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Abstract. Clocks in synchronous data-flow languages are the natural way to define several
time scales in reactive systems. They play a fundamental role during the specification of
the system and are largely used in the compilation process to generate efficient sequential
code. Based on the formulation of clocks as dependent types, the paper presents a simpler
clock calculus reminiscent to ML type systems with first order abstract types à la Laufer &
Odersky. Not only this system provides clock inference, it shares efficient implementations
of ML type systems and appears to be expressive enough for many real applications.

1 Introduction

1.1 Synchronous data-flow programming

Synchronous languages have been introduced to deal with real-time systems, that is, systems
requiring the ability to react to their environnement in bounded time and memory. These languages
introduce a discrete and logical notion of time. In this logical time, events and the reaction of
the system to their occurences have to be simultaneous and instantaneous. This hypothesis of
instantaneous reaction, called the synchronous hypothesis, allow a concurrent but deterministic
description of systems and efficient compilation of programs into sequential code.

Several languages have been designed on top of the synchronous hypothesis, imperative ones
(Esterel [5]), graphical ones (Argos [18], SyncCharts [1], Ptolemy [7]) or data-flow ones
(Lustre [14], Signal [3], Lucid Synchrone [23, 11]). Synchronous data-flow languages man-
age (possibly) infinite sequences or streams as primitive values. Synchrony appears naturally in
this model: streams are time indexed sequences and at time n, every stream takes its nth value.
Synchronous data-flow languages have proved to be well adapted to the design of sampled systems.

Lustre [14] has been successfully used by several industrial companies to implement safety
critical systems in various domains like nuclear plants, civil aircrafts, transport and automotive
systems. All these developments have been done using Scade, a graphical environment based on
Lustre and distributed by Esterel Technologies [25].

1.2 Clocks

Synchronous systems can be described as the parallel composition of several processes [4]. Nat-
urally, there arises a need to compose several processes computed on different rates. Rates in
synchronous data-flow programming find a natural expression: the logical time defines the fastest
possible rate in the system, called the base clock. All the other rates, or clocks, are derived from
the base clock. The other clocks are slower than the base clock and are obtained by stating that
a stream, on a given instant of the logical time, can be either absent or present. In the following
example, x and y are two streams, and y is twice slower than x:

x 0 1 2 3 4 5 6 ...
y 0 1 2 3 ...



However, combining streams on different rates, such as x and y, can be tricky. In general, some
synchronisation mechanism using possibly unbounded memory may be needed at run-time if such
combinations are allowed [8]. Thus, data-flow synchronous languages provide a static analysis,
checking that all combination of streams, even on different rates, can be evaluated without syn-
chronisation mechanism (i.e, buffering mechanism). This analysis is known as the clock calculus.

Clocks have been originaly introduced in Lustre and Signal. In this paper, we focus our
attention on the language Lucid Synchrone. Lucid Synchrone is as an extension of Lustre
with features from ML-like languages, while retaining its fundamental properties: it is based on
the same Kahn model [15]; it uses clocks as a way to deal with several time scales in a real-time
system and programs are compiled into finite memory transition systems. Moreover, it provides
powerfull extensions such as higher-order features, data-types, type and clock inference. Being an
extension of Lustre, the results presented in the paper can be applied to Lustre as well. The
language is used today by the Scade team at Esterel Technologies for the development of a
new compiler of Scade, the industrial version of Lustre (see [12], for example).

1.3 Contribution

Previous works have shown that the clock calculus of Lustre could be defined as a classical
dependent type system [10]. This clock calculus has been implemented in the first compiler of
Lucid Synchrone (in 1996) and has proved to be both simple and expressive. It has served as a
basis to implement a clock verifier inside a compiler for Scade at Esterel Technologies (in 2001).
This compiler has been used in experiments on real-size examples (more than 50000 lines of code)
and the dependent-based clock verifier appeared to be fast and satisfactory. Finally, a shallow
embedding of Lucid Synchrone and its semantics into the Coq [13] proof assistant has been
realised, establishing a correctness proof of the calculus [6].

Nonetheless, looking at real applications written in Scade, we observed that complex depen-
dent clocks were not useful in many cases: most of the time, clocks are used locally in the so-called
activation condition as a way to sample a process and clock inference could be obtained with a
simpler calculus. Thus, this paper presents a new clock calculus which is expressive enough for
most applications found in Scade. This calculus is based on classical Hindley-Milner type sys-
tems [20] with a restricted form of existential types as proposed by Laufer & Odersky [16]. This
calculus shares efficient implementation techniques of ML type systems, it provides higher-order
features and clock inference which is mandatory in a graphical environment such as Scade.

Section 2 gives an overview of this new calculus. Examples will be given in Lucid Synchrone
syntax 3. Examples will be kept first order such that they can be easily translated to Lustre
syntax. In section 3, we define a (higher-order) synchronous data-flow kernel on which Lucid
Synchrone is based and give it a Kahn semantics and a synchronous data-flow semantics. Sec-
tion 4 is devoted to the clock calculus presentation. Section 5 illustrates its expressiveness on some
typical examples. In section 7, we discuss related works and we conclude in section 8.

2 Overview

As any synchronous data-flow language, Lucid Synchrone is buit on top of a host language 4

used for writting primitive computations overs streams. Programs are written in an ML syntax
but every ground type and value imported from the host language is implicitly lifted to streams.
For example, int stands for the type of sequence of integers, 1 stands for the constant stream of
values 1; + adds point-wise its two input streams and if/then/else is the point-wise conditional.

3 A tutorial of Lucid Synchrone is available at www-spi.lip6.fr/lucid-synchrone.html.
4 Ocaml [17] in the case of Lucid Synchrone.



