
Programming Parallelism with Futures in Lustre

Albert Cohen
INRIA Paris-Rocquencourt

DI, École normale supérieure
45 rue d’Ulm, 75230 Paris
albert.cohen@inria.fr

Léonard Gérard
Univ. Paris-Sud

DI, École normale supérieure
45 rue d’Ulm, 75230 Paris
leonard.gerard@ens.fr

Marc Pouzet
Univ. Pierre et Marie Curie

DI, École normale supérieure
45 rue d’Ulm, 75230 Paris
marc.pouzet@ens.fr

ABSTRACT
Efficiently distributing synchronous programs is a challeng-
ing and long-standing subject. This paper introduces the
use of futures in a Lustre-like language, giving the pro-
grammer control over the expression of parallelism. In the
synchronous model where computations are considered in-
stantaneous, futures increase expressiveness by decoupling
the beginning from the end of a computation.

Through a number of examples, we show how to desyn-
chronize long computations and implement parallel patterns
such as fork-join, pipelining and data parallelism. The pro-
posed extension preserves the main static properties of the
base language, including static resource bounds and the ab-
sence of deadlock, livelock and races. Moreover, we prove
that adding or removing futures preserves the underlying
synchronous semantics.

Categories and Subject Descriptors
C 3 [Real-time and embedded systems]; D 3.2 [Data-
flow languages]; D 3.4 [Programming languages]: Com-
pilers, parallelism; F 1.2 [Parallelism and concurrency]

General Terms
Languages, Theory, Performance

Keywords
Synchronous languages; Block-diagrams; Semantics; Paral-
lelism; Futures; Kahn process networks

1. INTRODUCTION
Synchronous languages are devoted to the design and im-

plementation of embedded software. They are particularly
successful for safety-critical real-time systems. They facili-
tate the parallel modular specification and formal verifica-
tion of systems to the generation of target embedded code.
The synchronous model is based on the hypothesis of a log-
ical global time scale shared by all processes which compute

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’12, October 7–12, 2012, Tampere, Finland.
Copyright 2012 ACM 978-1-4503-1425-1/12/09 ...$15.00.

and communicate wich each other instantaneously. This
ideal model is then validated by computing the worst case
execution time (WCET) of a single reaction. Nonetheless,
global logical time may be difficult to preserve when the im-
plementation is done on a parallel machine or performance
is an issue. For example, when running a rare but long du-
ration task concurrently with a frequent and faster task, the
logical time step could naively be forced to be big enough for
the longest task to fit in and short enough to keep up with
the frequency of the small task. The classical solution is to
decouple these tasks, running the long one accross several
steps. This is usually stated as the problem of long duration
tasks in the litterature [10].

Several approaches have been considered in the past, al-
ways using distribution as a means to decouple the tasks, be
it explicit language constructs to call external distributed
functions or automatic/guided repartition techniques. The
current practice of distribution is mostly manual [1] with
no warranty that it preserves the functional behavior of the
model. We believe that decoupling should be explicitely
controlled by the programmer, within the synchronous lan-
guage itself as a programming construct. The distribution
will then be done according to this decoupling. The natural
expression of decoupling is given by the notion of future in-
troduced in Act1 and MultiLisp [16] and present in modern
languages like C++11, Java, F#.

A future a is the promise of the result of a computation.
Whereas a call to f(x) couples the computation of f(x) and
the return of the result y, the asynchronous call asyncf(x)
returns instantaneously a future a. Possibly latter on, when
the actual result is needed, !a will block until f(x) has fin-
ished and return the result y. With the help of futures, we
claim that synchronous languages are fit, not only to de-
sign the control and computations, but also to program the
decoupling and distribution.

Contribution of the Paper.
In this paper, we consider a Lustre-like language ex-

tended with futures and explicit asynchronous function calls.
This extension is modular and conservative w.r.t. the base
language, in the following sense: a sequence of input/output
values of the annotated (asynchronous) program is equal to
the one of the unannotated one. In other words, the an-
notations preserve the original synchronous semantics. The
implementation handles futures as a support library. They
are treated like any value of an abstract type, the get opera-
tion !y is translated to the library one, and an asynchronous
call asyncf(x) is a matter of wrapping it inside a concur-
rent task, managing inputs, and dealing with the filling of

futures. The crucial memory boundedness of synchronous
programs is preserved, as well as the ability to generate ef-
ficient sequential code for each separate process resulting
from the distribution. The distributed program also stays
free of deadlocks, livelocks and races.

To our knowledge, the use of futures in a synchronous
language is unprecedented. We show via numerous exam-
ples how to desynchronize long-running computations, how
to express pipelining, fork-join, and data-parallelism pat-
terns. This way, we achieve much higher expressiveness
than coordination languages with comparable static proper-
ties [12]. In particular, the language captures arbitrary data-
dependent control flow and feedback. It also highlights the
important reset operator, leveraging rarely exploited sources
of data-parallelism in stateful functions.

Section 2 introduces our language proposal informally.
Section 3 explores its expressiveness through numerous ex-
amples. Section 4 details its formal semantics. Section 5
discusses implementation and embedded design issues. Sec-
tion 6 reviews related work, before we conclude in Section 7.

2. PRESENTATION
The language used in this paper is Heptagon, a synchronous

data-flow language which extends Lustre with static pa-
rameters, automata, arrays, and an optimizing code gener-
ator [8]. A program defines infinite streams through sets of
recursive equations. Usual data-types including arrays and
records are implicitly lifted to streams. It follows closely
the syntax of Lustre. This section recalls informally the
main features of the language, then introduces the new ele-
ments to desynchronize programs and enable their parallel
execution. Consider, for example:

node sum(x:int)=(y:int)
let

y = x + (0 fby y);
tel

A chronogram of sum:

x 0 1 0 2 4 0 −2 −8 . . .
y 0 1 1 3 7 7 5 −3 . . .

class Sum {
int m_y;
void reset() {m_y = 0;}
int step(int x) {

int y = x + m_y;
m_y = y;
return y;

}
}

The Heptagon code on the left declares a node sum that
converts an integer input stream x to an output stream y.
Each sample in y is declared to be the sum of x and the
stream 0 fby y, which consists of a zero followed by the
samples in y. This amounts to introducing an intialized reg-
ister that delays the stream y by one cycle. The chronogram
shows the beginning of y derived from a random x.

