
Synchronous Objects with Scheduling Policies
Introducing safe shared memory in Lustre ∗

Paul Caspi
VERIMAG
Grenoble

Paul.Caspi@imag.fr

Jean-Louis Colaço
Prover Technology

Toulouse
Jean-louis.Colaco@prover.com

Léonard Gérard
LRI, Univ. Paris-Sud 11, INRIA

Orsay
Leonard.Gerard@lri.fr

Marc Pouzet
LRI, Univ. Paris-Sud 11, INRIA

Orsay
Marc.Pouzet@lri.fr

Pascal Raymond
VERIMAG
Grenoble

Pascal.Raymond@imag.fr

Abstract
This paper addresses the problem of designing and implementing
complex control systems for real-time embedded software. Typical
applications involve different control laws corresponding to dif-
ferent phases or modes, e.g., take-off, full flight and landing in a
fly-by-wire control system. On one hand, existing methods such
as the combination of Simulink/Stateflow provide powerful but un-
safe mechanisms by means of imperative updates of shared vari-
ables. On the other hand, synchronous languages and tools such as
Esterel or SCADE/Lustre are too restrictive and forbid to fully sep-
arate the specification of modes from their actual instantiation with
a particular control automaton.

In this paper, we introduce a conservative extension of a syn-
chronous data-flow language close to Lustre, in order to be able to
define systems with modes in a more modular way, while insur-
ing the absence of data-races. We show that such a system can be
viewed as an object where modes are methods acting on a shared
memory. The object is associated to a scheduling policy which
specifies the ways methods can be called to build a valid syn-
chronous reaction. We show that the verification of the proper use
of an object reduces to a type inference problem using row types
introduced by Wand, Rémy and Vouillon. We define the semantics
of the extended synchronous language and the type system. The
proposed extension has been implemented and we illustrate its use
through several examples.

Categories and Subject Descriptors C.3 [SPECIAL-PURPOSE
AND APPLICATION-BASED SYSTEMS]: Real-time and embed-
ded systems; D.3.2 [Language Classifications]: Data-flow lan-
guages; D.3.4 [Processors]: Code generation, Compilers

∗ This work was partially supported by the INRIA research project Syn-
chronics.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
LCTES’09, June 19–20, 2009, Dublin, Ireland.
This is the author’s version of the work. It is posted here by permission of ACM for
your personal use. Not for redistribution.
Copyright c© 2009 ACM 978-1-60558-356-3/09/06. . . $5.00

General Terms Algorithms, Languages, Theory, Verification

Keywords Real-time systems; Synchronous languages; Block-
diagrams; Compilation; Semantics; Type systems

1. Introduction
This paper addresses the problem of designing complex con-
trol systems. Typical applications involve several control laws or
modes, composed together to form the final application. In these ap-
plications, each mode comes from a continuous or discrete control
law and is naturally described by means of data-flow equations 1.
Conversely, the control activation of each law shall be described
by a hierarchical automata a la StateCharts [10]. This clear sepa-
ration explains the growing adoption of model-based design tools
such as the combination of Simulink and Stateflow, Simulink be-
ing used to describe the data-flow part whereas Stateflow is used
for the control-flow part. It is also a good software engineering
discipline, especially in allowing, before the integration phase, to
independently develop and test each mode as well as the activation
automaton. In order to ease the communication between modes
and avoid cumbersome wiring, Simulink/Stateflow only provides
low-level mechanisms by means of imperative variables — the so-
called Read and Write blocks — shared among the modes. This
may lead to data-races which are not statically detected. Moreover,
these concurrent accesses can appear in an order as chaotic as de-
pending upon the lexical order of the subsystems they are included
in (see [5]). Then an unadvised modification in the design can re-
sult in a drastic behavior deviation. To top this, shared variables
are subject to dynamic binding which has its specific drawbacks.
Conversely, synchronous data-flow languages such as Esterel or
Lustre [2] forbid such concurrent accesses but they do not allow for
a truly modular description of modes which separate each mode’s
specification from the actual instantiation with a particular control
automaton: they essentially amount to programming modes in a
purely functional manner forcing to pass explicitly the current state
between each mode. This extra wiring is error-prone, it reduces
the modularity/readability as well as the efficiency of the generated
code.

Mode-automata [12, 7] have been proposed to arbitrarily mix
data-flow equations and automata while ensuring the absence of

1 The ford gear-shift study (amp.ece.cmu.edu/eceseminar/2000/
Spring/slides/Butts/S00 Butts slides.pdf).

concurrent writes. Every state of an automaton is defined as a
collection of equations as in the following code 2:

let node updown(y) returns (o) where
last o = 0 in
automaton
| Up -> do o = last o + y until o = 4 then Down done
| Down -> do o = last o - y until o = -4 then Up done
end

val updown: int => int

o is a shared variable and last o defines the “last” value of o.
If y is the constant stream 1, this program computes the repeat-
ing sequence (0.1.2.3.4.3.2.1.0.-1.-2.-3.-4.-3.-2.-1).
This separation of modes in different states and the restriction that
at most one state is active during a reaction ensures the safe access
to shared variables, simplifies the semantics and code generation.

Nonetheless, Mode-automata are still limited in the sense that it
is not possible to define a system with modes independently from
their use. From a software engineering point-of-view, an architec-
ture team should meets and defines the functional requirements
of the two main modes — say up and down — independently on
their use. It also defines the interface between the modes, that is
to say the shared state variables the modes have to compute and
exchange together with their name, types, ranges, required preci-
sions and timing characteristics and any other convenient high level
shared features. This is not possible in a purely data-flow context
without adding extra wiring to every mode (here, last o as an ex-
tra input and o as an extra output) together with equations of the
form o = up(last o, y) and o = down(last o, y) in the fi-
nal code. In this sense, the joint use of Simulink/Stateflow, while it
may be unsafe, is more modular.

Separating the definition of modes from the automaton itself
also allows for sharing a behavior between different states of the
automaton: two different states may activate the very same mode
because they are never activated at the same time. While this is
transparent with mode-automata when modes are combinatorial,
modes sharing variables should be put outside of the automaton
and some update code would be duplicated. With the proposition
given in the paper, such sharing is made easier and fits well with
Mode-automata.

