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Abstract. Modeling languages for hybrid systems are cornerstones of
embedded systems development in which software interacts with a phys-
ical environment. Sequential code generation from such languages is im-
portant for simulation efficiency and for producing code for embedded
targets. Despite being routinely used in industrial compilers, code gen-
eration is rarely, if ever, described in full detail, much less formalized.
Yet formalization is an essential step in building trustable compilers for
critical embedded software development.
This paper presents a novel approach for generating code from a hy-
brid systems modeling language. By building on top of an existing syn-
chronous language and compiler, it reuses almost all the existing infras-
tructure with only a few modifications. Starting from an existing syn-
chronous data-flow language conservatively extended with Ordinary Dif-
ferential Equations (ODEs), this paper details the sequence of source-to-
source transformations that ultimately yield sequential code. A generic
intermediate language is introduced to represent transition functions.
The versatility of this approach is exhibited by treating two classical
simulation targets: code that complies with the FMI standard and code
directly linked with an off-the-shelf numerical solver (Sundials CVODE).
The presented material has been implemented in the Zélus compiler and
the industrial Scade Suite KCG code generator of Scade 6.

1 Introduction

Hybrid systems modeling languages allow models to include both software and
elements of its physical environment. Such models serve as references for simula-
tion, testing, formal verification, and the generation of embedded code. Explicit
hybrid systems languages like Simulink/Stateflow5 combine Ordinary Dif-
ferential Equations (ODEs) with difference and data-flow equations, hierarchical
automata in the style of Statecharts [15], and traditional imperative features.

? Examples in Zélus and the extension of Scade 6 with hybrid features are available
at http://zelus.di.ens.fr/cc2015/.

5 http://mathworks.org/simulink
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http://mathworks.org/simulink


Models in these languages mix signals that evolve in both discrete and contin-
uous time. While the formal verification of hybrid systems has been extensively
studied [8], this paper addresses the different, but no less important, question of
generating sequential code (typically C) for efficient simulations and embedded
real-time implementations.

Sequential code generation for synchronous languages [5] like Lustre [14]
has been extensively studied. It can be formalized as a series of source-to-source
and traceable transformations that progressively reduce high-level programming
constructs, like hierarchical automata and activation conditions, into a minimal
data-flow kernel [10]. This kernel is further simplified into a generic intermediate
representation for transition functions [6], and ultimately turned into C code.
Notably, this is the approach taken in the Scade Suite KCG code generator of
Scade 66, which is used in a wide range of critical embedded applications.

Yet synchronous languages only manipulate discrete-time signals. Their ex-
pressiveness is deliberately limited to ensure determinacy, execution in bounded
time and space, and simple, traceable code generation. The cyclic execution
model of synchronous languages does not suffer the complications that accom-
pany numerical solvers. Conversely, a hybrid modeling language allows discrete
and continuous time behaviors to interact. But this interaction together with
unsafe constructs, like side effects and while loops, is not constrained enough,
nor specified with adequate precision in tools like Simulink/Stateflow. It
can occasion semantic pitfalls [9,4] and compiler bugs [1]. A precise description
of code generation, that is, the actual implemented semantics, is mandatory in
safety critical development processes where target code must be trustworthy.
Our aim, in short, is to increase the expressiveness of synchronous languages
without sacrificing any confidence in their code generators.

Benveniste et al. recently proposed a novel approach for the design and im-
plementation of a hybrid modeling language that reuses synchronous language
principles and an existing compiler infrastructure. They proposed an ideal syn-
chronous semantics based on non standard analysis [4] for a Lustre-like lan-
guage with ODEs [3], and then extended the kernel language with hierarchical
automata [2] and a modular causality analysis [1]. These results form the founda-
tion of Zélus [7]. This paper describes their validation in an industrial compiler.

Paper Contribution and Organisation Our first contribution is to precisely
describe the translation of a minimal synchronous language extended with ODEs
into sequential code. Our second contribution is the experimental validation in
two different compilers: the research prototype Zélus [7] and the Scade Suite
KCG code generator. In the latter it was possible to reuse all the existing in-
frastructure like static checking, intermediate languages, and optimisations, with
little modification. The extensions for hybrid features require only 5% additional
lines of code. Moreover, the proposed language extension is conservative in that
regular synchronous functions are compiled as before—the same synchronous
code is used both for simulation and for execution on target platforms.