Synchronous stream programs can be compiled to scalar
sequential code with internal state, such as the code on the
right. Here, reset intitializes the internal state. Once reset
is called, each call to step takes the next input sample,
modifies the state, and produces the next output sample.

node period << n :int | (n > 0) >> () = (c :bool)
var cpt , next_cpt :int;
let

next_cpt = if (cpt = n) then 1 else (cpt + 1);
cpt = 1 fby next_cpt;
c = (cpt = 1);

tel

This second example declares period with no input, but a
static parameter n required to be positive. It uses two lo-
cal streams cpt and next_cpt. The equations are recursive
and their relative order is not relevant. Usual constructs like

conditional expressions (if then else) and comparisons (=)
are lifted to streams by applying them pointwise. The fol-
lowing chronogram shows the beginning of the streams de-
fined by the equations in period<<3>>(), the application of
period with static parameter 3:

next_cpt 2 3 1 2 3 1 2 3 . . .
cpt 1 2 3 1 2 3 1 2 . . .

c true false false true false false true false . . .

Two additional operators allow finer control on streams.
x when c is the sampling of x by the Boolean stream c; it is
the stream made of the elements of x for which the matching
element of c is true. merge c x1 x2 is the lazy combination
of x1 and x2: it produces the stream made of elements of
x1 when the matching element of c is true and x2 when c is
false. whenot stands for when not. Consider the following
diagram with x as input. Notice that y equates x.

c true false false true false false true . . .
x 0 1 2 3 4 5 6 . . .

x1 = x when c 0 . . 3 . . 6 . . .
x2 = x whenot c . 1 2 . 4 5

y = merge c x1 x2 0 1 2 3 4 5 6 . . .

We say that x1 is on clock c, x2 on clock not c and x on the
base clock. Clock c is made of ticks, which are logical in-
stants associated with the truth values of the Boolean stream
c. We also say that the elements of x1 are present on the
ticks of its clock c, and absent at any other logical instant.
Note that clocks are inferred by a static analysis called clock
calculus. They give activation conditions and so are used to
build the control flow of the generated program [5].

2.1 A Motivating Example
The following example models a classical use case for these

operators. [11] The node slow implements an expensive op-
eration (reduced here to a mere addition to simplify the
exposition). The output is required at a higher rate than
slow allows for. Between these precise values, interpola-
tion is done using a fast function fast. Below, on the left
side the source code with its chronogram, and on the right
side the compilation of the node slow_fast into Java code.
Note that ys is on clock big since it is the first argument
of merge, thus slow and the register defining ys are acti-
vated only when big is true. v is on the base clock and so
is updated at each tick. It contains the last value of y.

node fast
(i :float) = (o :float)

let
o = i +. 1.

tel
node slow

(i :float) = (o :float)
let

o = i +. 3.14
tel
node slow_fast ()=(y :float)
var big :bool;

ys, yf, v :float;
let

big = period <<3>>();
ys= 0. fby slow(y when big);
yf = fast(v whenot big);
y = merge big (ys) (yf);
v = 0. fby y;

tel

big true false false true false . . .
ys 0.0 . . 3.14
yf . 1.0 2.0 . 4.14 . . .
y 0.0 1.0 2.0 3.14 4.14 . . .
v 0.0 0.0 1.0 2.0 3.14 . . .

class Slow_fast {
Period period;
Slow slow; Fast fast;
float m_ys , m_v;
Slow_fast () { /*...*/ }
float step () {

float y, yf;
boolean big;
big = period.step ();
if (big) {

y = m_ys;

m_ys = slow.step(y);

} else {
yf = fast.step(m_v);
y = yf;

}
m_v = y;
return y;

}
public void reset () {

period.reset ();
slow.reset ();
fast.reset ();
m_ys = m_v = 0.f;

}
}

Considering dataflow dependences, y depends on the value
of y at the previous tick and of ys three ticks before. This
should allow slow to last over three ticks of fast without
slowing down the duration of an instant. Unfortunately,
with the traditional compilation of Lustre into single-loop
code, the generated code prevents ticks from overlapping,
and the compilation of delayed streams like ys require the
memory to be updated before the end of the tick. We have
framed in the Java code the update of the memory storing
the result of slow.

The diagram below details the consequence of this compi-
lation strategy. It represents the computation of slow_fast
progressing over physical time from left to right. The dashed
vertical lines represent the frontiers separating ticks. Com-
putation is depicted by the bubbles and arrows are data-
dependences. Ticks are logical time, but in real-time sys-
tems this logical time is usually fixed to a constant physical
duration, which here will need to be of the width of slow

instead of fast.

2.2 Decoupling With Futures
We introduce two additional constructs, async and (!).

async may be seen as a wrapper or a polymorphic higher-
order operator of type: ∀t, t′.(t → t′) → t → (future t′),
while (!) is simply ∀t.(future t) → t. Moreover, a con-
stant future holding a constant value i may be created with
async i. Let us present our proposal on this example:

node a_slow_fast () = (y :float)
var big :bool; yf, v :float; ys :future float;
let

big = period <<3>>();
ys = (async 0.0) fby (async slow(y when big));
yf = fast (v whenot big);
y = merge big_step (!ys) (yf);
v = 0.0 fby y;

tel

The programmer wants slow to compute asynchronously,
so he adds async to the call to slow. The fby operator
needs to be initialized with a value of the same type as the
result of async slow, i.e., a future float. async 0.0 is a
construct returning a future holding the constant 0.0. ys is
consequently declared as a variable of type future float.
The ! operator is used to retrieve the actual value of ys

when it is actually needed; here it is needed three ticks later
to define y. In the diagram below, the gray box represents
the wrapper in which slow executes concurrently. ai are
the futures returned instantly by the wrapper each time an
input is given. y depends on these futures and on the fact
that their corresponding computation is finished. This last
dependence is not represented on diagrams for clarity:

Changes to the compilation result are very few: the vari-
able slow is of type Async_Slow, m_ys of type Future<Float>,

the equation y = m_ys is changed into y = m_ys.get() ac-
cording to the added call to (!) and m_ys is initialized to
StaticFuture(0.f). The futures are provided by a library.
The real changes in the compilation are found in the wrap-
per sketched below. It exhibits a step and a reset function
as any node, but at the creation, it also spawns a worker
thread. This thread is meant to execute concurrently the
steps of an instance of the node Slow. Decoupling is achieved
by using a queue q storing the inputs together with the cor-
responding future and instance of Slow. The decoupling is
bounded by a static parameter N (default to 1), thanks to
q being a blocking and bounded FIFO of size N. Note that
the reset method creates a new instance of Slow instead of
resetting it. This ease the code and presentation since other-
wise caution is needed to prevent from resetting an instance
still computing. It also follows the semantics presented in
section 4. Static allocation of both futures and instances
will be discussed in section 5.1.

class Async_Slow { // Sketch of the real code
Slow instance; BoundedQueue q;
Async_Slow(int N) { // Default N=1

q = new BoundedQueue(N);
new Thread (){ public void run() {

while(true) { // Pseudocode with tuple
(n, f, x) = q.pop();
f.set(n.step(x));

}}}. start (); //Spawn worker thread
}
Future <Float > step(float x) {

Future <Float > f = new Future <Float >();
q.push(instance , f, x);
return f;

}
void reset() { instance = new Slow (). reset (); }

}

3. PROGRAMMING PARALLELISM
Beyond the desynchronization of the classical slow_fast

example, futures capture a full range of concurrency pat-
terns. This section explores this expressiveness on examples.