In the sequel we give on the right the graphical representation of some of the primitives in
Scade.

1 1 1 1 . . .
x x0 x1 x2 . . .
y y0 y1 y2 . . .
x+ y x0 + y0 x1 + y1 x2 + y2 . . .
c t f t . . .
if c then x else y x0 y1 x2 . . .

Furthermore, pre (for “previous”) is an instant delay operator and -> is an initialization operator.
The first value of pre y is undefined and noted nil 5. fby is the initialised delay 6 and satisfies
x fby y = x -> pre y.

x -> y x0 y1 y2 . . .
pre y nil y0 y1 . . .
x fby y x0 y0 y1 . . .

For example, we can compute the sum (such that, sn = Σn
i=0xi) of an input sequence x buy

writting:

let sum x = s where
rec s = x -> pre s + x

node sum : int -> int
node sum :: ’a -> ’a

and the function which computes the minimum and the maximum of an input sequence:

let bounds x = (min, max) where
rec min = x -> if x < pre min then x else pre min
and max = x -> if x > pre max then x else pre max

node bounds : ’a -> ’a * ’a
node bounds :: ’a -> ’a * ’a

The two bounds are initialised to x and are modified step by step according to the current value
of x. When this text is compiled, we obtain for each function a declaration (called node as in
Lustre), the type (“:”) and clock inferences (“::”). For example, the clock ’a -> ’a states that
the function sum is length preserving: it returns a value every time it receives an input. Clocks are
introduced below.

when is the down-sampling operator of Lustre which allows to extract a sub-stream from a
stream according to a condition, i.e. a boolean stream.

base t t t t . . .
c f t f t . . .
x x0 x1 x2 x3 . . .
x when c x1 x3 . . .
base on c f t f t . . .

The sampling operator introduces clock types. These clock types specify time behavior of stream
programs.

The clock of a sequence s is a boolean sequence giving the instants where s is defined. Among
these clocks, the constant boolean sequence base denotes the base clock of the system: a sequence
on the base clock is present at every instant. In the above diagram, the current value of x when c
is present when x and c are present and c is true. Since x and c are on the base clock true, the
clock of x when c is noted base on c. Now the sum function can be used at a slower rate by
down-sampling its input stream:
5 An initialisation analysis may check that the result of a program does not depend on these nil values [12].
6 The operator was first introduced in Lucid [2].



let sc x c = sum (x when c)
node sc : int -> clock -> int
node sc :: ’a -> ( c0:’a) -> ’a on c0

sc has a function clock which follows its type structure. This clock says that for any clock ’a, if
the first argument x of the function has clock ’a and the second argument named _c0 has clock
’a, then the result is on clock ’a on _c0 (variables are renamed in the clock type to avoid name
conflicts). An expression on clock ’a on _c0 is present when the clock ’a is true and the boolean
stream _c0 is present and true.

Now, the sampled sum can be instanciated with an actual clock. We first define a periodic
clock which is true one instant of ten.

(* a sampler that counts modulo n *)
let sample n = ok where

rec cpt = 0 -> if pre cpt = n - 1 then 0
else pre cpt + 1

and ok = cpt = 0
node sample : int -> bool
node sample :: ’a -> ’a

(* defining a periodic 1/10 clock *)
let clock ten = sample 10
node ten : clock
node ten :: ’a

let sum one over ten x = sc x ten
node sum one over ten : int -> int
node sum one over ten :: ’a -> ’a on ten

Thus, sum_one_over_ten x computes the sum of the sub-stream (x10n)n∈IN . Here, boolean streams
used to sample a stream have to be first introduced with the special construction let clock.

Programs must satisfy some clock constraints, as examplified on the following:

let unbounded x = x + (x when ten)
> x + (x when ten)
> ^^^^^^^^^^
This expression has clock ’b on ten, but is used with clock ’b.

which adds the stream x to the sub-sequence of x made by filtering nine item over ten. Thus, it
should compute the sequence (xn + x10n)n∈IN which is clearly not bounded memory. This is why
this program is rejected when dealing with real-time programming.

merge conversely allows slow processes to communicate with faster ones by merging sub-streams
into “larger” ones:

c f t f t . . .
x x0 x1 . . .
y y0 y1 . . .
merge c x y y0 x0 y1 x1 . . .

The clock type of merge is:

let my merge c x y = merge c x y
node my merge : bool -> ’a -> ’a -> ’a
node my merge :: ( c0:’a) -> ’a on c0 -> ’a on not c0 -> ’a

meaning that it combines complementary streams: when the second argument is present, the third
one is absent and conversely.



The following operator is a classical control engineering operator, available in both the Scade
library and “digital” library of Simulink. This operator detects a rising edge (false to true transi-
tion). The output becomes true as soon as a transition has been detected and remains unchanged
during numberOfCycle cycles. The output is initially false and a rising edge occuring while the
output is true is detected. In Lucid Synchrone syntax, this is written:

let count down (reset, n) = cpt where
rec cpt = if reset then n else (n -> pre (cpt - 1))

let risingEdgeRetrigger rer Input numberOfCycle = rer Output where
rec rer Output = (0 < v) & (c or count)
and v = merge clk (count down ((count,numberOfCycle) when clk))

((0 fby v) whenot clk)
and c = false fby rer Output
and clock clk = c or count
and count = false -> (rer Input & pre (not rer Input))

When a clock name is introduced with the let clock constructor, the name is considered to be
unique and does not take into account the expression on the right-hand side of the let clock.
Thus, the following program is rejected:

let clock c = true in
let v = 1 when c in
let clock c = true in
let w = 1 when c in
v + w
> v + w
> ^
This expression has clock ’a on ? c0, but is used with clock ’a on ? c1.