6 http://www.esterel-technologies.com/products/scade-suite/
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Fig. 1. Basic structure of a hybrid simulation algorithm

The paper is organised as follows. Section 2 recalls the classical simulation
loop of hybrid systems. Section 3 describes the overall compiler architecture as
implemented in KCG. Section 4 defines the input language, Section 5 defines
a clocked intermediate language, and Section 6 defines the target imperative
language. Code generation is defined in Section 6.1. We illustrate the versatility
of the compiler in two typical practical situations: generating code that complies
with the FMI standard and generating code that incorporates an off-the-shelf
numerical solver (Sundials CVODE). Practical experiments in KCG and Zélus
are presented in Section 7. Section 8 discusses extensions and related work. We
conclude in Section 9.

2 The Simulation Loop of Hybrid Systems

The first choice to make in implementing a hybrid system is how to solve ODEs.
Creating an efficient and numerically accurate numerical solver is a daunt-
ing and specialist task. Reusing an existing solver is more practical, with two
possible choices: either (a) generate a Functional Mock-Up Unit (FMU) using
the standardized Functional Mock-Up Interface (FMI) and rely on an existing
simulation infrastructure [19]; or (b) use an off-the-shelf numerical solver like
CVODE [16] and program the main simulation loop. The latter corresponds to
the co-simulation variant (CS) of FMI, where each FMU embeds its own solver.

The simulation loop of a hybrid system is the same no matter which option
is chosen. It can be defined formally as a synchronous function that defines four
streams t(n), lx (n), y(n), and z(n), with n ∈ N. t(n) ∈ R is the increasing
sequence of instants at which the solver stops.7 lx (n) is the value at time t(n) of
the continuous state variables, that is, of all variables defined by their derivatives
in the original model. y(n) is the value at time t(n) of the discrete state. z(n)
indicates any zero-crossings at instant t(n) on signals monitored by the solver,
that is, any signals that become equal to or pass through zero.

The synchronous function has two modes: the discrete mode (D) contains
all computations that may change the discrete state or that have side effects.
The continuous mode (C) is where ODEs are solved. The two modes alternate
according to the execution scheme summarized in Figure 1.

7 In Simulink, these are called major time steps.



The Continuous Mode (C). In this mode, the solver computes an approximation
of the solution of the ODEs and monitors a set of expressions for zero-crossings.
Code generation is independent of the actual solver implementation. We abstract
it by introducing a function solve(f)(g) parameterized by f and g where:

– x′(τ) = f(y(n), τ, x(τ)) defines the derivatives of continuous state variables x
at instant τ ∈ R;

– upz(τ) = g(y(n), τ, x(τ)) defines the current values of a set of zero-crossing
signals upz, indexed by i ∈ {1, . . . , k}.

The continuous mode C computes four sequences s, lx , z and t such that:

(lx , z, t, s)(n+ 1) = solve(f)(g)(s, y, lx , t, step)(n)

where

s(n) is the internal state of the solver at instant t(n) ∈ R. Calling solve(f)(g)
updates the state to s(n+ 1).

x is an approximation of a solution of the ODE,

x′(τ) = f(y(n), τ, x(τ))

It is parameterized by the current discrete state y(n) and initialized at
instant t(n) with the value of lx (n), that is, x(t(n)) = lx (n).

lx (n+1) is the value of x at t(n+ 1), that is:

lx (n+ 1) = x(t(n+ 1))

lx is a discrete-time signal whereas x is a continuous-time signal.

t(n+ 1) is bounded by the horizon t(n)+step(n) that the solver has been asked
to reach, that is:

t(n) ≤ t(n+ 1) ≤ t(n) + step(n)

z(n+ 1) signals any zero-crossings detected at time t(n + 1). An event occurs
with a transition to the discrete mode D when horizon t(n) + step(n)
is reached, or when at least one of the zero-crossing signals upz(i), for
i ∈ {1, . . . , k} crosses zero,8 which is indicated by a true value for the
corresponding boolean output z(n+ 1)(i).

event = z(n+ 1)(0) ∨ · · · ∨ z(n+ 1)(k) ∨ (t(n+ 1) = t(n) + step(n))

If the solver raises an error (for example, a division by zero or an inability to
find a solution), we consider that the simulation fails.