3.1 Jitter Smoothing With Delays
One of the elementary but crucial use of desynchronization

is to smooth time-jittering computations. By adding a delay
between the input and the output, one may achieve a more
regular output. A decoupling of n ticks relies on two things,
data dependence: the delay before the result is asked should
at least be of n, back pressure: the input buffer needs to be
at least of size n− 1.

node smooth2 <<node f(int)=(int)>> (x :int) = (y :int)
let

y = !(async 0 fby <<2>> async <<1>> f(x));
tel

Here, f is a node given as static parameter, it is called with
a decoupling of two ticks. The 1 given as static parameter
to async is the size N of the input queue. The 2 given to fby

gives a delay of 2. In the diagram below, ticks are of fixed
duration. Buffering of the inputs is represented in the top
part of the gray box. Notice the arrows between successive
activations of f which depict the dependence created by its
internal state.

with
async<<1>>

With a buffer of size 0, decoupling is limited to one tick, and
to keep the throughput, ticks have to be of variable duration:

with
async<<0>>

3.2 Partial Desynchronization
Synchronous programs often sample the result of a compu-

tation. This loosen partially the dependence on this compu-
tation. Running it asynchronously gives partial decoupling:

node partial_desync () = (y:int; c:bool)
var ay0 , ay1 : future int
let

ay0 = (async <<2>> sum (1)) when c;
ay1 = (async <<2>> sum (2)) when c;
c = false fby (false fby (true fby c));
y = !ay0 + !ay1;

tel

sum(1) 1 2 3 4 5 6 7 8 9 . . .
sum(2) 2 4 6 8 10 12 14 16 18 . . .

c false false true false false true false false true . . .
y . . 9 . . 18 . . 27 . . .

Only one of every three results of each sum is used. For
simplicity, sum is here a simple integrator, but it could ex-
hibit a jittering behavior which would be smoothed out by
this partial desynchronization:

3.3 Temporal Fork-Join
In stream programs, an array is often represented as the

(scalar) stream of the array’s elements. The following exam-
ple shows the stream of arrays x and the associated scalar
stream lx resulting from the flattening of the arrays in x.

x [x0, x1] . [x2, x3] . [x4, x5]
lx x0 x1 x2 x3 x4 x5 . . .

Note that lx is clocked at twice the rate than x. The tempo-
ral fork-join applies a node to a chunk of stream elements in
parallel rather than to the elements of an array. Heptagon
is not yet expressive enough to give a parametric version of
the temporal fork-join, but here is the version of size 2:

node temporal_fj_2 <<node f(int) = (int)>>
(lx :int) = (ly :int)

var turn :bool; ay0 , ay1 , ay :future int;
let

turn = true fby (false fby turn);
ay0 = async f(lx when turn);
ay1 = async f(lx whenot turn);
ay = merge turn (ay0) (ay1);
ly = !(async 0 fby <<2>> ay);

tel

turn alternates between true and false. Depending on turn,
one of the two asynchronous instances of f is activated, ay
is the joined output of theses instances. If we called (!)
directly on ay, the instances of f would run sequentially, so
a delay of 2 is added. Let us use this generic node with sum

and the stream alternating the constants 1 and 3:

lx = 1 fby (3 fby lx);
ly = temporal_fj_2 <<sum >>(lx);

lx 1 3 1 3 1 3 1 3 1 3 . . .
turn true false true false true false true false true false . . .

ly 0 0 1 3 2 6 3 9 4 12 . . .

For clarity, the (!) operator is not represented, but ly does
wait for sum0 to finish before getting its result; this delays
the computation of the third, fifth and seventh values of ly.

Notice ay is the result of the merge operator applied to
futures. Without futures, this stream manipulation would
depend on the actual results of the computations, eliminat-
ing all parallelism. Alternatively, it is possible to retime the
computations to such that the streams of actual values are
merged, while preserving parallelism:

node retimed_tfj2 <<node f(int) = (int)>>
(lx :int) = (ly :int)

var turn :bool; ay0 , ay1 :int;
let

turn = true fby (false fby turn);
ay0 = !(async 0 fby async f(lx when turn));
ay1 = !(async 0 fby async f(lx whenot turn));
ly = merge turn (ay0) (ay1);

tel

This transformation involves distributing the delay inside
the merge branches, which is quite difficult because it de-
pends on the understanding that turn defines a periodic al-
ternation. If turn was more complex or statically unknown,
no retiming would be possible. The ability to merge streams
of futures is thus a clear progress.

3.4 Pipelining
It is possible to fully pipeline a three-node composition

such as h(g(f(x))) assuming the result is requested with a
minimal delay of 2. The easiest way to enforce this delay is to
define 0 fby<<2>> h(g(f(x))). Since pipelined execution is
a matter of chaining asynchronous computations, we define
a generic combinator pipeline_task<<f>>(ax) which waits
for the future ax to be ready before executing f on it. Here
is the implementation of this combinator and its application
to our three-node composition:

node pipeline_task <<node f(int) = (int)>>
(i :future int) = (o :int)

let
o = f (!i);

tel

node hgf(x :int) = (y :int)
var ax0 , ax1 , ax2 :future int;
let

ax0 = async f (x);
ax1 = async <<1>> pipeline_task <<g>> (ax0);
ax2 = async <<2>> pipeline_task <<h>> (ax1);
y = !(async 0 fby <<2>> ax2);

tel

Note that the input of a pipeline stage needs to be buffered
for as long as its depth in the pipeline, that is why the async
of g has a buffer of 1 and the one of h 2. Being able to give
a future as input to an asynchronous task seems interesting,
but it makes memory handling much harder (see 5.1). A
simpler and more explicit version is to bufferize with a fby

between each stage. The fby adds dummy values to the
flow. It would be possible with clocks to prevent it, but for
simplicity reasons we keep them here:

node retimed_hgf(x :int) = (y :int)
var ax0 , ax1 , ax2 :future int;
let

ax0 = async f (x);
ax1 = async g (!(async 0 fby ax0));
ax2 = async h (!(async 0 fby ax1));
y = !ax2;

tel

3.5 Stateless Data-Parallelism
In a dataflow language like ours, data-parallelism is the

possibility to compute several successive values of a flow
at the same time. For example with the code y = f(x),
computing y0 = f0(x0) and y1 = f1(x1) at the same time.
When f is stateful, it is impossible since f1 needs the state
of f resulting from the computation of f0(x0). But it is not
a problem when f is a pure function.