In this paper, we introduce a mechanism which allows to specify
a system with modes in a modular way while insuring the absence
of data-races. The designer specifies the shared variables used for
communication and the various modes, all of them being gathered
into an object. Together with the object, the designer defines its
scheduling policy which specifies the directions for use of the vari-
ous modes in order to produce a valid synchronous reaction of the
system. Whereas Lustre essentially provides one scheduling policy
through a unique step function, this new programming construct
gives more freedom, allowing to describe each mode independently
from the other. Let us continue our introductory example.

let twomodes x0 =
object

last o = x0

when up(y) returns (o) where
do o = last o + y done

when down(y) returns (o) where
do o = last o - y done

with up # down

2 All examples presented in this paper have been tested with a prototype
compiler. Types computed by the compiler are printed like this . The
compiler is available on demand.

end

val f : int -> < up: int => int; down: int => int
with up # down >

twomodes is a function returning an object made of two modes.
Together with the modes, it specify a scheduling policy stating that
the two modes are exclusive, i.e., they should never be executed
during the same reaction and this is the meaning of (up # down).
Now, the object can be instantiated, e.g.:

let node main(y) returns (o) where
new m = twomodes(0) in
automaton
| Up -> do o = m.up(y) until o = 4 then Down done
| Down -> do o = m.down(y) until o = -4 then Up done
end

val main : unit => int

The two pieces of code can be analyzed and compiled separately.
Defining only exclusive modes would be overly restrictive as soon
as modes share several state variables as it is shown in the following
example :

let point x0 y0 =
object

last x = x0
last y = y0

when translate (nx, ny) returns (nb_translations)
where
do nb_translations = 1 -> pre nb_translations + 1
and x = last x +. nx
and y = last y +. ny
done

when rotate (xc, yc, tetha) returns (nb_rotations)
where var d in
do nb_rotations = 1 -> pre nb_rotations + 1
and d = sqrt ((last x -. xc) ** 2.0

+. (last y -. yc) ** 2.0)
and x = last x +. d *. tetha
and y = last y +. d *. tetha
done

when cartesian () returns (x, y)

when polar () returns (dd, tetha) where
do dd = x +. y
and tetha = if x > 0.0 then (y /. x)

else if x = 0.0 then 2.0
else (-. y /. x)

done

with (translate # rotate)
< ((cartesian # {}) || (polar # {}))

end

val point : float -> float ->
< polar: unit => float * float;
cartesian: unit => float * float;
rotate: float * float * float => int;
translate: float * float => int
with (translate # rotate) < ((cartesian # {}

|| (polar # {})) >

Its scheduling policy states that any valid synchronous reaction
should first call either translate or rotate then, it may call
cartesian, polar or both. Notice that it would be also possible to
give the policy cartesian || (polar # {}) meaning that, polar
could not be called without a call to cartesian. Scheduling policies

are expressed in the following language:

P ::= P || P | P # P | P < P | m | ε 3

P1 || P2 stands for the parallel composition of two scheduling
policies (or shuffle in term of scheduling); P1 # P2 states we either
have schedules from P1 or schedules from P2; P1 < P2 states that
schedules from P1 precede schedules from P2; finally, m states
that the method m should be called whereas ε stands for the empty
schedule or the schedule with no calls.

In this paper we show that checking the correct use of ob-
jects amounts at checking policy inclusion between declared poli-
cies and computed ones. Moreover, when considering higher-order
cases, the compilation infers scheduling constraints on unknown
objects. To this effect we use a type system based on row vari-
ables [15] extended with scheduling policies.

let node g h x y returns (v) where
new o = h(x) in
automaton
| Up -> do v = o.up(y) until (v = 5) then Down done
| Down -> do v = o.down(y) until (v = -5) then Up done
end

val g : (’a -> < up: ’b => int; down: ’b => int ...
with {} # up # down >) ->

’a -> ’b => int

The function g can be applied to any function h returning an object
with at least two methods up and down with policy up#down. The
notation ... states that h is a function returning an object which
containts, at least, methods up and down with the given policy.
As a consequence, g can be applied to a function providing more
methods but whose policy should contains the inferred policy.

The paper is organized as follows. Section 2 presents the core
language and the algebra of policies. Section 3 presents the syn-
chronous semantics and the type system of the language kernel. In
Section 4 we discuss implementation issues, possible extensions
and related works. We conclude in Section 5.

2. A Calculus of Synchronous Objects
We define a core data-flow language extended with the ability to
define objects. A program defines a collection (d) of top-level
values in sequential order. (p) range for patterns. The block (b)
may define local variables (varx in b) and instantiated objects
(newx = e in b) or a collection of equations (D). A collection
can be an equation (p = e), a parallel (D1 and D2) or sequential
composition (D1 in D2). Finally, it can be based on the disjunction
of two equations (if e then D1 else D2) according to a boolean
condition (e). An expression (e) may be a constant (v), a variable
(x), a read access to a shared variable (lastx), a pair (e1, e2),
a function application (e1 e2), a function (λx.e), a method call
(o.m(e)) of an object o with name m and, finally, the definition
of a system with modes (objectfields objs modes with P end).
We call it an un-instantiated object (or simply object). An object has
instance variables (fields), instantiated objects (objs), a sequence
of modes (modes) and a scheduling policy (P) specifying the way
modes can be called.

d ::= letx = e | d; d
p ::= p, p | x
b ::= varx in b | newx = e in b | D
e ::= v | x | lastx | (e, e) | e e | λx.e | o.m(e)

| objectfields objs modes with P end
D ::= p = e | D and D′ | D in D′

| if e then D else D′

fields ::= lastx = e; ...; lastx = e

3 ε printed {} by the compiler.

objs ::= new o = e; ...; new o = e
modes ::= whenm(p) returns (p) b;

...; whenm(p) returns (p) b
v ::= C | i

We only provide a basic control structure. Other ones, such as
automata, raise no particular difficulty from the typing point-of-
view and are discarded in the language kernel.

2.1 Derived Operators
This core language is expressive enough to reprogram the classical
node construction, pre and initialization operator -> of Lustre.

Lustre nodes A Lustre node is a statefull stream function f with
argument p, result q and body b. A statefull function may depend
on the history of its inputs. In concrete syntax, we have written
node f(p) returns (q) b. Such a node is a shortcut for the follow-
ing definition of an object:

let node_f =
object

when step(p) returns (q) b
with step # {}
end

Each node application f(e) is replaced by a call to the method
step, that is, f.step(e) provided node f has been instantiated by
writing new f = node f in the context of the method call.