We stop the introductory examples here. Other examples can be found in the distribution [23].
Section 5 will give more examples of programs accepted (and rejected) with the proposed system.
The main idea of this system is to replace expressions in clocks by abstract names introduced
with the particular construction let clock. This is in contrast with previous versions of Lucid
Synchrone (as well as Lustre) where any boolean could be used to sample a stream. In term of a
type system, the resulted clock calculus corresponds to a standard Hindley-Milner type system with
a limited form of existential quantification as proposed by Laufer & Odersky [16]: the let clock
construction corresponds to the access threw a let binding to a value belonging to an existential
type.

3 A Synchronous Kernel and its Semantics

We present here the core language used in this paper. It is a higher-order functional language over
streams enriched with special operators for manipulating these streams:

e ::= i | x | op(e, e) | e fby e
| e when e | e whenot e | merge e e e
| e(e) | λx.e | rec x = e | let x = e in e
| let clock x = e in e
| (e, e) | fst e | snd e

i ::= true | false | 0 | ...
op ::= + | ...

An expression e may be an immediate constant (i), a variable (x), a point-wisely application of
an operator to a tuple of inputs (op(e, e)) 7, an application of an initialised delay (fby) 8, an
7 For simplicity, we only consider binary operators in this presentation.
8 This operator has been first introduced in Lucid [2].



application of sampling operators (when and whenot) or the combination operator (merge), an
application (e(e)), an abstraction λx.e, a local definition (let x = e in e), a local definition of a
clock (let clock x = e in e), a recursive expression (rec x = e), a pair (e, e) or an application of
one of the pair access functions (fst and snd).

Other classical operators can be derived from this kernel. For example:

if x then y else z = let clock c = x in merge c (y when c) (z whenot c)
x -> y = if true fby false then x else y
prex = nil fby x

-> is the initialisation operator and pre (for “previous”) is the un-initialised delay. nil denotes
any value with the correct type.

3.1 Data-flow Kahn Semantics

We first give our core language a classical Kahn semantics [15] on sequences 9. Let T ω be the set
of finite or infinite sequences of elements over the set T (T ω = T ∗ + T∞). The empty sequence is
noted ε and x.s denotes the sequence whose head is x and tail is s. Let ≤ be the prefix order over
sequences, i.e., x ≤ y if x is a prefix of y. The ordered set (T ω,≤) is a cpo. If f is a continuous
mapping from sequences to sequences, we shall write fix f for the smallest fix point of f .

If T1, T2, ... are sets of scalar values (typically values imported from a host language), we define
the domain V as the smallest set containing Ti

ω and closed by product and exponentiation.
For any assignment ρ (mapping values to variable names) and expressions e, we define the

denotation of an expression e by Sρ(e). We first give an interpretation over sequences to every
data-flow primitive and constant streams. Their definition is given in figure 1.

i# = i.i#

op#(s1, s2) = ε if s1 = ε or s2 = ε
op#(v1.s1, v2.s2) = (v1 op v2).op#(s1, s2)

fby#(ε, ys) = ε
fby#(v.xs, ys) = v.ys

when#(s1, s2) = ε if s1 = ε or s2 = ε
when#(v1.s1, true .s2) = v1.(when

#(s1, s2))
when#(v1.s1, false.s2) = when#(s1, s2)

merge#(s1, s2, s3) = ε if s1 = ε or s2 = ε or s3 = ε
merge#(true .s1, v2.s2, s3) = v2.merge

#(s1, s2, s3)
merge#(false.s1, s2, v3.s3) = v3.merge#(s1, s2, s3)

Fig. 1. Data-flow Kahn semantics

– immediate values (i) are lifted into infinite constant streams.
– operations are applied point-wisely to their arguments.
– the initialised delay (fby) conses the head of its first input to its second input.
– when and merge are filtering and combination operators overs sequences. The operation when

emits a sub-sequence of its inputs corresponding to the instants where the condition is true.
The operation merge merges two sub-sequences into a sequence: it emits the current value of
its second inputs when the condition is true and the current value of its third input when the
condition is false.

9 We keep here the original notation.



We can easily check that the primitives are continuous for the prefix order. The denotational
semantics for other constructions is defined as usual (see [24]). We recall it here shortly.

Sρ(op(e1, e2)) = op#(Sρ(e1))(Sρ(e2))
Sρ(e1 fby e2) = fby#(Sρ(e1),Sρ(e2))

Sρ(e1 when e2) = when#(Sρ(e1),Sρ(e2))
Sρ(e1 whenot e2) = when#(Sρ(e1),Sρ(not e2))

Sρ(merge e1 e2 e3) = merge#(Sρ(e1),Sρ(e2),Sρ(e3))
Sρ(x) = ρ(x)
Sρ(i) = i#

Sρ(let x = e1 in e2) = Sρ[x←Sρ(e1)](e2)
Sρ(let clock x = e1 in e2) = Sρ[x←Sρ(e1)](e2)

Sρ(λx.e) = λy.Sρ[x←y](e) where y "∈ Dom(ρ)
Sρ(e1(e2)) = Sρ(e1)(Sρ(e2))
Sρ(e1, e2) = (Sρ(e1),Sρ(e2))
Sρ(fst e) = v1 if Sρ(e) = (v1, v2)
Sρ(snd e) = v2 if Sρ(e) = (v1, v2)

Sρ(rec x = e) = ρ[x ← x∞] where x∞ = fix λy.Sρ[x←y](e)

The semantics gives meaning to any Kahn network. Nonetheless, it is well known that simple
data-flow networks cannot always be executed in bounded memory even when they are only com-
posed of bounded memory operators. This problem appears when non length preserving functions
(i.e, sampling functions) are considered [8] and has been exemplified in section 2.