The example below asks for a stateless function f as pa-
rameter (using the keyword fun). At each tick i, async f(x)

being stateless, a new task may be created to compute f(xi).
To keep resources bounded, the number of concurrent tasks
created by a given async is by default one and may be spec-
ified as second static parameter of async. Here we allocate
two tasks, each with an input buffer of 0:

node data_parallel_2 <<fun f(int) = (int)>>
(x :int) = (y :int)

let
y = !(async 0 fby async <<0,2>> f(x));

tel

3.6 Data-Parallelism From Resetting
Consider lx a scalar stream resulting from the flattening

of a stream of arrays of size n. It is often the case that we
would like to apply a node f on each element of the array
and to reset it at every beginning of the flattened array. To
do so we define a Boolean stream r which is true every n

ticks, and we reset the application of f every r. Computing
in parallel on each element of a chunk as was done in the
temporal fork-join example is impossible since f is stateful,
but computing f on m successive chunks at the same time is
possible:

node array_dp <<node f(int) = (int); n, m :int >>
(lx :int) = (ly :int)

var new :bool;
let

r = period <<n>>();
reset

ay = async <<n-1, m>> f(lx);
every r;
ly = ! (async 0 fby <<n*(m-1)>> ay);

tel

Data-parallel execution requires that each set of computa-
tions on a chunk should not prevent the next one to begin.
This is ensured by setting an input buffer of size n-1 for
each set of computations on a chunk. In the same way, the
results of the first computations should not be requested be-
fore another chunk is fed in to the m-th task. This requires
a delay of n*(m-1) on the output. To illustrate this generic
node, we can apply it to sum with arrays of size 2 flattened
into chunks, and with 2 tasks:

lx = 1 + (0 fby lx);
y = array_dp <<sum , 2, 2>>(lx);

Which gives the following chronogram and diagram:

x 1 2 3 4 5 6 7 8 9 10 . . .
r true false true false true false true false true false . . .
y 0 0 1 3 3 7 5 11 7 15 . . .

Stateless parallelism may be seen as a case of stateful par-
allelism reset at every tick. In the rest of the paper we only
consider stateful parallelism. The wrapper with two static
arguments async<<N,T>> has to spawn T threads and allo-
cate an input queue for each. At each reset, the sequential
dependence is cut and it may use another worker thread.
We use a simple round-robin scheme to choose it:
class Async_F { // Sketch of the real code

F instance; BoundedQueue [] q; int i; int T;
Async_F(int N, int T) { // Default N=1 and T=1

q = new BoundedQueue[T];
this.T = T; i = 0;
for (int j=0; j<T; j++) {

q[j] = new BoundedQueue(N);
new Thread (){ public void run() {

while(true) { // Pseudocode with tuple
(n,f,x) = q[j].pop();
f.set(n.step(x));

}}}. start (); //Spawn worker threads
}

}
Future <Integer > step(int x) {

Future <Integer > f = new Future <Integer >();
q[i].push(instance , f, x);
return f;

}
void reset() {

instance = new F(). reset ();
i = (i + 1) % T;

}
}

3.7 Reordering Futures for Performances
Futures are strictly more expressive than FIFOs, in that

they allow to retrieve the result of some computation at any
time and in any order. In the case of a stream of futures
coming from a stateful asynchronous computation without
reset, trying to get the result of a future a2, created after a1,
is useless since the result of a1 needs to be computed for the
computation of a2 to begin. It may however be interesting,
if the stream of futures is a combination of different sources,
or if it comes from a function with reset. This is what we
illustrate with our last example.

Consider a scalar stream representing a square matrix
given line by line, element by element. Consider it is com-
puted linewise with the node line reset every beginning of
line, like with array_dp. In order to feed this matrix colum-
nwise to a consumer node cc, the matrix needs to be trans-
posed. Transposing the matrix of futures, then getting the
values and feeding cc with them is much better than get-
ting the values of the matrix, then transposing them and
feeding them to cc. Indeed, thanks to the reset-induced
data-parallelism, the first element of each line will be ready
before the second element of each line, etc. This allows the
column-width computation to beginning while the second
element of the matrix is not even computed.

node transpose_adp <<n :int >>(x :int) = (c :bool)
var ay, ayt :future int; r :bool;
let

r = period <<n>>();
reset

ay = async <<n-1, n>> line(x);
every r;
ayt = atranspose <<n>>(ay);
c = cc(!ayt);

tel

We write atranspose for the matrix of futures transpo-
sition, instead of writing the code which is cluttering. It
returns the transposition with a delay of the size of one ma-
trix, t = atranspose<<3>>(a) returns:

a a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 s18
t 0 0 0 0 0 0 0 0 0 a1 a4 a7 a2 a5 a8 a3 a6 a9

The diagram below correspond to calling this node with
lx = 1 + (0 fby lx); y = transpose_adp<<3>>(lx);

The parenthesized values are the ones which would be com-
puted if line and cc were identity functions: the result of
transpose_adp<<n>>(x) would be equal to the transposition
of x considered as a n^n scalar stream of flattened matrices.
Transposing on the futures allows the computation of cc on
4 to be done before line finishes computing 2 and 3, etc.

4. SEMANTICS
Our language Heptagon is compiled source to source into

a data-flow core language [5], allowing the formal semantics
to be provided on a smaller language. The semantics builds
on the construction and presentation of Delaval et al. [7].

A program P declares some definitions d and a main set of
equations D. Definitions are either stateless (fun) or stateful
(node) function declarations. A function inputs a variable
x and defines an expression e with the help of some local
equations. An expression e may be the usual immediate
value i, variable x, pair (e, e), first (resp. second) element
of a variable holding a pair fst(x) (resp. snd(x), initialized
synchronous register i fby x, sampling x when x, combina-
tion merge x x x, and the conditionally reset application of
a function f(x) every x.

We added to this classical core the conditionally reset
asynchronous function application async f(x) every x, the
get operator ! x, and the immediate future async i.