The Lustre delay pre The initialized delay prex(y) is such that:

y y0 y1 y2 y3 y4 . . .
prex(y) x y0 y1 y2 y3 . . .

To replace this operator, we define the following function:

let node_pre x =
object
last mem = x
when get () returns (lm) where do lm = last mem done
when set (v) returns () where
do mem = v done

with (get < set) # {}
end

val node_pre :
’a -> < set: ’a => unit; get: unit => ’a

with (get < set) # >

For every occurrence of pree1
(e2), an object “pre” is created by

defining new o = node pre(e1) in the current block. Its value is
read by writing o.get() and a call to o.set(e2) is done afterward.

Note that this formulation coincides exactly with the way
pree1

(e2) is compiled as a Moore machine in Lustre: it first emits
its internal value then stores its argument and this is ensured by the
scheduling policy (get < set) # {}.

Lustre initialization The arrow operator (e1 -> e2) emits the first
time the first value of e1 then it emits the current value of e2 for the
remaining instants:

e1 x0 x1 x2 x3 x4 . . .
e2 y0 y1 y2 y3 y4 . . .

e1->e2 x0 y1 y2 y3 y4 . . .

We define the following function

let init =
object
last init = true
when step(x,y) returns (z) where
do z = if last init then x else y
and init = false
done

with step # {}

end

val init : < step: ’a * ’a => ’a with step # {} >

Any occurrence of e1 -> e2 must be replaced by o.step(e1, e2)
provided new o = init() is defined in the context where the appli-
cation occurs.

2.2 Scheduling Policies
We first define formally what is a schedule. A schedule S is a path
of methods m with S1 < S2 as the sequence operator which states
that methods of S1 are called before the one of S2. The empty path
ε is the neutral element of the sequence operator.

S ::= S < S | m | ε
A scheduling policy P associated to an object is its set of accepted
schedules. It can be seen as the directions for use of the object.
Since P is a set of schedules, usual operations like equality, inclu-
sion, intersection or difference can be performed. A naive way of
doing these computations is to represent P in a disjunctive normal
form with (#) as the disjunction operator:

Norm(P) = #
i
Si with i 6= j =⇒ Si 6= Sj

This representation is very expensive, so that we extend the se-
quence operator and introduce the shuffle operator (||) :

S < (S′
1 # S′

2) = (S < S′
1) # (S < S′

2) (1)

(S1 # S2) < S′ = (S1 < S′) # (S2 < S′) (2)

(m < S) || (m′ < S′) = (3)

(m < (S || (m′ < S′))) # (m′ < (S′ || (m < S)))

(#
i
Si) || (#

j
S′

j) = #
i,j

(Si || S′
j) (4)

Policy language

P ::= P || P | P # P | P < P | m | ε
The disjunction operator P1 # P2 states we either have schedules
of P1 or schedules of P2, it is the union set operator. The sequence
operator P1 < P2 is the set of all schedules composed of a
schedule from P1 followed by a schedule of P2. The parallel
operator P1 || P2 stands for the parallel composition. In term of
schedules, it is the shuffle operation, representing all the possible
inter-leavings schedules from P1 with schedules from P2.

All the properties showed when extending operator of S equa-
tions (1,2,3,4) are properties of P . To sum up, the three operators
are associative, (<) is obviously non-commutative while (||) and
(#) are. Moreover, (||) and (<) are distributive over (#). All these
properties make it easy to compute Norm(P).

P1 || (P2 # P3) = (P1 || P2) # (P1 || P3)

2.3 Soundness and correction of scheduling policies
Consider an object c with memories xi, object instances oi, meth-
ods mi and a scheduling policy P . During the typing process, two
properties related to the scheduling policies have to be checked.
The soundness and the correctness of P . The soundness will en-
sure that P prevents race conditions on shared memories xi, while
the correctness will ensure that the objects oi are used according to
their policies Pi. To this end, we introduce a small effect language
C (C for constraint):

C ::= C || C | C < C | C # C | ↑x | ↓x | ↑lastx | o.m | ε
In the same way as P defined a set of schedule of method calls, C
defines a set of schedule of effects. ↑x states that variable x is read,

↑ lastx that the last value of x is read, ↓ x that x is written and
o.m is the effect of calling the method m of the object o.

Projection and complement If C is a constraint and o is the name
of an object, C|o is the projection of C on o defined by :

(C || C′)|o = C|o || C′|o (C # C′)|o = C|o # C′|o
(C < C′)|o = C|o < C′|o ε|o = ε

(↓x)|o = ε (↑x)|o = ε

(↑lastx)|o = ε (o′.m)|o = ε with o′ 6= o

(o.m)|o = m

The projection Cx of C on a shared variable x is defined similarily:

(C || C′)|x = C|x || C′|x (C # C′)|x = C|x # C′|x
(C < C′)|x = C|x < C′|x ε|x = ε

(↓x)|x =↓x (↓x′)|x = ε with x′ 6= x

(↑x)|x =↑x (↑x′)|x = ε with x′ 6= x

(↑lastx)|x =↑lastx (↑lastx′)|x = ε with x′ 6= x

(o.m)|x = ε

We also define the complement Co of C as the resulting constraint
where every access to o has been eliminated.

(C || C′)o = Co || C′
o (C # C′)o = Co # C′

o

(C < C′)o = Co < C′
o εo = ε

(↓x)o =↓x (↑x)o =↑x

(↑lastx)o =↑lastx (o′.m)o = o′.m with o′ 6= o

(o.m)o = ε

This is easily computed in one shot with C|o while Co is equivalent
to C for all future projections, but smaller and uncluttered from
method calls of o.

Given an object definition with policy P and methods m1...mn,
we compute the constraint Cmi for each method definition of c by
following syntactically the code of each method. The construction
of Cmi is built during typing. The resulting constraint for the object
is obtained by substituting mi by Cmi in P , that is:

C = P [Cm1/m1; . . . ; C
mn/mn]

Soundness C is sound, written Sound(C), if for every shared
memory x, C|x does not include (↓x < ↓x) nor (↓x < ↑x) nor
(↓x < ↑lastx). This also prevents (↓x || ↓x) and (↓x || ↑x).
So the soundness ensures that there is no race condition among the
writes and reads. Moreover, the constraint ↓x < ↑lastx ensures
that the two values lastx and x can be represented with only one
store.