3.2 Synchronous Data-flow Semantics

In order to model synchronous execution, we describe a lower level data-flow semantics where
absence of a stream is made explicit. The set of instantaneous values is enrichied with a special
value abs representing the absence. The set of finite and infinite sequences of values belonging to
T complemented with the absent value is noted T ω

abs where Tabs = T ∪ {abs}. That is:

Stream (T ) = T.Stream (T ) + ε
Value (T ) = abs + T
Clocked-Stream (T ) = Stream (Value (T ))
Clock = Stream (bool)

A clocked stream (element of Clocked-Stream (T )) is made of present or absent values. We define
the clock of a sequence s as a boolean sequence (without absent values) indicating when a value
is present:

clock (ε) = ε
clock (abs .xs) = false.clock (xs)
clock (x.xs) = true.clock (xs)

We give a new interpretation to constant streams, to operators applied point-wisely and to syn-
chronous primitives. This interpretation is given in figure 2 and is discussed below:

Constant streams: This operator becomes polymorphic since it may produce a value (or not)
according to the environment. For this reason, we add an extra argument giving its clock. Thus,
i[s] denotes a constant stream with clock s.

Point-wise application: We must decide here what to do, in the case of a binary operator, when
only one of the argument is present. Three choices are possible:

1. store the available value in a state variable implementing a FIFO queue until the other input
is present;



i#[ε] = ε
i#[true.cl] = v.i#[cl]
i#[false.cl] = abs .i#[cl]

op#(s1, s2) = ε if s1 = ε or s2 = ε
op#(abs .s1, abs .s2) = abs .op#(s1, s2)
op#(v1.s1, v2.s2) = (v1 op v2).op

#(s1, s2)

fby#(ε, ys) = ε
fby#(abs .xs,abs .ys) = abs .fby#(xs, ys)
fby#(x.xs, y.ys) = x.fby1#(y, xs, ys)
fby1#(v, ε, ys) = ε
fby1#(v, abs .xs, abs .ys) = abs .fby1#(v, xs, ys)
fby1#(v, w.xs, s.ys) = v.fby1#(s, xs, ys)

when#(s1, s2) = ε if s1 = ε or s2 = ε
when#(abs .xs, abs .cs) = abs .when#(xs, cs)
when#(x.xs, true .cs) = x.when#(xs, cs)
when#(x.xs, false.cs) = abs .when#(xs, cs)

merge#(s1, s2, s3) = ε if s1 = ε or s2 = ε or s3 = ε
merge#(abs .cs, abs.xs, abs .ys) = abs .merge#(cs, xs, ys)
merge#(true .cs, x.xs,abs .ys) = x.merge#(cs, xs, ys)
merge#(false.cs, abs .xs, y.ys) = y.merge#(cs, xs, ys)

Fig. 2. Synchronous data-flow semantics

2. generate a run-time error;
3. reject statically this situation.

In the context of real-time programming, and to be coherent with Lustre, only the third solution
is retained. The point-wise application of an operator (op) needs its two arguments to be on the
same clock. We need a static analysis — a clock calculus — to insure this property. This analysis
will be presented in section 4.

Delay (fby): fby (for “followed by”) is the unitary delay: it conses the head of its first argument
to its second argument. The arguments and the result of fby must be on the same clock. fby
corresponds to a two-state machine: while the two arguments are absent, it emits nothing and
stays in its initial state fby. When the two arguments become present, it emits its first argument
and goes into the new state fby1 storing the previous value of its second argument. In this state,
it emits a value every time its two arguments are present.

Sampling and composition of sequences (when and merge) The sampling operator expects two
arguments on the same clock. The clock of the result depends on the boolean condition (c). If the
argument have a clock (cl), the clock of the result is (cl on c) such that:

on#(true.cl, true.cs) = true.on#(cl, cs)
on#(true.cl, false.cs) = false.on#(cl, cs)
on#(false .cl, abs.cs) = false.on#(cl, cs)
on#(cl, c) = ε if cl = ε or c = ε

We can notice that the clock is a simple sequence without absent values. The definition of merge
states that one branch must be present when the other is absent.

Since this semantics is a partial semantics, we shall introduce clock constraints to reject pro-
grams which cannot be executed synchronously. This semantics has been described in the proof



assistant Coq [6]. The use of an explicit absent value is part of the semantics of Signal [21].
Nonetheless, Signal cannot receive a Kahn semantics (functional and without absence) whereas
in the case of Lustre and Lucid Synchrone, the use of absence is only done for characterising
networks which can be executed synchronously.

4 Clock Calculus

We present now the clock calculus as a type system. The goal of the clock calculus is to produce
jugments of the form H & e : cl meaning that “the expression e has clock cl in the environment
H”.

σ ::= ∀β1, ..., βn.∀α1, ..., αm.∀X1, ..., Xk.cl n, m, k ∈ IN
cl ::= cl → cl | cl × cl | β | s | (c : s)
s ::= base | s on c | s on not c | α
c ::= X | n

H ::= [x1 : σ1, ..., xn : σn]

Clock types are decomposed into two categories, clock schemes (σ) and clocks (cl). Clock schemes
are regular clocks quantified over clock type variables (β), stream clock type variables (α) and
carrier variables (X). Regular clocks (cl) may be functional (cl → cl), products (cl× cl), variables
(β), stream clocks (s) and dependences (c : s). A stream clock may be the base clock (base), a
sampled clock (s on c or s on not c) or a stream clock variable (α). A carrier (c) can be either a
name (n) or a carrier variable (X).