P ::= d;D d ::= d; d | f(x) = e with D

D ::= D and D | x = e

i ::= async i | true | false | 0 | . . .
e ::= i | x | (x, x) | fst(x) | snd(x) | i fby x

| x when x | merge x x x | f(x) every x

| async f(x) every x | ! x

4.1 Standard Synchronous Semantics
Before dealing with futures and the asynchronous part

of the semantics, let us present the baseline synchronous
semantics of the core language.

A synchronous program reacts to some input performing
so-called synchronous reactions. Formally, a synchronous
program reacts by rewriting itself into another program,
while emitting a reaction environment Ro containing all the
values of the streams it defines. The semantics does not
express the schedule of equations inside a reaction: all vari-
ables are seen as being defined simultaneously. To this mat-
ter, the predicate for some equations D at the same time
emits Ro and reacts in the environment R = Ri, Ro, which
already contains Ro and is augmented with the inputs in Ri.
A is the asynchronous environment. The reaction environ-
ment R is a function from variables to extended values w
which are either values v or absence of value abs. The sec-
ond predicate defines that an expression rewrites itself while
emitting an extended value.

R ::= x 7→ w w ::= v | abs | (w,w)

v ::= i | (v, v) abs ::= ⊥ | (abs, abs)

A;R `D Ro−−→ D′ A;R `e w−→ e′

The rules are in Figure 1, they follow the classical [15]
with a usual presentation [7]. By looking together at the
Tautology and Def rules, it is clear that the environment
emitted matches R. The And rule illustrate that equations
are recursive, each one emitting part of the result but read-
ing R in full. The synchronous behavior is given by the fact
that is an abs value is emitted, the expression doesn’t change
and requires everything to be absent. The rule Instanti-
ate uses the “do until then ” construct which is not in the
syntax. The idea is that a node f , when called, is the first
time instantiated by inlining its code until the node is to be
reset, in which case the program is again set to be a call to

Immediate
w = i | abs

A;R ` i
w−→ i

Tautology
R(x) = w

A;R ` x
w−→ x

Pair
R(x1) = w1 R(x2) = w2

A;R ` (x1, x2)
(w1,w2)−−−−−−→ (x1, x2)

First
R(x) = (w1, w2)

A;R ` fst(x)
w1−−→ fst(x)

Second
R(x) = (w1, w2)

A;R ` snd(x)
w2−−→ snd(x)

With

A;R,R1 ` D
R1−−→ D′ A;R,R1 ` e

w−→ e′

A;R ` e with D
w−→ e′ with D′

Def
A;R ` e

w−→ e′

A;R ` x = e
x 7→w−−−−→ x = e′

And

A;R ` D1
R1−−→ D′1 A;R ` D2

R2−−→ D′2

A;R ` D1 and D2
R1,R2−−−−→ D′1 and D′2

Fby-abs
R(x) = abs

A;R ` v fby x
abs−−→ v fby x

Fby
R(x) = v′

A;R ` v fby x
v−→ v′ fby x

When-abs
R(x1) = R(x2) = abs

A;R ` x1 when x2
abs−−→ x1 when x2

When-t
R(x1) = v1 R(x2) = true

A;R ` x1 when x2
v1−−→ x1 when x2

When-f
R(x1) = v1 R(x2) = false

A;R ` x1 when x2
abs−−→ x1 when x2

Merge-abs
R(x1) = R(x2) = R(x3) = abs

A;R ` merge x1 x2 x3
abs−−→ merge x1 x2 x3

Merge-t
R(x1) = true R(x2) = v2 R(x3) = abs

A;R ` merge x1 x2 x3
v2−−→ merge x1 x2 x3

Merge-f
R(x1) = false R(x2) = abs R(x3) = v3

A;R ` merge x1 x2 x3
v3−−→ merge x1 x2 x3

Instantiate-abs
R(x1) = R(x2) = abs

A;R ` f(x1) every x2
abs−−→ f(x1) every x2

Instantiate
code(f) = f(x) = e with D A;R ` e with (x = x1 and D)

w−→ e′

A;R ` f(x1) every x2
w−→ do e′ until x2 then f(x1) every x2

DoUntil-f/abs

R(x) = false | abs A;R ` D1
R1−−→ D′1

A;R ` do D1 until x then D2
R1−−→ do D′1 until x then D2

DoUntil-t

R(x) = true A;R ` D2
R2−−→ D′2

A;R ` do D1 until x then D2
R2−−→ D′2

Figure 1: Synchronous semantics

f . code(f) is a simple lookup in the immutable definitions
d of the program. The tricky part is that while inlining, the
first reaction needs to take place, and this is why e′ is set in-
stead of the inlined code (e with x = x1 and D). The same
remark applies to the DoUntil rules, which model strong
preemption; it replaces itself by D′2 which is the result of the
reaction of D2.

4.2 Asynchronous Tasks
We give to each asynchronous, concurrent task an unique

identifier a. It basically represent the result of the new done
in the reset method of async wrappers. As we have seen in
the examples, a concurrent task buffers an input and returns
a future holding the corresponding output within the same
tick. The asynchronous part is the reaction of a which is
done in parallel. To allow for this, the asynchronous envi-
ronment A stores for each a the streams of its inputs (in),
outputs (out) and task state (state). To keep track of what
has been computed by a, it also stores a counter (cnt), which
indexes the current position of a in its streams:

A ::= a 7→ {in; out ; state; cnt} out ::= n 7→ w

in ::= n 7→ w cnt ::= n state ::= n 7→ f(x) = e with D

The reaction of a task a is similar to the reaction of a
synchronous program, the difference being that inputs are
read in the input stream in, and the result is stored in the
output stream out . This reaction is written A

a
; A′ and is a

correct evolution of A, if the cnt counter of a is incremented,
and if the input, output and state streams agree to define

the cnt reaction of a:

A(a) = {in; out ; state;n} state(n) = f(x) = e with D
R = Ri, Ro Ri = x 7→ in(n)

A;R ` D
Ro−−→ D′ A;R ` e

w−→ e′ out(n) = w
A′(a) = {in; out ; state;n + 1}

state(n + 1) = f(x) = e′ with D′

A
a
; A′

As we saw in the examples, the reaction of a may need
the reaction of other tasks to happen. It may even require
multiple reactions of a given task. Let

a
;∗denote the re-

flexive transitive closure of
a
;. We are finally able to define

the transition ;∗which provides an abstraction of the in-
terleaving of the asynchronous tasks, while ensuring proper
evolution of A:

A ;
∗ A′

def
= ∀a, A a

;
∗ A′

4.3 Execution of a Program
A program reacts to a sequence of inputs Si = R0

iR
1
i . . .,

generating a sequence of outputs So = R0
oR

1
o . . ., in a se-

quence of asynchronous environments B = A0A1

Si `∞ P : B;So

The execution of P = d;D0 is defined, synchronous step by
synchronous step, with for all k ≥ 0:

Rk
i `k d;Dk : Ak;Rk

o Ak;Rk ` Dk Rk
o−−→ Dk+1 Ak

;
∗ Ak+1

Rk+1
i `k d;Dk+1 : Ak+1;Rk+1

o

We saw that in order to abstract the schedule of equations,
the semantic rules construct and check the validity of R in
one go. R is temporary and can be thrown away after the

reaction. On the contrary, A is a continuously evolving en-
vironment, and a snapshot Ak is taken at each reaction.
Similarly to R, a snapshot is constructed and checked dur-
ing the reaction: inputs are queued up, asynchronous tasks
advance and tasks with fresh code are attached, while all of
this is already in the premise of the rules. This is fundamen-
tal to hide the interleaving between the main program and
the asynchronous task. Note that, by the definition of ;∗:

Ak.cnt ≤ Ak+1.cnt Ak.state ⊆ Ak+1.state

Ak.in ⊆ Ak+1.in Ak.out ⊆ Ak+1.out

This permits to define the asynchronous environment A∞ as
the limit of the sequence. It is very important to note that
A∞ is thus scheduling-independent.

4.4 Extension of the Synchronous Semantics
A future is a synchronous value used through an indirec-

tion. It is basically is a reference holding a value guarded by
a readiness condition. In the semantics, instead of using a
generic reference representation, since any future is the re-
sult of a computation performed by an asynchronous task,
we define a future as a special couple 〈a, n〉, with n the index
of the value in the output stream of a. We add futures in
the values of the semantics:

v ::= i | (v, v) | 〈a, n〉

To get the value of a future 〈a, n〉, we ensure that it is ready
by asking a to have a current counter not less than n:

Get
R(x) = 〈a, n〉 A(a) = { ; out ; ;n′} out(n) = w n′ ≥ n

A;R ` !x
w−→ !x

The first time a node is called in an async, an asynchronous
task a is dedicated to this computation. One has to make
sure that a holds the right initial code in state(0) and that
the input queue at instant 0 is set with the correct input.
The program is then rewritten into the simpler inputs(, ,)
construct, which increments the input counter by one, ensur-
ing that the input queue is filled in order. A task a operates
a synchronous program and for each input, one output is
set. Thus, the future emitted holds the input counter which
also indicates the corresponding index in the output stream:

Instantiate-async
code(f) = f(x) = e with D A(a) = {in; ; state; }
in(0) = R(x1) state(0) = e with (x = x1 and D)

A;R ` async f(x1) every x2
〈a,0〉−−−→

do inputs(a, 1, x1) until x2 then async f(x1) every x2

Inputs
A(a) = {in; ; ; } in(n) = R(x)

A;R ` inputs(a, n, x)
〈a,n〉−−−→ inputs(a, n + 1, x)

Instantiation is not done until the input is present:

Instantiate-async-abs
R(x1) = R(x2) = abs

A;R ` async f(x1) every x2
abs−−→ async f(x1) every x2

An immediate future is not the result of a computation, but
for homogeneity, we simulate it with a stalled task:

Immediate-async
A(a) = { ; out ; ; 0} out(0) = i

A;R ` async i
〈a,0〉−−−→ async i

4.5 Semantics Preservation
We need to compare our code with a fully synchronous

code. To this mean, we define the ra function, which re-
moves the asynchronous features. We will call ra(P) the
synchronized version of P , it is the identity except for:

ra(async f(x1) every x2) = f(x1) every x2

ra(!x) = x ra(async i) = i

The preservation theorem states that any value computed
by the synchronized program is either the same in the orig-
inal program, or replaced by a future holding that value.
We express this property with the syncA function, mapping
extended values to extended values without futures:

syncA(〈a, n〉) = A〈a, n〉
syncA(w,w) = (syncA(w), syncA(w)) syncA(abs) = abs

syncA(v, v) = (syncA(v), syncA(v)) syncA(i) = i

A〈a, n〉 is a notation for the value associated to 〈a, n〉 in A,
that is A(a).out(n).

Theorem 1 (Preservation). Under a stream of in-
puts without future, a program produces the same, or a future
holding the same extended value as its synchronized version:

if ∀Ri ∈ Si,∀x,Ri(x) 6= 〈a, n〉
then Si ` P : A∞;So ⇐⇒ Si ` ra(P) : ∅;S′o
with property p: ∀k, ∀x,R′ko (x) = syncA∞(Rk

o(x))

First, note that we use A∞ as an asynchronous environment,
thanks to the remark in section 4.3. Second, restricting the
inputs as not being futures is a sound simplification as the
main program inputs actual values.

The proof relies on the stronger property P:

Ak;Rk
i ` Dk Rk

o−−→ Dk+1 ∧ ∅;Rk
i ` raAk (Dk)

R′k
o−−→ D′

=⇒

{
(1) ∀x,R′ko (x) = syncAk (Rk

o(x))

(2) ∧ D′ = raAk+1(Dk+1)

with

raA(w) = syncA(w)

raA(inputs(a, n, x)) = raA((A(a).state(n))(x))

It states that synchronizing a program at any execution
step k and performing a reaction leads to the same as per-
forming a reaction and synchronizing the resulting program:
synchronization commutes with reaction. Synchronizing the
program at any step during its execution requires to extend
ra on elements outside the syntax and makes ra dependent
on the asynchronous environment. ra synchronizes futures
by looking up their value, and instead of putting a value at
the nth place in the input queue of a, it directly applies the
code state(n) of a to this input. Synchronizing a program
is not possible if a future is not ready in A, or if a task a
is not up to date with its input. So the property P does
not hold with every schedule of the asynchronous tasks, but
holds with an eager scheduling. The proof is done by induc-
tion over the constructs and is a bit verbose, but we look
here at two symptomatic examples:

The simplest case is x = async i; y = !x; in which x

holds a future 〈a, 0〉, and the asynchronous environment A
is so that A〈a, 0〉 = i. y is equal to A〈a, 0〉 which is i.

Its synchronized version is x = i; y = x;. Both codes are
rewritten without change, and so holds property P.

The case of x = async f(z); y = !x; rewrites itself into
x = do inputs(a, 1,z) until false then . . .; y = !x;

in which x holds a future 〈a, 0〉, with A0(a).state(0) equal to
the code of f, y asks for the result of this code applied on
the input z. The synchronized version x = f(z); y = x;

does immediately apply the code of f to z and writes the
result in x and y (we have property P.(1)). It rewrites itself
into x = do e with D until false then . . .; y = x;.
The next step, A1(a).state(1) is computed and is equal to
e with D (we have property P.(2)). Next steps are similar.