The soundness of a policy is a property attached to the definition
of an object itself, e.g., two methods m1 and m2 can be put in
parallel in a policy whenever they do not have concurrent writes.

Correctness C is correct, written Correct(C), if for every object
oi, C|oi is included in Pi.

Correctness is a property of the calling context of an object. A
object is correctly used in it is used with a policy which is included
in the set of schedules declared with the object.

2.4 Examples
A correct example:
let simple_colored_point x0 y0 c =

object
new p = point x0 y0
last color = c

when translate (nx,ny) returns (n, x, y) where
do n = p.translate(nx,ny)
in (x,y) = p.cartesian()
done

when color(c) returns () where
do color = c done

when lastcolor() returns (last color)

when polar() returns (p.polar())

with ((lastcolor # {}) < (color # {}))
|| (translate < (polar # {}))

end

val simple_colored_point : float -> float -> ’a ->
< polar: unit => float * float;
lastcolor: unit => ’a;
color: ’a => unit;
translate: float * float => float * float
with (lastcolor # {}) < (color # {})

|| (translate < (polar # {})) >

We compute the effect of each method:

Ctranslate = p.translate < p.cartesian
Ccolor = ↓color
Clastcolor = ↑last color
Cpolar = p.polar

We compute C by applying the substitutions to P and get:

C = (↑last color # ε) < (↓color # ε)
||(p.translate < p.cartesian) < (p.polar # ε)

and the projections :

C|color = (↑last color # ε) < (↓color # ε)
C|p = translate < cartesian < (polar # ε)

C is sound and correct, since the memory color is correctly used
as is the object p. Indeed C|p ⊂ Pp : translate < cartesian
and translate < cartesian < polar are legal uses of the point
object p which has the policy

(translate # rotate) < ((cartesian # ε) || (polar # ε))

A wrong example:
let node wrong_use(b) returns (x,y) where

new o = twomodes(0) in
do x = o.up(1)
and if b then do y = 0 done else do y = o.down(1) done
done

This node is encoded with an object with only one method step
with policy step # ε. The constraint for the body of wrong use is:

Cstep = o.up || (ε # o.down)

Thus:
Cstep|o = up || (ε # down)

which is not included in the policy associated to o (up # down).
The compiler rejects this code with the following error message:

Type error: the object o is used with policy
up || (down # {})
but is expected to have policy
up # down.

In the same way, the policy associated to the following object is
unsound:

let w_up_down =
object

last o = 0
when up(x) returns (o) where

do o = last o + x done
when down(x) returns (o) where

do o = last o - x done
with up < down

end
Type error: the declared policy is incompatible with
the definition of modes. The shared variable o
may be written before its last value is read.

Indeed it computes

Cup|o = ↑last o < ↓o Cdown|o = ↑last o < ↓o

which gives

C|o = ↑last o < ↓o < ↑last o < ↓o

having among its errors the infringement ↓o < ↑last o.

3. Synchronous Semantics
The synchronous reaction semantics follows the existing formula-
tion for the logical semantics of Esterel [4]. The run of a program
is a sequence of reactions to external inputs. For that purpose, we
define R as a reaction environment which associates values to vari-
ables (either regular or state variables). v is the set of values pro-
duced by a reaction. It may be either an immediate value (e.g., an
integer value), a boolean (tt and ff), a pair (v, v), a combinatorial
function or an object. The environment O records all the method
calls done during the reaction, such that O(o) is the set of called
methods of the object o. w is well formed meaning that names of
methods are pairwise distinct. w1, w2 is the concatenation of the
two provided names do not intersect. An entry m(v)=v′ states that
the method m returns v′ on input v. :

R ::= ∅ | R + [v/x] | R + [v/lastx]
O ::= ∅ | [w1/o1, ..., wm/om]
v ::= i | tt | ff | (v, v) | λx.e

| objectfields objs modes with P end
w ::= [m1(v1)=v′1, ..., mn(vn)=v′n]

If R is a reaction environment, we write R(x) the value associated
to x (R + [v/y](x) = v if x = y and R(x) otherwise). We
lift it to patterns and write R(p). R(e) returns a new expression
where has been applied. R + [(v1, v2)/(p1, p2)] is a shortcut for
R+[v1/p1]+[v2/p2]. If R1 and R2 are two reaction environments,
R1, R2 is the union of the two provided their domain do not
intersect. If O1 and O2 are two environments, we define O1 || O2:

O1 || O2 = O1, O2 if Dom(O1) ∩Dom(O2) = ∅
O1 + [w1/o] || O2 + [w2/o] = (O1 || O2) + [(w1, w2)/o]

We define the next value of a state variable x:

NextR(v)(x) = R(x) if x ∈ Dom(R)

= v otherwise

The semantics is defined by two predicates:

R, O ` e1
v→ e2 R, O ` d1

R′
→ d2

The first states that under the environment R and O, e1 emits the
value v and rewrites to e2. The second one states that under R and
O, the declaration d1 produces the reaction environment R′ and
rewrites to d2. These predicates are defined in figure 1.

(app) is the evaluation rule for the application of a stateless func-
tion (e.g., external operation like an integer addition). (e1 e2)
produces a value v′ and rewrites to (e′1 e′2) when (e1) produces
a function λx.e, (e2) produces a value v and (e) produces v′

under the environment R′ + [v/x].