We define the set of free variables FV (cl) of a clock cl composed of free clock variables (β),
free stream clock variables (α) and free carrier variables (X). We extend it to clock schemes and
environments. Dom(H) is the domain of H . N (cl) returns the set of abstract names from cl. Their
definitions are classical and not given in the paper.

Programs are clocked in an initial environment H0 giving clocks to synchronous primitives.
To make the clock calculus shorter, a synchronous expression like e1 fby e2 is treated as a reg-
ular application of a synchronous primitive to expressions and is clocked as if it were written
(fby (e1)) e2.

H0 = [fby : ∀α.α → α → α
when : ∀α.∀X.α → (X : α) → α on X
whenot : ∀α.∀X.α → (X : α) → α on not X
merge : ∀α.∀X.(X : α) → α on X → α on not X → α
fst : ∀β1, β2.β1 × β2 → β1,
snd : ∀β1, β2.β1 × β2 → β2]

The first entry in this initial environment states that the clock of x fby y is the one of x and y. A
boolean expression e with clock (c : s) states that e is present when s is true and has the abstract
value c. Thus, an expression e1 when e2 is well clocked if the two inputs are synchronous on the
clock α. In that case, the clock of the result is a subclock α on X of α where X stands for the
value of e2. An expression merge e e1 e2 is well clocked and on clock α if e is on clock α and is
equal to some X , e1 is on clock α on X and e2 on clock α on not X .

Clocks may be instanciated and generalised in the following way:

inst(∀β.α.X.cl′) = cl′[cl/β][s/α][c/X]

genH(cl) = ∀β1, ..., βn.∀α1, ..., αm.∀X1, ..., Xk.cl
where β1, ..., βn, α1, ..., αm, X1, ..., Xk = FV (cl)\FV (H)

It states that a clock scheme can be instanciated by replacing clock variables by clocks, stream
clock variables by stream clocks and carrier variables by carriers. Moreover, any variable can be
generalized as soon as it does not appear free in the environment. The clocking rules are now given
in figure 3.



FV (s)) ⊆ FV (H)
(IM)

H " i : s

H " e1 : s H " e2 : s
(OP)

H " op(e1, e2) : s

H " e1 : cl2 → cl1 H " e2 : cl2
(APP)

H " e1 (e2) : cl1

H, x : cl1 " e : cl2
(FUN)

H " λx.e : cl1 → cl2

cl = inst(H(x))
(INST)

H " x : cl

H, x : s " e : s
(REC)

H " rec x = e : s

H " e1 : cl1 H, x : genH(cl1) " e2 : cl2
(LET)

H " let x = e1 in e2 : cl2

H " e1 : cl1 H " e2 : cl2
(PAIR)

H " (e1, e2) : cl1 × cl2

H " e1 : s H,x : (n : s) " e2 : cl2 n %∈ N (H, cl2)
(LET-clock)

H " let clock x = e1 in e2 : cl2

Fig. 3. The Clock Calculus

– a constant stream may have any clock s (rule (IM)). In doing this, we check that clock variables
in s are bounded in the environment.

– the inputs of imported primitives must all be on the same clock (rule (OP))
– the rules for variables (INST), functions (FUN), applications (APP), local definitions (LET) and

products (PAIR) are the classical typing rules of ML.
– a clock definition clock x = e defines a new clock name n which has the clock type s. In doing

this, n must be a fresh name, that is, it must not appear free in the environment nor in the
returned clock cl2. It states that if x evaluates to some value n and is on clock s, then the
clock of e2 is cl2. The symbol n is an abstraction of the actual value of e1 and is considered
to be unique.

The clocking rule for the let clock construction is a particular case of the typing rule for let
in the Laufer & Odersky type system. Here, the abstract name n corresponds to the introduction
of a fresh skolem name.

4.1 Correctness Theorem and the Use of Clocks

The clock calculus is used for giving a synchronous data-flow semantics to programs and to es-
tablish a correctness property: well clocked programs can be executed synchronously in the syn-
chrounous data-flow semantics without raising execution errors. In practice, the clock information
is used in synchronous compilers in the optimization process in order to avoid the expensive
representation of “presence/absense” at run-time. Once the clock analysis is performed, every
computation is annotated with its clock which serves as a guard: a computation is made only
when its clock is true.

A detailed presentation of the use of clocks in the compilation process is out of scope of this
paper. We simply define a translation of programs into programs where constants are annotated
with their clocks. This translation follows exactly the clock calculus and is obtained by asserting
the judgment:

H & e : cl ⇒ ce

meaning that the expression e with clock cl can be transformed into the expression ce. The goal
of this transformation is to produce a new program where expressions are annotated with their
clocks. For example:

f = λx.(0 fby x) + 2 : ∀α.α → α

where + is the point-wise sum will be transformed into:

f = λα.λx.(0[α] fby x) + 2[α]



(IM) H " i : s ⇒ i[s]

H,x : cl1 " e : cl2 ⇒ ce
(FUN)

H " λx.e : cl1 → cl2 ⇒ λx.ce

cl = inst(H(x))
(INST)

H " x : cl ⇒ instcodeH(x)(x)

H " e1 : s ⇒ ce1 H " e2 : s ⇒ ce2
(OP)

H " op(e1, e2) : s ⇒ op(ce1, ce2)

H " e1 : cl1 ⇒ ce1 H " e2 : cl2 ⇒ ce2
(PAIR)

H " (e1, e2) : cl1 × cl2 ⇒ (ce1, ce2)

H " e1 : cl2 → cl1 ⇒ ce1 H " e2 : cl2 ⇒ ce2
(APP)

H " e1 (e2) : cl1 ⇒ ce1 (ce2)

H, x : s " e : s ⇒ ce
(REC)

