
function. This complicates the transformation algorithm, which
must insert extra equations to calculate the status of zero-crossings
by comparing the previous and current values of zero-crossing
expressions. But afterward the synchronous language compiler in-
herently sorts the equations to ensure that any new zero-crossing
events generated within a step are properly detected within the
same step. Programs with cyclic dependencies, on zero-crossing
events or otherwise, are rejected during compilation. There is thus
no need to check for new zero-crossings after a D phase—no two
D phases ever occur without an intervening C phase—the algo-
rithm simply returns to the C-phase.

Finally, note that, in all of these models, no simulation time
passes during a sequence ofD phases: a fundamental characteristic
of synchronous languages!

13 Or, (rising) ‘root functions’ to use the SUNDIALS terminology.
14 As is required, for example, by SIMULINK s-functions.

6. Discussion and Related Work
While there exists much research on the theoretical properties,
and the analysis of hybrid systems, e.g. by model checking, there
are fewer studies on hybrid systems modelers from a program-
ming language perspective. We focus in this section on approaches
for expressing and executing causal hybrid models. Besides early
work for a hybrid extension of SIGNAL [1], where neither static
typing nor non-standard analysis were considered, there are four
main bodies of closely related work, namely recent approaches by
P.J. Mosterman and colleagues at The Mathworks [8, 15], Fran and
FRP [9, 18], the Ptolemy project [13, 14], and Scicos [17].

Mosterman et al. The work of P.J. Mosterman and colleagues at
The Mathworks [8, 15] attempts to establish SIMULINK on a sound
semantic basis. They show, for instance, how (a restricted class of)
variable step solvers can be given a functional stream semantics.
The class of solvers is first restricted to those relying on explicit
schemes, as implicit ones cannot be put in explicit functional form.
While this indeed provides a hybrid systems modeler with a stream
semantics, the semantics is very complex since it explicits the
discretization method—in particular, changing the latter changes
the semantics. Moreover, both the discrete and continuous parts are
treated together making the semantics unnecessarily complex.

Block-diagram simulation tools such as SIMULINK already pro-
vide a form of static typing. It is integrated into the mechanism for
inferring the rate at which a signal has to be computed, and works
through forward and backward propagation. Nonetheless, the way
the verification of rates is done by the compiler is imprecise [20].
We advocate making strong typing an integral part of the language
specification. Furthermore, while SIMULINK associates kinds to
signals, we claim that associating them to block structures gives
a simpler system for languages based on activation conditions.

Fran and FRP While Fran [9] focuses on interactive animations,
it can also be used to simulate physical phenomenon expressed as
ODEs. FRP [18] is descended from Fran; its principle innovation
being a shift to arrows-based combinators. Both Fran and FRP are
embedded in Haskell, and they are thus very expressive languages.
We propose a more austere first-order language, which better suits
our aims of applying serious compilation techniques to generate
embedded code and of precisely understanding and treating effects
like cascaded zero-crossings. Furthermore, the expressivity of Fran
and FRP comes at the cost of significant memory leaks. In contrast,
our proposal, being a Lustre-like language with a clock calculus,
can guarantee bounds on the amount of memory required.

Another important distinction is that we have focused on achiev-
ing very precise numerical approximations by exploiting a state-
of-the-art numerical solver. The approximation of integrals in Fran
is handled internally by a fourth-order Runge-Kutta algorithm ap-
plied locally, that is signal by signal without a global view of rates
of change, errors, and tolerances. While integral approximation is
externalized in Fran, only simple techniques are used (at least in
Yampa): a fixed step solver with rectangular rules to approximate
integrals, without even the predicate event (zero-crossing) detec-
tion algorithm of Fran. Continuous evolutions in Fran and FRP are
effectively simulated by discrete techniques.

The work of the Ptolemy group E.A. Lee and H. Zheng [13, 14]
use the tagged signals model [12] as the semantic support for the
CT Domain in Ptolemy II.15 Events are tagged with an extended
time index from the set R+×N and associated lexicographic order,
which the authors call super-dense time. We can avoid using super-
dense time because our non-standard index set is both discrete
and dense. In particular, the existence of previous •t and next t•

15 http://ptolemy.eecs.berkeley.edu/ptolemyII

http://ptolemy.eecs.berkeley.edu/ptolemyII

instants replaces the multi-dimensional instants (t, 0) and (t, 1).
Furthermore, the approach in Ptolemy II is made complicated by
issues of smoothness, Lipschitzness, existence and uniqueness of
solutions, Zenoness, etc. (see [13, §6] on “Ideal Solver Semantics”
and [14, §7] on “Continuous Time Models”). In contrast, these
issues play no role in our non-standard semantics, and thus no role
in our compilation scheme; they may, however, manifest at runtime.

Scicos and the work of R. Nikoukhah Scicos16 is freely available
software developed by R. Nikoukhah at INRIA [6, 16]. Its princi-
ples derive from the Signal language, and include an attempt to
cleanly separate continuous from discrete dynamics, but some is-
sues are yet unsolved. Cascaded zero-crossings are discussed [17],
and the “synchronous interpretation” of them as truly simultaneous
is rejected in favor of a micro-step interpretation, where simulta-
neous zero-crossings interleave non-deterministically. We prefer a
synchronous interpretation where programmers explicitly describe
responses to multiple zero-crossings. Then non-determinism arises
solely in numerical solvers, and not in the semantics. Note that our
work employs micro-step sequencing of causally-related cascaded
zero-crossings, but in a completely deterministic manner.

7. Conclusion
This paper has presented an extension of a synchronous language
similar to LUSTRE that allows the combination of stream equations
and ODEs with reset. The language has a static type system that
separates the continuous parts, which have to be exercised by a
numerical solver, from the discrete parts, which are guaranteed not
to evolve during intermediate solver steps.