R, O1 ` e1
λx.e→ e′1 R, O2 ` e2

v→ e′2 R′ + [v/x], ∅ ` e
v′
→ e(app)

R, O1 || O2 ` e1 e2
v′
→ e′1 e′2

R, O1 ` e1
v1→ e′1 R, O2 ` e2

v2→ e′2(pair)

R, O1 || O2 ` (e1, e2)
(v1,v2)→ (e′1, e

′
2)

(if-t)

R, O ` e
tt→ e′ R, O1 ` d1

R′
→ d′1

R, O || O1 ` if e then d1 else d2
R′
→ if e′ then d′1 else d2

(if-f)

R, O ` e
ff→ e′ R, O2 ` d2

R′
→ d′2

R, O || O2 ` if e then d1 else d2
R′
→ if e′ then d1 else d′2

(and)

R, R2, O1 ` D1
R1→ D′

1 R, R1, O2 ` D2
R2→ D′

2

R, O1 || O2 ` D1 and D2
R1,R2→ D′

1 and D′
2

(in)

R, O1 ` D1
R1→ D′

1 R, R1, O2 ` D2
R2→ D′

2

R, O1 || O2 ` D1 in D2
R1,R2→ D′

1 in D′
2

(eq)
R + [v/p], O ` e

v→ e′

R, O ` p = e
[v/p]→ p = e′

(im) R, ∅ ` i
i→ i

(fun) R, ∅ ` λx.e
R(λx.e)→ λx.e

(read) R + [v/x], ∅ ` x
v→ x

(last) R + [v/lastx], ∅ ` lastx
v→ lastx

R, O ` e
v→ e′(m-call)

R, O || [m(v)=v′/o] ` o.m(e)
v′
→ o.m(e′)

(modes) R, ∅ ` objectfields objs modes with P end
R(object fields objs modes with P end)→ objectfields objs modes with P end

R, O ` d
R′+[v/x]→ d′(var)

R, O ` varx in d
R′
→ varx in d′

R, ∅ ` e
v→ e′ R, O1 ` v

w
 v′ R, O2 + [w/o] ` d

R′
→ d′(new)

R, O1 || O2 ` new o = e in d
R′
→ new o = v′ in d′

Figure 1. The Synchronous Semantics

(pair) pair’s members are reduced in parallel.

(if-t) and (if-f) are for conditionals. The body (d1) is evaluated if
the condition evaluates to true (noted tt). Otherwise, (d2) is
evaluated.

(and), (in) and (eq) are respectively for equations (D1 and D2),
(D1 in D2) and (p = e). Two equations (D1 and D2) react
in parallel by producing an environment R1, R2. In doing that
D1 sees what D2 is producing and conversely. On the contrary,
(D1 in D2) is evaluated in sequence during the reaction. An
equation (p = e) reacts by producing an environment [v/p]
provided e produces v and R(p) = v.

(im) and (read) define respectively the reaction rules for immedi-
ate values (i) and variables (x).

(last) defines the access to a state variable lastx.

(m-call) defines a call to the method m. This reaction is possible
when m(v)=v′ is defined in the environment of method calls.

(modes) defines the value of an object.

(new) For an object definition, e is evaluated into v. Then, the re-
sult v reacts producing a collection of method calls w corre-
sponding to those used in d.

We define the predicate R, O ` v
w
 v′ stating that under R and

O, v reacts by producing w and rewrites to v′. It is based on the
following predicates:

R, O ` fields
R′
→ fields ′

R, O ` objs
O′
→ objs ′

R, O ` modes
w→ modes ′

Their definition is given in figure 2.

(modes-react) makes fields, local object declarations and modes
react in parallel. Fields are evaluated in the closure environment

Ro extended with R′ which updates some of the state variables
of the object. Local objects are evaluated into O′ provided O′

is itself computed by the reaction of modes. The reaction of
modes may call itself methods of local objects.

(last-def) The next value for x is v′ if x has been computed during
the reaction or it keeps its previous value v.

(new-def) is similar to the rule (new).
(when-def) The definition of a method m changes only if there is

a call to m, that is, m(v)=v′ is used. The reaction of b may
define new values for state variables (R′).

3.1 The Type System
The type language is defined below. We borrow notations from the
type system by Rémy & Vouillon for ML [15]. Nonetheless, to
simplify the presentation, we make the use of row variables explicit.

A type-scheme (σ) is a type t quantified over type variables
(α1, ..., αn) and row variables (ρ1, ..., ρm). A type can be a func-
tion type (t1 → t2), a product type (t1 × t2), a constructed type
(c(t1, ..., tn) where c is a name of the type and range over a denu-
merable set or the type of an object ({r}). r stands for a (possibly
empty) sequence of method names with their types together with a
policy P .

σ ::= ∀α1, ..., αn.∀ρ1, ..., ρm.t
t ::= t → t | t× t | α | c(t, ..., t) | {r}
r ::= ∅ | m : t, r | r with P | ρ

A typing environment H is defined in the following way:

H ::= ∅ | H + self : t
| H + lastx : t
| H + new o : t
| H + x : σ

We make several name spaces in the environment. The type entry
self : t defines the current object to have the type t; lastx : t

Ro + R′, ∅ ` fields
Rl→ fields′ Ro + Rl, O ` objs

O′
→ objs′ Ro + R′ + Rl, O

′ ` modes
w→ modes′(modes-react)

R, O ` objectfields objs modes with P end
w
 objectfields objs modes with P end

R, ∅ ` e
v→ e′ NextR(v)(x) = v′(last-def)

R, ∅ ` lastx = e
[v/last x]→ lastx = v′ (when-defa) R, ∅ ` whenm(p) returns (q) b

∅→ whenm(p) returns (q) b

R, ∅ ` e
v→ e′ R, O ` v

w
 v′(new-def)

R, O ` new o = e
[w/o]→ new o = v′

(when-defb)

R + R′ + [v/p], O ` b
R′
→ b′ v′ = R′(q)

R + R′, O ` whenm(p) returns (q) b
m(v)=v′
→ whenm(p) returns (q) b′

Figure 2. Synchronous Reaction Rules for Objects

defines the shared memory lastx with type t; new o : t defines
the object o with its type t; x : σ defines a name x to have the type
scheme σ. H1 + H2 is the union of the two typing environment,
provided their domains do not intersect.

DEFINITION 1 (Type Instantiation and Generalization). We define
the instantiation relation t ≤ σ between a type an a type scheme.
t ≤ σ holds when there is a substitution of the quantified vari-
ables of σ which returns t. The generalization of a type t in an
environment H quantifies all type and row variables which do
not appear free in H . FV (σ) stands for the free type variables
{α1, ..., αn} of σ whereas FR(σ) stands for the free row type
variables {ρ1, ..., ρm} of σ. These functions are lifted to type-
environments.

Instantiation: t[~t′/~α][~r/~ρ] ≤ ∀~α.~ρ.t
Generalization: genH(t) = ∀α1, ..., αn.∀ρ1, ..., ρm.t

where {α1, ..., αn} = FV (t)− FV (H)
and {ρ1, ..., ρm} = FR(t)− FR(H)

Typing is defined by the following type judgments:

• H, C ` e : t states that the expression e has type t under the
type environment H and scheduling constraints C.