H " rec x = e : s ⇒ rec x = ce

H " e1 : cl1 ⇒ ce1 H,x : genH(cl1) " e2 : cl2 ⇒ ce2
(LET)

H " let x = e1 in e2 : cl2 ⇒ let x = gencodeH(cl1, ce1) in ce2

H " e1 : s ⇒ ce1 H,x : (n : s) " e2 : cl2 ⇒ ce2 n %∈ N (H, cl2)
(LET-clock)

H " let clock x = e1 in e2 : cl2 ⇒ let x = ce1 in let n = x in ce2

Fig. 4. Transforming streams into clocked-streams

The function f whose clock is polymorphic receives an extra argument α giving its clock. Then at
instanciation point, the function will receive its clock as an extra argument. For example, if x is
on clock s1:

f (x when c)

is transformed into:
f s1 (x when c)

Our translation corresponds to the classical “library” method for compiling type classes in Haskell
and first introduced in [26]. Clock variables are then abstracted at generalisation points and in-
stanciated at application points. We first introduce two auxiliary functions:

gencodeH(cl, ce) = λα1, ..., αm.X1, ..., Xk.ce
where β1, ..., βn, α1, ..., αm, X1, ..., Xk = FV (cl)\FV (H)

instcodecl(x) = x
instcode∀β.α.X.cl′(x) = x s1...sn.c1...ckwhere inst(∀β.α.X.cl′) = cl′[cl/β][s/α][c/X]

The predicate is defined in figure 4.

– immediate constants receive an extra argument giving their clock.
– rules for abstractions (FUN), applications (APP), recursions (REC), products (PAIR) are simple

morphisms.
– clocks are passed at instantiation points (rule (INST)) and abstracted at generalization points

(rule (LET)). Here, only stream clock variables (s) or carrier variables (X) from the scheme
clock are used since only they may appear in the sampling of a stream value.

– for clock definitions (rule (LET-clock)), the name n is introduced in the generated code since it
may appear in some computation of a clock.

We then prove that this transformation will not provide programs producing incomplete pattern
failure. For this purpose, we define a valuation V from variables to boolean streams and lift it to
clocks such that:

V(base) = true
V(s on c) = on#(V(s),V(c))
V(s on not c) = on#(V(s), not#(V(c)))



We define interpretation functions I.(.) relating clock schemes and set of values. An interpretation
is such that:

v ∈ IV(s) iff clock (v) ≤ V(s) where ≤ stands for the prefix order
v ∈ IV((c : s)) iff v ∈ IV(s) and v = V(c)
v ∈ IV(cl1 → cl2) iff for all v1 such that v1 ∈ IV(cl1), v(v1) ∈ IV(cl2)
(v1, v2) ∈ IV(cl1 × cl2) iff v1 ∈ IV(cl1) and v2 ∈ IV(cl2)
v ∈ IV(∀β1, ..., βk.σ) iff for all cl1, ..., clk, v ∈ IV(σ[cl1/β1, ..., clk/βk])
v ∈ IV(∀α1, ..., αn.X1, ..., Xk.σ) iff for all s1, ..., sn, c1, ..., ck,

v (Vs1), ..., (Vsn) (Vc1), ..., (Vck) ∈ IV(cl[s1/α1, ..., sn/αn,
c1/X1, ..., ck/Xk])

Theorem 1 (Clock Soundness). If [x1 : σ1, ..., xn : σn] & e : cl ⇒ ce then for all valuation V .,
for all interpretation function I.(.), for all v1, ..., vn such that v1 ∈ IV(σ1), ..., vn ∈ IV(σn), we
have SV[v1/x1,...,vn/xn](ce) ∈ IV(cl).

The proof is given in appendix A.

The clock calculus presented in this paper is implemented in the Lucid Synchrone compiler
and is in used for more than one year. Classical implementation techniques for ML type systems
have been used (e.g, destructive unification). The technique for checking that the introduced name
in the rule (LET-clock) is a fresh name and does not escape its scope is due to Pottier [19] and is
used for the efficient implementation of the Laufer & Odersky system.

Practical experiments show that the clock calculus is as fast as the type inference which means
that it can be applied to real-size examples.

5 Examples

We illustrate the expressivity of this calculus on some typical examples. A Lucid Synchrone
program is a sequence of global declarations. A global declaration defines a name which can be
used after its declaration. Every global declaration is analysed sequentially and compiled.

5.1 Activation Conditions

A classical primitive in a block diagram framework (such as the one of Scade) is the activation
condition (also known as enable sub-system in Simulink). It consists of executing a node only
when a condition is true. In term of clocks, it corresponds to filtering the input of that node on a
certain clock clk and to project the result on the base clock. Such an operation is a higher-order
construct and can be defined like the following:

let condact clk f input init =
let rec u = merge clk (f (input when clk))

((init fby u) whenot clk) in
u

node condact : clock -> (’a -> ’b) -> ’a -> ’b -> ’b
node condact :: (clk:’a) -> (’a on clk -> ’a on clk) -> ’a -> ’a -> ’a

Its graphical representation in Scade is given in figure 5. Using the condact primitive, we can
rewrite the rising edge retrigger as it is written in the Scade library.

let risingEdgeRetrigger rer Input numberOfCycle = rer Output where
rec rer Output = (0 < v) & (c or count)
and v = condact clk count down (count,numberOfCycle) 0
and c = false fby rer Output
and clock clk = c or count
and count = false -> (rer Input & pre (not rer Input))

Its graphical representation is given in figure 6.



Fig. 5. Scade notation for activation condition.