8 The function solve(f)(g) abstracts from the actual implementation of zero-crossing
detection. To account for a possible zero-crossing at the horizon t(n) + step(n), the
solver may integrate over a strictly larger interval [t(n), t(n) + step(n) + margin],
where margin is a solver parameter.

z(n+ 1)(i) =
(∀T ∈ [t(n), t(n+ 1)[ . upz(T )(i) < 0)
∧ ∃m ≤ margin . (∀T ∈ [t(n+ 1), t(n+ 1) +m] . upz(T )(i) ≥ 0)

This definition assumes that the solver also stops whenever a zero-crossing expression
passes through zero from positive to negative.



The Discrete Mode (D). All discrete changes occur in this mode. It is entered
when an event is raised during integration. During a discrete phase, the function
next defines y, lx , step, encore, z, and t:

(y, lx , step, encore)(n+ 1) = next(y, lx , z, t)(n)

z(n+ 1) = false

t(n+ 1) = t(n)

where

y(n+ 1) is the new discrete state; outside of mode D, y(n+ 1) = y(n).

lx (n+ 1) is the new continuous state, which may be changed directly in the
discrete mode.

step(n+ 1) is the new step size.

encore(n+1) is true if an additional discrete step must be performed. Function
next can decide to trigger instantaneously another discrete event
causing an event cascade [4].

t(n) (the simulation time) is unchanged during discrete phases.

The initial values for y(0), lx (0) and s(0) are given by an initialization function
init. Finally, solve(f)(g) may decide to reset its internal state if the continuous
state changes. If init solve(lx (n), s(n)) initializes the solver state, we have:

reinit = (lx (n+ 1) 6= lx (n))

s(n+ 1) = if reinit then init solve(lx (n+ 1), s(n)) else s(n)

Taken together, the definitions from both modes give a synchronous interpre-
tation of the simulation loop as a stream function that computes the sequences
lx , y and t at instant n + 1 according to their values at instant n and an in-
ternal state. Writing solve(f)(g) abstracts from the actual choice of integration
method and zero-crossing detection algorithm. A more detailed description of
solve(f)(g) would be possible (for example, an automaton with two states: one
that integrates, and one that detects zero-crossings) but with no influence on the
code generation problem which must be independent of such simulation details.

Given a program written in a high-level language, we must produce the func-
tions init , f , g, and next . In practice, they are implemented in an imperative
language like C. Code generation for hybrid models has much in common with
code generation for synchronous languages. In fact, the following sections show
how to extend an existing synchronous language and compiler with ODEs.

3 Compiler Architecture

The compiler architecture for hybrid programs is based on those of existing
compilers for data-flow synchronous languages like Scade 6 or Lucid Synchrone,
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Fig. 2. Compiler architecture (modified passes are gray; new ones are also dashed)

as described for instance in [6]. After initial checks, it consists in successive
rewritings of the source program into intermediate languages, and ending with
sequential code in the target language (typically C). The different passes are
shown in Figure 2:

1. Parsing transforms code in the source language, described in Section 4, into
an abstract syntax tree;

2. Typing checks programs according to the system of [3]. In the language ex-
tended with ODEs, this system distinguishes continuous and discrete blocks
to ensure the correct separation of continuous and discrete behaviors;

3. Causality analysis verifies the absence of causality loops [1]. It is readily
extended to deal with the new constructs;

4. Control structures are encoded into the purely data-flow kernel with clocks
defined in Section 5, using an extension of the clock-based compilation of [6].
A small modification accounts for the fact that transitions are executed in a
discrete context whereas the bodies of states are continuous;

5. Traditional optimizations (dead-code removal, common sub-expression elim-
ination, etc.) are performed;

6. Scheduling orders equations according to data dependencies, as explained in
Section 5.2;

7. Code is translated into an intermediate sequential object language called
SOL, defined in Section 6 together with the translation. This language ex-
tends the one presented in [6] to deal with the new constructs (continuous
states, zero-crossings) which translation to sequential code must be added;

8. Slicing specializes the sequential function generated for each node into func-
tions f , g, and next , as described in Section 6.2;

9. Dead-code removal eliminates useless code from functions. For instance,
derivatives need not be computed by the next function and values of zero-
crossings are surely false during integration;

10. The sequential code is translated to C code.

The compiler passes in gray in Figure 2 are those that must be modified
in, or added to (dashed borders), a traditional synchronous language compiler.
The modifications are relatively minor—around 10% of each pass—and do not
require major changes to the existing architecture. Together with the new passes,
they amount to 5% of the total code size of the compiler.