• H, C ` b : H ′ states that the block b produces the type
environment H ′ under the type environment H and scheduling
constraints C.

• H, C ` D : H ′ states that the collection of equations D
produces the type environment H ′ under the environment H
and constraints C.

The definitions of these predicates are given in figure 3.

(taut) A variable stored with type scheme σ in the environment can
be used with an instantiated type t. No scheduling constraint is
necessary so we write ε in the constraint.

(taut-c) and (taut-l) A read to a state variable lastx of type t is
of type t and we add ↑x in the scheduling constraints. Similarly,
reading lastx adds ↑lastx.

(im) The fourth rule is for immediate constants.

(fun) In our kernel language, functions cannot access shared state
variables nor objects defined above. We impose that the body e
has the empty constraint e.

(app) and (pair) The resulting constraint is the parallel composi-
tion of the two.

(if) The control structure (if e then d1 else d2) is typed
classically. From the scheduling constraint point-of-view, the

constraints of the two branches are exclusive (C1 # C2) but C
must be scheduled before one of the two.

(and) and (in) deal with parallel (D1 and D2) and sequential
composition (D1 in D2). In the first case, the resulting con-
straint put the two constraints in parallel whereas they are put
in sequence in the remaining one.

(eq-l) For an equation x = e where x is a state variable and C
is the scheduling constraint for e, we generate the constraint
C < ↓x stating that C appears before the write to x.

(eq) states that an equation p = e defines a typing environment
[p : t] if p and e are of type t.

(var) types a local declaration (varx in d). This is obtained by
typing d, supposing that x is of type t.

(m-call) and (new-in) deal with method call and object instanti-
ation. They are thus the most important rules of the system.
When calling a method m from object o, we check that o is
defined and has a method with a valid type. Moreover, we gen-
erate a scheduling constraint stating that o.m has been called
after C.

(new-in) first checks that e is an object. Then, it types the body d.
For that, it generates a constraint C. Let P = C|o the policy
obtained by projecting C on name o. The object o is correctly
used if P belongs to the policy of o, that is, o has a type of the
form: {r with P}. Co is the constraint C obtained by erasing
accesses to object o.
o may have a greater policy than P (for the inclusion order) but
it cannot be less.

(modes) is the typing rule for an object expression.

(last), (new) and (when) are used to type state variable definitions
(lastx = e), local object instantiations (new o = e) and the
definition of methods (whenm(p) returns (q) b).

3.2 Unification
The type system rely on the unification algorithm for row types
developed by Rémy & Vouillon [15]. Our contribution is to show
how scheduling policies enter in this setting. Internally, the types
for objects are represented as:

t ::= {r}
r ::= ∅ | m : t, r | r with P | ρ

The comma operator (,) is the concatenation for method names and
act as the exclusion operator (#) on scheduling policies. Rules are:

(r with P1) with P2 = (r with P2) with P1

(r with P1) with P2 = r with P1 # P2

m1 : t1, m2 : t2, r = m2 : t2, m1 : t1, r

t ≤ σ(taut)
H + x : σ, ε ` x : t (taut-c) H + lastx : t, ↑x ` x : t (taut-l) H + lastx : t, ↑lastx ` lastx : t (im) H, ε ` i : int

H + x : t1, ε ` e : t2(fun)
H, ε ` λx.e : t1 → t2

H, C2 ` e2 : t1 → t2 H, C1 ` e1 : t1(app)
H, C2 || C1 ` e2 e1 : t2

H, C1 ` e1 : t1 H, C2 ` e2 : t2(pair)
H, C1 || C2 ` (e1, e2) : t1 × t2

H, C ` e : bool H, C1 ` d1 : H0 H, C2 ` d2 : H0(if)
H, C < (C1 # C2) ` if e then d1 else d2 : H0

H, C1 ` D1 : H1 H, C2 ` D2 : H2(and)
H, C1 || C2 ` D1 and D2 : H1 + H2

H, C1 ` D1 : H1 H, C2 ` D2 : H2(in)
H, C1 < C2 ` D1 in D2 : H1 + H2

H, C ` e : t(eq-l)
H + lastx : t, C < ↓x ` x = e : [x : t]

H, ε ` p : t H, C ` e : t(eq)
H, C ` p = e : [p : t]

H + x : t, C ` d : H0(var)
H, C ` varx in d : H0

H + new o : {m : t1 → t2, r}, C ` e : t1(m-call)
H + new o : {m : t1 → t2, r}, C < o.m ` o.m(e) : t2

H, ε ` p1 : t1 H, ε ` p2 : t2(pair-pat)
H, ε ` p1, p2 : t1 × t2

H, ε ` e : {r with C|o} H + new o : {r with C|o}, C ` d : H0(new-in)
H, Co ` new o = e in d : H0

H ` fields : H0 H, s(P) ` objs : H1 H + H0 + H1 + self : {r with P} ` modes : r, s Sound(s(P))(modes)
H, ε ` object fields objs modes with P end : {r with P}

∀i ∈ I. H, ε ` ei : ti(last)
H ` (lastxi = ei)i∈I : [lastxi : ti]i∈I

∀i ∈ J. H, ε ` ej : {rj with C|oj}(new)
H, C ` (new oj = ej)j∈J : [new oj : {rj with C|oj}]j∈J

∀k ∈ K. Hk ` pk : tk H + Hk, Ck ` bk : H ′
k H + Hk + H ′

k ` qk : t′k(when)
H, C ` (whenmk(pk) returns (qk) bk)k∈K : [mk : tk → t′k]k∈K + [mk : Ck]k∈K

Figure 3. The Type System

with the well-formation properties that m : t, r is well formed iff
m does not appear in r. This invariant is maintained during typing.
Using above properties, a row type can be normalized into: {m1 :
t1, ..., mn : tn with P ; ρ} or {m1 : t1, ..., mn : tn with P}. The
unification algorithm of Rémy & Vouillon is modified accordingly.