This strong separation makes it possible to reduce the compila-
tion process to a source-to-source pre-processing step which adds
extra inputs and outputs for continuous signals. This, together with
the guarantee that the discrete state will only change in response to
zero-crossing events, means that existing compilation techniques
can be applied directly. The efficient code thus generated is readily
combined with a single black box numerical solver.

References
[1] A. Benveniste. Compositional and uniform modelling of hybrid sys-

tems. IEEE Trans. on Automatic Control, 43(4):579–584, April 1998.
[2] A. Benveniste, B. Caillaud, and M. Pouzet. The fundamentals of

hybrid systems modelers. In 49th IEEE Int. Conf. on Decision and
Control (CDC), Atlanta, Georgia, USA, December 2010.

[3] A. Benveniste, P. LeGuernic, and Ch. Jacquemot. Synchronous pro-
gramming with events and relations: the SIGNAL language and its
semantics. Science of Computer Programming, 16:103–149, 1991.

[4] D. Biernacki, J.-L. Colaço, G. Hamon, and M. Pouzet. Clock-directed
modular code generation of synchronous data-flow languages. In ACM
Int. Conf. on Languages, Compilers, and Tools for Embedded Systems
(LCTES), Tucson, Arizona, June 2008.

[5] S. Bliudze and D. Krob. Modelling of complex systems: Systems as
dataflow machines. Fundamenta Informaticae, 91(2):251–274, 2009.

[6] S.L. Campbell, J.-Ph. Chancelier, and R. Nikoukhah. Modeling and
Simulation in Scilab/Scicos. Springer, 2006.

[7] L.P. Carloni, R. Passerone, A. Pinto, and A.L. Sangiovanni-
Vincentelli. Languages and tools for hybrid systems design. Foun-
dations and Trends in Electronic Design Automation, 1(1/2), 2006.

[8] B. Denckla and P.J. Mosterman. Stream- and state-based semantics
of hierarchy in block diagrams. In 17th IFAC World Congress, pages
7955–7960, Seoul, Korea, 2008.

[9] C. Elliott and P. Hudak. Functional reactive animation. In Proc. of
the ACM SIGPLAN Int. Conf. on Functional Programming (ICFP’97),
pages 263–273, Amsterdam, The Netherlands, August 1997.

16 http://www-rocq.inria.fr/scicos/

[10] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The syn-
chronous dataflow programming language LUSTRE. Proc. of the IEEE,
79(9):1305–1320, September 1991.

[11] A.C. Hindmarsh, P.N. Brown, K.E. Grant, S.L. Lee, R. Serban, D.E.
Shumaker, and C.S. Woodward. SUNDIALS: Suite of nonlinear and
differential/algebraic equation solvers. ACM Trans. on Mathematical
Software, 31(3):363–396, September 2005.

[12] E.A. Lee and A.L. Sangiovanni-Vincentelli. A framework for com-
paring models of computation. IEEE Trans. on CAD of Integrated
Circuits and Systems, 17(12):1217–1229, 1998.

[13] E.A. Lee and H. Zheng. Operational semantics of hybrid systems. In
Hybrid Systems: Computation and Control (HSCC), volume 3414 of
LNCS, pages 25–53, 2005.

[14] E.A. Lee and H. Zheng. Leveraging synchronous language principles
for heterogeneous modeling and design of embedded systems. In Proc.
of the 7th ACM & IEEE Int. Conf. on Embedded software (EMSOFT),
pages 114–123, 2007.

[15] P.J. Mosterman, J. Zander, G. Hamon, and B. Denckla. Towards com-
putational hybrid system semantics for time-based block diagrams. In
3rd IFAC Conf. on Analysis and Design of Hybrid Systems (ADHS’09),
pages 376–385, Zaragoza, Spain, September 2009.

[16] M. Najafi and R. Nikoukhah. Implementation of hybrid automata in
scicos. In IEEE Multi-conference on Systems and Control, 2007.

[17] R. Nikoukhah. Hybrid dynamics in modelica: Should all events be
considered synchronous? In First Int. Workshop on Equation-Based
Object Oriented Languages and Tools (EOOLT 2007), pages 37–48,
Berlin, Germany, 2007.

[18] H. Nilsson, A. Courtney, and J. Peterson. Functional reactive program-
ming, continued. In Haskell’02: Proc. of the 2002 ACM SIGPLAN
workshop on Haskell, pages 51–64, Pittsburgh, Pennsylvania, January
2002.

[19] M. Pouzet. Lucid Synchrone, version 3. Tutorial and reference man-
ual. Université Paris-Sud, LRI, April 2006. Distribution available at:
www.lri.fr/∼pouzet/lucid-synchrone.

[20] S. Tripakis, C. Sofronis, P. Caspi, and A. Curic. Translating discrete-
time simulink to lustre. ACM Trans. on Embedded Computing Sys-
tems, 4(4):779–818, 2005.

A. Examples in Simulink
Figure 5 gives the translation in Simulink of the introductory ex-
amples. All clocks have been set to “inherited” (-1). Run with
Simulink version 7.7.0.471, R2008b, changing the frequency (Sine
Wave block) influences the value of p.

Figure 5. A Program with a Rate Transition Error

http://www-rocq.inria.fr/scicos/

	Introduction
	Overview
	A Hybrid Synchronous Language
	A single assignment language
	Static Typing
	A sketch of the semantics

	Compilation
	Interfacing with a numerical solver
	Ocaml interface to Sundials
	The simulation algorithm

	Discussion and Related Work
	Conclusion
	Examples in Simulink