Fig. 6. The risingEdgeRetrigger in Scade

5.2 Iteration

The symetric operation of the activation condition is an iterator. It corresponds to the writting of
an internal for or while loop. This operator consists in iterating a function on an input.

let iter clk init f input =
let rec o = f i
and i = merge clk input ((init fby o) whenot clk) in
o when clk

node iter :: (clk:’a) -> ’a -> (’a -> ’a) -> ’a on clk -> ’a on clk

5.3 Scope Restriction

Being based on the Laufer & Odersky type system, the clock calculus suffers from the same
limitations. Mainly, when clock names are introduced with the let clock construction, these
names must not escape their lexical scope. For example:

let escape x =
let clock c = (x = 0) in
x when c

>....escape x =
> let clock c = (x = 0) in
> x when c
The clock of this expression depends on ?c 0 which escape its scope.

Thus, the clock calculus is less expressive than the previous clock calculus of Lucid Synchrone
or the one of Lustre where a result can depend on a clock computed internally as soon as the
clock is returned as a result. This could be considered as a serious restriction. Quite surprisingly,
this is not the case in practice mostly because most (near all!) programs found in Scade use clocks
in a limited way corresponding to the activation condition and because these languages do not
provide higher-order features.



6 Extension: Clocks defined at Top-level

We have defined (and implemented) an extension of the presented clock calculus with top-level
clocks. We call top-level or constant clocks, clocks defined globally at top-level of a program. These
clocks do not depend on any input of the program but they may, themselves, be instanciated on
different clocks. Consider, for example:

let clock sixty = sample 60 (* 1/60 *)
node sixty : clock
node sixty :: ’a

It defines a periodic clock sixty. Using it, we can define a (real) clock in the following way:

let hour minute second second =
let minute = second when sixty in
let hour = minute when sixty in
hour,minute,second

node hour minute second : ’a -> ’a * ’a * ’a
node hour minute second ::

’a -> ’a on sixty on sixty * ’a on sixty * ’a

A stream on clock ’a on sixty on sixty is only present one instant over 3600 instants which
match perfectly what we are expecting.

Using clocks defined globally, we can write simple over-sampling functions. Consider, for ex-
ample, the computation of the sequence (on)n∈IN such that:

o2n = xn

o2n+1 = xn

It can be programmed in the following way:

let clock half = h where
rec h = true -> not (pre h)

let stuttering x = o where
rec o = merge half x (0 -> (pre o) whenot half)

node stuttering :: ’a on half -> ’a

This is a true example of oversampling, that is, a function whose internal clock is faster than the
clock of its input. This example shows that some limited form of oversampling — which is possible
in Signal and not in Lustre — can be achieved with simple typing techniques.

It appears that top-level clocks are sufficient to express many programs appearing in the Scade
environment. In particular, many clocks are periodic 10. Periodic (constant) clocks are useful for
specifying hard real-time constraints from the environment and to direct the scheduling strategy
of the compiler [9]. It is an open question to know whether constant clocks — which only need a
very modest, dependent-less type system — are sufficient for this purpose.

In term of type system, these constant clocks defined at top-level do not raise any technical
difficulty. Clock names defined at top-level are constant names and act as new type constructors
with arity zero defined in ML languages. Then, as it is the case for clock names defined locally,
two clocks are equal if they have the same name.

10 Typically, an application is made of several main behaviors, each of them being executed at different
periodic (constant) clocks, e.g., corresponding to 60hz, 200hz.



7 Related Works

Lucid Synchrone has been originally developed as a functional extension of Lustre and to serve
as an experimental language for prototyping extensions for it. It is based on the same semantic
model and clocks are largely reminiscent of the ones in Lustre. Up to syntactic details, the
clock calculus presented in this paper can be applied directly to Lustre programs. Nonetheless,
the clock calculus is expressed here as a typing problem: this allows clocks to be automatically
inferred using standard techniques and is compatible with higher-order. In comparison, Lustre
is first-order and clocks are verified instead of being inferred. Clock inference is mandatory in a
graphical programming environment such as the one of Scade (the clock of intermediate wires
must be computed automatically) and one of our motivation is to design an efficient clock inference
mechanism for Scade. Finally, higher-order features appeared to be very useful for the prototyping
of special purpose primitives before their ad-hoc incoding inside the Scade compiler.

The present clock calculus can also be related to the one of Signal. Clocks in Signal can be
arbitrary boolean expressions and the language supports full over-sampling. As a result, the clock
calculus of Signal reaches an impressive expressive power. Two streams with unrelated clocks
can be combined thru the operator default, and the clock of the resulting stream is the “union”
of the clocks of the two arguments. However, this expressiveness comes at the price of a greater
complexity. In particular, the clock calculus of Signal calls for boolean resolution techniques and
fix-point iteration whereas we use simpler unification techniques.

This new calculus is less expressive than the previous clock calculus of Lucid Synchrone,
based on dependent types. The main difference is that clock types only contain abstract names
introduced with the special primitive let clock whereas any boolean expression could be used for
sampling a stream. From a Scade user point of view, the need to name each clock and introduce
it with a special construct (here let clock) is not a problem; people developing safety critical
applications are pretty familiar with this kind of discipline.

8 Conclusion

In this paper we have presented a simple type-based clock inference calculus for a synchronous data-
flow language providing higher-order features such as Lucid Synchrone. The system is based on
the extension of an ML type system with first class abstract types proposed by Laufer & Odersky.
This calculus has been obtained by forbiding general boolean expressions in clock types, allow-
ing them to contain only abstract names. These abstract names denote special boolean streams
which are used to sample a stream. They can be introduced through the dedicated construction
let clock.

We discovered recently that the idea of replacing boolean expressions by names in clocks has
been already suggested by other implementors of synchronous compilers [22]. Nonetheless, it does
not seem that the resulting clock calculus has been identified nor implemented.