We illustrate its use on the following example:

let node g(f)(x) returns (r) where
new o1 = f (x) in
new o2 = f (x+1) in
if (x = 0) then do r = o1.m(x) + o2.m(x) done
else do r = o1.n(x) + o1.m(x) done

val g :
(int -> < m: int => int; n: int => int ...

with {} # m # (m || n) >) -> int => int

Suppose that H = [f : α1, x : α2] where α1, α2 are fresh
type variables. After having typed the declarations of o1 and o2,
we have: H ′ = H + [o1 : {ρ}, o2 : {ρ}]. Then, the typing of the
first branches states that:

H ′, (o1.m || o2.m) ` o1.m(x) + o2.m(x) : int

and H ′, (o1.n || o1.m) ` o1.n(x) + o1.m(x) : int

with α1 = int→ {ρ}. We obtain the final constraint:

C = (o1.m || o2.m) # (o1.n || o1.m)

Projecting it on o2 , we get:

C|o2 = (ε || m) # (ε || ε) = m # ε

Thus,

ρ = m : int→ int, n : int→ int with m # ε, ρ′

Then, we compute the resulting constraint C′ by eliminating o2:

C′ = o1.m # (o1.n || o1.m)

C′|o1 = m # (n || m)

Thus, ρ′ = n || m, ρ′′. Finally, we get the type:

g : ∀ρ.(int→ {m : int→ int, n : int → int
with ε # m # (n || m), ρ}
→ int→ int)

4. Discussion
4.1 Implementation
Based on the presented material, a complete compiler has been im-
plemented. Its organization is given in figure 4. The actual language
provides more programming constructs than the kernel considered
in Section 2. In particular, it is possible to mix functions and nodes
directly. A node is a shortcut for an object with a single step func-
tion. Nodes receive a special type t1 ⇒ t2 whereas the type of
functions is t1 → t2. The language also provides richer control-
structures (e.g., hierarchical automata as proposed in [7]), Lustre

Administrative code Ocaml LOC
abstract syntax, printers, lexer, parser 2600
main driver (e.g., modules, symbol tables, loader) 450

Basis graph structures, cycle detection, free variables 100

Scoping renaming to have unique names 550

Typing unification and simplifications 600
policies (inclusion, equality, difference) 400
causality analysis 200
main typing engine 1200
auxiliary functions (e.g., error message, printers) 450

Source-to-source rewriting automata elimination 450
signal elimination 250
completion (adding explicit equations x = lastx) 150
elimination of Lustre operators (e.g., pre) 300
elimination of nodes and translation into objects 450

Emission of sequential code scheduling 150
abstract syntax + printers 400
translation to Ocaml 250

Figure 4. Organization of the compiler

operators (pre and ->)) and signals [6]. Automata constructs are
treated like conditionals. At most one state is active at a time so the
scheduling constraint of an automaton with n states is of the form
C1 # ... # Cn.

Once typing is done, the compilation is done through a se-
quence of source-to-source transformations, each of these eliminat-
ing one programming construct. The first step eliminates automata
by translating them into more basic control-structures. The follow-
ing one eliminates signals. The next one completes partial defini-
tions. Completion consists in transforming an equation:

if c then do x = 1 done else do done

into:

if c then do x = 1 done else do x = last x done

The next one eliminates Lustre primitives (pre and ->) following
the encoding given in Section 2. The final step translates remaining
constructs such as nodes into objects. In doing so, the result of each
transformation is a valid program and could thus be given again to
the type-checker. The last step of the compiler produces sequential
code. We have only considered the generation of Ocaml code in the
present implementation. This step is made simple since instanciated
objects in the source language are translated into objects of the
target language.

4.2 Shared Variables and Effects
The present extension allows to specify several behaviors sharing
a common resource inside what we have called an “object”. The
resource is encapsulated and can only be accessed through methods
in a quite standard fashion. The scheduling policy attached to the
object specifies the possible use of it. This ability to separate the
specification from the actual use increases the expressiveness of a
language such as Lustre, avoiding extra wiring which should be
needed otherwise.

One must notice that instantiated objects are not first-class val-
ues as this is typically the case in object-oriented languages. For
example, the following program is statically rejected:

let node f(x) returns (y) where
do y = x.m1(1) + x.m2(2) done

One should write instead:

let node f(x) returns (y) where
new o = x in
do y = o.m1(1) + o.m2(2) done

val f : < m1 : int -> int m2 : int -> int
with m1 || m2 > -> int

An alternative to the use of objects to increase the modularity of
a synchronous data-flow language would rely on the introduction of
references with imperative updates. For example, the pseudo-code:

let up(last x)(y) returns ()
do x = last x + y done

would define a function taking a reference to a shared variable
lastx and making an imperative update on it. An object sharing a
common state could be emulated by:

let twomodes x0 =
last o = x in
(fun (y) returns (o) do o = last o + y done),
(fun (y) returns (o) do o = last o - y done)

The absence of concurrent write (and more generally the soundness
property of section 2.3) relies on an effect-type system [16], e.g.,
taking C as the effect language. Following this, twomodes would
receive a type signature of the form:

int→ ∃o : int.(int
↑last o<↓o→ int)× (int

↑last o<↓o→ int)

stating that it returns a pair of functions with respectively effects
(↑last o < ↓o) and (↑last o < ↓o) where o is quantified ex-
istencially. Introducing a type system with effects to ensure the
absence of data-races in a synchronous data-flow language would
lead to a language more expressive that what is presented here. This
solution has been experimented by Hamon in his PhD. thesis [9].
Nonetheless, the resulting type-system is more complex than the
technique presented, in particular if higher-order is allowed and
type signatures become difficult to read. It is also not conservative
in the sense that most type signatures are modified even for func-
tions which are side-effect free (e.g., the signature of a higher-order
function).

4.3 Inheritance
The extension we have proposed is nonetheless limited since it
does not completely allow several independent teams to develop
and test modes (e.g., up and down). A natural extension is to
consider a class mechanism and inheritance as a way to build
systems incrementally. The team up and down define their own
class:

class up =
last x = 0
when up(y) returns (x)

do x = last x + y done
end

class down =
last x = 0
when down(y) returns (x)

do x = last x - y done
end

When typing each mode, it is possible to keep the way x is accessed
(e.g., the scheduling constraint for up is Cup = ↑lastx < ↓x).
Then, the integration of the two to form the class updown becomes:

class two =
inherit up
inherit down

end

The absence of concurrent writes can be checked simply. In this
idea of inheritance, the important point is the mapping of the shared
variable, if one inherit from two objects, the aim is to create new
sharing of state variables. The fact that up and down share then the
same state variable should certainly be explicited by the inheritance
mechanism and to write:

class two =
object

inherit up, down with up.x=down.x
end

The synchronization on x is now made explicit provided the inter-
face of up and down make the name x public. Extending the present
proposal to accont for inheritance is a matter of future work.