An eager scheduling ensures that A1(a).state(1) is com-
puted in time. Since So and A∞ are independent of the
interleaving, we can choose an eager scheduling, which gives
the property P and the theorem follows.

4.6 Typing, Clocking and Causality
The preservation theorem 1 proves that the usual valid-

ity checks of data-flow synchronous programs—clocking and
causality—can cope with the asynchronous constructs with-
out modification. One simply ought to apply ra, which dis-
card our extensions before running the checks.

Typing needs to deal with the paramteric type future t
and with the introduced operators of section 2.2.

5. DISCUSSION
So far, real-time constraints and scheduling of tasks have

not been dealt with. One would have to look for example
at SynDEx [14] and the AAA methodology, to import these
techniques into our context. Nonetheless, being able to pro-
gram in a clean synchronous semantics the beginning and the
end of concurrent tasks should be beneficial to the designer.
Task priority, periodic schedule, and anything which is stat-
ically decided by the designer should be provided as static
parameters of the async constructs. In our implementation,
we experimented with the priority as a third argument and
a processor identifier as a fourth one.

Scheduling of asynchronous tasks has to ensure any static
constraints from the source: input queue size, thread num-
ber, etc. Note that there exists always an eager, dynamic
schedule mimicking the sequential compilation of the syn-
chronous semantics. The schedule may also be fixed and
offline for static Kahn networks [17]. In a real-time system,
the schedule may also be time-triggered, and the get opera-
tor can be handled as any inter-task dependence [14].

5.1 Static Resource Usage
In the presented semantics, A∞ is unbounded in two ways:

at each application of the rule Instantiate-async, a fresh
task is used, and the input and output streams, for each
task, are entirely stored. In Section 3, we discussed the fact
that in our implementation, the input queue size (q) and the
number of tasks (p) are finite and set by the programmer
as static arguments to the async construct. We saw that
these resource constraints have an influence on the possi-
ble schedules, but do not change the semantics, indeed, the
asynchronous version even with these bounds is still looser
than the synchronous version.

The bound on the input queue prevents an asynchronous
task to lag more than q ticks behind the task providing its in-
put. So all inputs older than the last q ones may be dropped.

The number of tasks specified by async allows to statically
allocate them at the beginning of the program. Indeed, an
async does have only one current task and a task has finished
if it is not the current one and has emptied its input queue.
So, when a task is needed to become the new current one
(rule Instantiate-async), either a fresh one exists, or it
waits for one to finish emptying its input queue.

Without further restriction, futures may escape their scope
and require concurrent garbage-collection. Indeed, contrary
to the input queue, it is not because a task is defining the
nth output value that we are sure some older output value
is no more needed. An output value is needed as long as a
future holding it is in the program. To avoid garbage col-
lection, we propose that a node may not return or take a
future as input. Among our examples, the only violation of
this rule is the version of the pipelining pattern, which was
better rewritten with explicit delays. With this restriction,
futures do not escape a node. At the end of the node’s step,
every futures it has used are dead, except for those stored
in the registers of the node. Dealing with the futures is then
a matter of a simple, constant time scan of a the node’s
bounded memory at the end of each step.

5.2 Safety of Asynchronous Constructs
If shared memory is used in the actual implementation, it

is not directly accessible to the programmer, and the cor-
rectness of the futures library is sufficient to prevent races.

Under the assumption of a correct scheduling, the preser-
vation theorem 1 ensures that if the synchronized version of
a program is causal, the original program is deadlock-free.
Finally, livelocks are impossible thanks to the fact that de-
coupling is bounded by the input queue sizes. Indeed, con-
sider that a task is never given a chance to compute, since
the decoupling with its caller is bounded, the caller also is
stalled. Inductively it would imply the main program to be
stalled. The bound on the decoupling enforce then that all
tasks are stalled, which would be an incorrect schedule.

6. RELATED WORK
The distribution and parallelization of synchronous pro-

grams has been an active topic. The majority of these works
are on Globally Asynchronous Locally Synchronous (GALS)
approaches, targeting Esterel [4] or Signal [21], and are
discussed in a survey by Girault [10]. Model-based design
has been applied to the distribution of a Lustre program
into a real-time task graph [2]. The language Prelude [20],
inspired by Lustre, is a real-time Architecture Description
Language (ADL) to handle multi-rate but periodic systems.
The generation of multi-threaded code from Esterel has
been studied by Yuan et al. [25] but does not decouple com-
putations across synchronous instants. CRP in Esterel [3,
4] introduces an exec construct to launch an external func-
tion with the result returned to the caller as a signal. The
caller needs to handle the result whenever it arrives. The
main purpose of exec is to trigger external tasks like robot
actuation. At the opposite, Ocrep [9] for Lustre considers
the automatic distribution of the intermediate imperative
language OC used by the Lustre compiler. The program-
mer does not control the desynchronization, she controls the
distribution by indicating where variables should be located.
Then Ocrep automatically generate a distributed code with
FIFOs trying, by using bi-simulation techniques, to link di-
rectly production to consumption. It is able [11] in the classi-

cal slow_fast example to determine the actual consumption
and to remove the register m_ys. In the general case, it is im-
possible to do so, as it would require to predict whether and
when a value of a stream is used. Moreover, the decoupling
achieved by Ocrep is, by design, bounded by one tick [11],
and depends on choices and optimizations performed when
generating OC.

Since futures have been used in a wide range of settings,
they are themselves very diverse. The principal distinction
opposes explicit vs. implicit futures. Implicit futures are fu-
tures without explicit get operator: they require language
support but allow for elegant, implicit pipelining. It often
comes with laziness support or continuation passing style.
Recent works include F# concurrency [24] and many results
from the Haskell community [22], the central library being
Control.Concurrent. Alice ML implements an elegant con-
current lambda calculus with implicit futures [19]. Explicit
futures are also coming in C11, C++11, etc.

The cyclo-static data flow model of computation [18, 6, 23]
computations over a variety of shared and distribu-
ted memory targets. Our approach is more general since
languages like Lustre do not have any periodic restrictions.
On the other hand, cyclo-static approaches leverage the peri-
odicity restrictions to allocate resources and partition com-
putations automatically [13]. We see as an advantage for
embedded system design that the programmer remains in
control of parallelization and resource allocation. In ad-
dition, these decisions may still be automated on periodic
subsets of a Lustre program.