Our motivation in doing such a clock calculus was mainly pragmatic. After several years of
use of a dependent-type based clock calculus and looking at programs written in Scade and
Lustre, we observed that most of the time complex dependences in clock are useless and that the
simplification proposed here is expressive enough for many real applications. The new system is
simpler to use and it shares standard theory and implementation techniques of ML type systems.

Finally, we believe that bridging together the clock calculus and standard ML typing may con-
tribute to the use of clocks as a good programming discipline in synchronous data-flow languages.
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A Proof of Theorem 1 (Clock Soundness)

The property is proved by induction on the structure of expressions.

Case e′ = i We have & i : s ⇒ i[s]. By definition, clock (SV(i[s])) = V(s).



Case e′ = x We have H, x : σ & x : cl ⇒ instcodeH(x). There are several cases. Either σ = cl or
some variables are universally quantified.

– If σ = cl then H, x : cl & x : cl ⇒ x and the property holds by definition.
– Let σ = ∀β1, ..., βn.α1, ..., αm.X1, ..., Xk.cl. Let H = [σ1/x1, ..., σp/xp, σ/x] be the typing en-

vironment and [v1/x1, ..., vp/xp, v/x] the corresponding environment for the evaluation. Let
ρ = V [v1/x1, ..., vp/xp, v/x].

Let v such that v ∈ IV(∀β1, ..., βn.α1, ..., αm.X1, ..., Xk.cl). According to the definition of
I.(.), for all cl1, ..., cln, s1, ..., sm, c1, ..., ck, we have
v (Vs1)...(Vsn).(Vc1)...(Vck) ∈ IV(cl[cl1/β1, ..., cln/βn][s1/α1, ..., sm/αm][c1/X1, ..., ck/Xk]).
The property holds since:
v (Vs1)...(Vsn).(Vc1)...(Vck) = (Sρ(x s1...sn.c1...ck)) = Sρ(instcodeH(x)).

Case of primitives Direct recurrence.

Case e′ = e1(e2) Let H be the typing environment and ρ, the corresponding evaluation en-
vironment. Suppose the property holds for e1 and e2, that is SV(ce1) ∈ IV(cl1 → cl2) and
SV (ce2) ∈ IV(cl1). According to the definition of the interpretation I.(.), for any v ∈ IV(cl1)
we have (SV(ce1))(v) ∈ IV(cl2). Thus, (SV(ce1))(SV(ce2)) = SV(ce1(ce2)) ∈ IV(cl2). Thus the
property holds.

Case e′ = λy.e Let H be the typing environment and ρ, the corresponding evaluation environment.
Suppose that H, y : cly & e : cl ⇒ ce. Applying the recurrence hypothesis, for all ρ corresponding
to H and for all vy ∈ IV(cly) we have SV[vy/y](ce) ∈ IV(cl). Thus, for all vy ∈ IV(cly), we have
SV[vy/y]((λy.ce) y) ∈ IV(cl). Thus, for all vy ∈ IV(cly), we have (SV(λy.ce))(vy) ∈ IV(cl). Thus
the property holds.

Case of e′ = let y = e1 in e2 Direct recurrence and combination of the preceding rules.

Case of clock declarations e = let clock x = e1 in e2 Suppose that the property holds for
H & e1 : s1 ⇒ ce1, that is, for all V and [v1/x1, ..., vn/xn] such that v1 ∈ IV(σ1), ..., vn ∈ IV(σn),
SV[v1/x1,...,vn/xn](ce1) ∈ IV(s1). Let n be a fresh name n "∈ N (H). Let V ′ be an extension of V
such that V ′(z) = V(z) if z "= n. Then for all V ′ extending V , for all v1 ∈ IV′(σ1), ..., vn ∈ IV′(σn)
we have SV′[v1/x1,...,vn/xn](ce1) ∈ IV′(s1).

Suppose that the property holds for H, x : (n : s1) & e2 : cl2 ⇒ ce2 where n "∈ N (H) and
n "∈ N (cl2), that is for all V ′, for all v1 ∈ IV′(σ1), ..., vn ∈ IV′(σn), vx ∈ IV′((n : s1)), we have
SV′[v1/x1,...,vn/xn,vx/x](ce2) ∈ IV′(cl2). vx ∈ IV′((n : s1)) means that vx ∈ IV′(s1) and V ′(n) = vx.
Since n is a fresh name, this means that for all z V ′(z) = V(z) is z "= n and V ′n = vx otherwise, that
SV′[v1/x1,...,vn/xn,vx/x](ce2) = SV[v1/x1,...,vn/xn,vx/x,vx/n](ce2) and finally, that IV′(cl2) = IV(cl2).
Thus, SV[v1/x1,...,vn/xn,vx/x,vx/n](ce2) ∈ IV(cl2), that is SV[v1/x1,...,vn/xn](let x = ce1 in let n =
x in ce2) ∈ IV(cl2) which is the expected result.

Case of recursions e′ = (rec x = e) Let f : y +→ SV[y/x](ce). We have ε ∈ IV(s). For all
v1 ∈ IV(σ1), ..., vn ∈ IV(σn), v ∈ IV(s), SV[v/x](ce) ∈ IV (s), that is f(v) ∈ IV(s). Thus, for
all n, fn(ε) ∈ IV(s). For all n, fn(ε) ≤ limn→∞(fn(ε)). limn→∞(fn(ε)) "∈ IV(s), means that
clock (limn→∞(fn(ε))) "≤ V(s). Thus, there exists a k such that fk(ε) "≤ V(s) which is contradic-
tory. Thus, we get the expected result.