4.4 Policies and Initialization
A policy is a particular case of a contract [13]. Being unable to
express dynamic properties, they can be ensured during typing.
Between them and a general notion of policies, a usefull and yet
simple extension towards dynamic policies is to add a special
treatment for the first reaction [14]. A natural way to account it
is to introduce a policy P1 -> P2 to distinguish the initialization
policy P1 from the permanent one P2.

4.5 Related Work
The interest of a modularity construct paired with an interface lan-
guage to specify valid behaviors in the context of real-time systems
has been considered largely. In [1], Alur & Henzinger introduce
Reactive Modules as a way to specify temporal properties of con-
current systems (synchronous or asynchronous). With Interface au-
tomata [8] possible activations are expressed as automata. It is thus
possible to describe rich dynamic properties over execution traces
which are, in turn, verified by model-checking techniques. In com-
parison, scheduling policies are unable to express dynamic prop-
erties and describe only star free languages. Being less expressive,
their static verification can be done by simple typing techniques,
they are fully modular and apply to higher-order programs.

This work is also related to the 42 model of Maraninchi &
Bouhadiba [11]. Their purpose is to develop a general model of
component for embedded software, general enough to express var-
ious models of computations (e.g., synchronous, asynchronous,
FIFO communication). A component is made of a graph of nodes
and a controller which describes how blocks are activated. A
controller can be arbitrarily complex and express more general
scheduling policies on sub-components than what we do. In com-
parison, our proposal is dedicated to synchronous systems. A
scheduling policy relies on the fact that each method is atomic
and that a valid reaction is a finite composition of method calls.

The proposed notion of object generalizes the basic notion of a
reaction in a language such as Lustre. Instead of having a unique
step function for a node, we provide a collection of atomic func-
tions and define a step as a composition of these atomic functions.
There is, in particular, no need for a Kleene star operation.

The idea of policies was somehow hidden in the Signal lan-
guage [3]. Indeed, a Signal process defines a relation between the
presence/absence of its input/outputs. This relation is a property on
clocks and expresses precedence constraints between signals, thus
set of possible scheduling of the process. It would be possible to
define a system with modes in Signal, for example, by putting the
definitions of each mode in parallel and associating them different
clocks. Nonetheless, checking the exclusion of modes and that pro-
cess are correctly instantiated would rely on the boolean analysis
done by the clock-calculus. In comparison, we provide a special
programming construct to clearly identify modes. The absence of
concurrent writes is checked by simpler means, it is defined as a
typing problem and is compatible with higher-order.

5. Conclusion and Future Work
In this paper, we have introduced a calculus of synchronous re-
active objects. The calculus builds on existing synchronous data-
flow languages such as Lustre and his functional variant Lucid
Synchrone. The main novelty is to provides a new programming
constructs which allows to defines systems with modes. This con-
struction is reminiscent to object-oriented features: a mode can be
seen as a method and an object gathers a possible set of modes. In
order to ensure the determinacy of programs (that is, the absence of
data-races), we introduce a notation to express scheduling policies.
A scheduling policy is described by a simple regular expression
giving the possible combination of methods to build a valid syn-
chronous reaction. We have shown that scheduling policies can be
automatically verified through a variant of an existing type-systems
with rows.

References
[1] R. Alur and T. A. Henzinger. Reactive modules. Formal Methods in

System Design, 15:7–48, 1999.

[2] A. Benveniste, P. Caspi, S.A. Edwards, N. Halbwachs, P. Le Guernic,
and R. de Simone. The synchronous languages 12 years later.
Proceedings of the IEEE, 91(1), January 2003.

[3] A. Benveniste, P. LeGuernic, and Ch. Jacquemot. Synchronous
programming with events and relations: the SIGNAL language and
its semantics. Science of Computer Programming, 16:103–149, 1991.

[4] G. Berry. The constructive semantics of pure esterel. Draft book,
1999.

[5] P. Caspi, A. Curic, A. Maignan, C. Sofronis, and S. Tripakis.
Translating Discrete-Time Simulink to Lustre. ACM Transactions
on Embedded Computing Systems, 2005. Special Issue on Embedded
Software.

[6] J.L. Colaço, G. Hamon, and M. Pouzet. Mixing Signals and Modes in
Synchronous Data-flow Systems. In ACM International Conference
on Embedded Software (EMSOFT’06), Seoul, South Korea, October
2006.

[7] J.L. Colaço, B. Pagano, and M. Pouzet. A Conservative Extension of
Synchronous Data-flow with State Machines. In ACM International
Conference on Embedded Software (EMSOFT’05), Jersey city, New
Jersey, USA, September 2005.

[8] L. de Alfaro and T. A. Henzinger. Interface automata. In ESEC/FSE-
9: Proceedings of the 8th European software engineering conference,
page 109120, New York, NY, USA, 2001. ACM Press.

[9] G. Hamon. Calcul d’horloge et Structures de Contrôle dans Lucid
Synchrone, un langage de flots synchrones à la ML. PhD thesis,
Université Pierre et Marie Curie, Paris, France, 14 novembre 2002.

[10] D. Harel. StateCharts: a Visual Approach to Complex Systems.
Science of Computer Programming, 8-3:231–275, 1987.

[11] F. Maraninchi and T. Bouhadiba. 42: Programmable models of
computation for a component-based approach to heterogeneous
embedded systems. In Sixth ACM International Conference on
Generative Programming and Component Engineering (GPCE’07),
Salzburg, Austria, October 2007.

[12] F. Maraninchi and Y. Rémond. Mode-automata: a new domain-
specific construct for the development of safe critical systems. Science
of Computer Programming, (46):219–254, 2003.

[13] B. Meyer. Eiffel: An Introduction. Interactive Software Eng, 1988.

[14] D. Pilaud. Personnal communication, March 2009.

[15] D. Rémy and J. Vouillon. Objective ML: An effective object-oriented
extension to ML. Theory And Practice of Object Systems, 4(1):27–50,
1998. A preliminary version appeared in the proceedings of the 24th
ACM Conference on Principles of Programming Languages, 1997.

[16] J.P. Talpin and P. Jouvelot. The type and effect discipline. Information
and Computation, 111(2):245–296, 1994.