7. CONCLUSION
We presented a novel approach to the distribution of syn-

chronous programs, using futures in a semantics-preserving
desynchronization. We showed that resources for parallel ex-
ecution can be bounded statically, and that desynchroniza-
tion does not lead to deadlock, livelock or races. We illus-
trated the expressiveness of our proposal on numerous exam-
ples, comparing with automatic techniques. We presented
natural ways to exploit task and data parallelism, hiding the
computation and communication latencies through explicit
delays set by the designer. We also highlighted the impor-
tance of the reset operator to extract data parallelism from
stateful tasks. We formally defined the semantics of our
language and we validated the examples using a prototype
compiler and runtime library.

Acknowledgments.
This work was partly supported by the INRIA large scale

initiative Synchronics and by the European FP7 projects
PHARAON id. 288307 and TERAFLUX id. 249013. We are
thankful to Stephen Edwards, Louis Mandel, Adrien Guatto
and Guillaume Baudart for their valuable recommendations
on the paper.

8. REFERENCES
[1] http://aadl.info.

[2] M. Alras, P. Caspi, A. Girault, and P. Raymond. Model-based
design of embedded control systems by means of a synchronous
intermediate model. In Design and Test in Europe (DATE),
May 2009.

[3] G. Berry, S. Ramesh, and R. K. Shyamasundar.
Communicating reactive processes. In Principles Of
Programming Languages, pages 85–98. ACM, 1993.

[4] G. Berry and E. Sentovich. An implementation of constructive
synchronous programs in polis. Formal Methods In System
Design, 17(2):135–161, Oct. 2000.

[5] D. Biernacki, J.-L. Colaco, G. Hamon, and M. Pouzet.
Clock-directed modular code generation of synchronous
data-flow languages. In International Conference on
Languages, Compilers, and Tools for Embedded Systems
(LCTES), Tucson, Arizona, June 2008.

[6] G. Bilsen, M. Engels, L. R., and J. A. Peperstraete. Cyclo-static
data flow. In Acoustics, Speech, and Signal Processing
(ICASSP’95), pages 3255–3258, Detroit, Michigan, May 1995.

[7] G. Delaval, A. Girault, and M. Pouzet. A type system for the
automatic distribution of higher-order synchronous dataflow
programs. In International Conference on Languages,
Compilers, and Tools for Embedded Systems (LCTES),
Tucson, Arizona, June 2008.

[8] L. Gérard, A. Guatto, C. Pasteur, and M. Pouzet. A Modular
Memory Optimization for Synchronous Data-Flow Languages.
Application to Arrays in a Lustre Compiler. In Languages,
Compilers, Tools and Theory for Embedded Systems
(LCTES’12), Beijing, 12-13 June 2012. Best paper award.

[9] A. Girault. Sur la Répartition de Programmes Synchrones.
Phd thesis, INPG, Grenoble, France, January 1994.

[10] A. Girault. A survey of automatic distribution method for
synchronous programs. In International workshop on
synchronous languages, applications and programs, SLAP,
volume 5, 2005.

[11] A. Girault, X. Nicollin, and M. Pouzet. Automatic rate
desynchronization of embedded reactive programs.
Transactions on Embedded Computing Systems (TECS),
5(3):687–717, 2006.

[12] M. Gordon. Compiler Techniques for Scalable Performance of
Stream Programs on Multicore Architectures. PhD thesis,
MIT, 2010.

[13] M. Gordon, W. Thies, and S. Amarasinghe. Exploiting
coarse-grained task, data, and pipeline parallelism in stream
programs. In Architectural Support for Programming
Languages and Operating Systems, San Jose, CA, Oct 2006.

[14] T. Grandpierre, C. Lavarenne, and Y. Sorel. Optimized rapid
prototyping for real-time embedded heterogeneous
multiprocessors. In International Workshop on Hardware
Software Co-Design, CODES’99, Rome, Italy, May 1999.

[15] N. Halbwachs, P. Raymond, and C. Ratel. Generating efficient
code from data-flow programs. In Programming Language
Implementation and Logic Programming, volume 528 of
Lecture Notes in Computer Science, pages 207–218, 1991.

[16] R. H. Halstead, Jr. Multilisp: a language for concurrent
symbolic computation. ACM Trans. Program. Lang. Syst.,
7:501–538, 1985.

[17] R. L. Jeronimo Castrillon and G. Ascheid. Maps: Mapping
concurrent dataflow applications to heterogeneous mpsocs.
IEEE Trans. on Industrial Informatics, page 19, nov 2011.

[18] E. A. Lee and D. G. Messerschmitt. Static scheduling of
synchronous data flow programs for digital signal processing.
IEEE Trans. Computers, 36(1):24–25, 1987.

[19] J. Niehren, J. Schwinghammer, and G. Smolka. A concurrent
lambda calculus with futures. Theoretical Computer Science,
364(3):338–356, Nov. 2006.

[20] C. Pagetti, J. Forget, F. Boniol, M. Cordovilla, and D. Lesens.
Multi-task implementation of multi-periodic synchronous
programs. Discrete Event Dynamic Systems, 21(3), 2011.

[21] D. Potop-Butucaru, B. Caillaud, and A. Benveniste.
Concurrency in synchronous systems. Formal Methods in
System Design, 28(2):111, 2006.

[22] D. Sabel and M. Schmidt-Schauß. A contextual semantics for
concurrent haskell with futures. In Principles and Practices of
Declarative Programming, pages 101–112. ACM, 2011.

[23] S. Stuijk, T. Basten, M. Geilen, and H. Corporaal.
Multiprocessor resource allocation for throughput-constrained
synchronous dataflow graphs. In Design Automation
Conference, pages 777–782. IEEE, 2007.

[24] D. Syme, T. Petricek, and D. Lomov. The F# Asynchronous
Programming Model, volume 6539 of Lecture Notes in
Computer Science, pages 175–189. Springer Verlag, 2011.

[25] S. Yuan, L. H. Yoong, and P. S. Roop. Compiling esterel for
multi-core execution. In Euromicro Conference on Digital
System Design, pages 727–735, 2011.

	Introduction
	Presentation
	A Motivating Example
	Decoupling With Futures

	Programming Parallelism
	Jitter Smoothing With Delays
	Partial Desynchronization
	Temporal Fork-Join
	Pipelining
	Stateless Data-Parallelism
	Data-Parallelism From Resetting
	Reordering Futures for Performances

	Semantics
	Standard Synchronous Semantics
	Asynchronous Tasks
	Execution of a Program
	Extension of the Synchronous Semantics
	Semantics Preservation
	Typing, Clocking and Causality

	Discussion
	Static Resource Usage
	Safety of Asynchronous Constructs

	Related Work
	Conclusion
	References