d ::= letx= e | let k f(pi) = pi where E | d; d

e ::= x | v | op(e, . . . , e) | pre(e) | e -> e | lastx | f(e, . . . , e) | (e, . . . , e) | up(e)

p ::= x | (x, . . . , x)

pi ::= xi | xi, . . . , xi

xi ::= x | x last e | x default e

E ::= p = e | derx = e | if e thenE elseE | present e then E else E
| reset E every e | local pi in E | do E and . . . E done

k ::= D | C | A

Fig. 3. A synchronous kernel with ODEs

4 A Synchronous Language Kernel with ODEs

We consider a synchronous language extended with control structures and ODEs.
The synchronous sub-language, that is, with ODEs removed, is the subset of
Scade 6 [13] described in [10]. Compared to Zélus [7], the language considered
here does not include hierarchical automata, but they can be translated into the
presented kernel [2]. The abstract syntax given in Figure 3 is distilled from the
two concrete languages on which this material is based.

A program is a sequence of definitions (d), of either a value (letx= e) that
binds the value of expression e to x, or a function (let k f(pi) = pi where E). In
a function definition, k is the kind of the function f , pi denotes formal parame-
ters, and the result is the value of an expression e which may contain variables
defined in the auxiliary equations E. There are three kinds: k = A (omitted in
the concrete syntax) signifies a combinational function like, for example, addi-
tion; k = D (written node in the concrete syntax) signifies a function that must
be activated at discrete instants (typically a Lustre or Scade node); k = C

(written hybrid in the concrete syntax) signifies a function that may contain
ODEs and which must be activated in continuous-time. An expression e is ei-
ther a variable (x), an immediate value (v), for example, a boolean, integer or
floating point constant, the point-wise application of an imported function (op)
like +, ∗, or not(·), an uninitialized delay (pre(e)), an initialization (e1 -> e2),
the previous value of a state variable (lastx), a function application (f(e)), a
tuple (e, . . . , e) or a rising zero-crossing detection (up(e)). A pattern p is a list
of identifiers. pi is a list of parameters where a variable x can be assigned a
default value e (x default e) or declared as a state initialized with e (x last e).
An equation (E) is either an equality between a pattern and an expression
which must hold at every instant (p = e); the definition of the current deriva-
tive of x (derx = e); a conditional that activates a branch according to the
value of a boolean expression (if e thenE1 elseE2), or a variant that oper-
ates on event expressions (present e then E1 else E2); a reset on a condition e
(reset E every e); a localization of variables (local xi in E); or a synchronous
composition of zero or more equations (do E and . . . E done).



In this language kernel, a synchronous function taking input streams tick
and res, and returning the number of instants when tick is true, reset every
time res is true, is written: ♣9

let node counting(tick, res) = o where

reset

local c last 0 in

do if tick then do c = last c + 1 done and o = c done

every res

The if/then abbreviates a conditional with an empty else branch. c is declared
to be a local variable initialized to 0 (the notation is borrowed from Scade 6).
Several streams are defined in counting such that ∀n ≥ 0, o(n) = c(n) with:

1. (last c)(0) = 0 and ∀n > 0, last c(n) = if res(n) then 0 else c(n− 1)
2. c(n) = if tick(n) then last c(n) + 1 else last c(n)

The node keyword (k = D) in the definition signals that this program is purely
synchronous. As a first program in the extended language we write the classic
‘bouncing ball’ program with a hybrid (k = C) declaration: ♣

let hybrid bouncing(y0, y’0) = (y last y0) where

local y’ last y’0 in

do der y = y’

and present up(-. last y) then do y’ = -0.8 *. last y’ done

else do der y’ = -. g done

where g is a global constant for gravity. Given initial position y0 and speed y’0,
this program returns the current position y. The derivative of y’ is −g and y’ is
reset to −0.8 · last y′ when last y′, the left-limit of the signal y, becomes zero.

In the following, we suppose that programs have passed the static checking
defined in [3] and that they are causally correct [1].

5 A Clocked Data-flow Internal Language

We now introduce the internal clocked data-flow language into which the input
language is translated. Its syntax is defined in Figure 4. Compared to the pre-
vious language, the body of a function is now a set of equations of the form
(xi = ai)xi∈I where the xi are pairwise distinct variables and each ai is an
expression e annotated with a clock ck : e is only evaluated when the boolean
formula ck evaluates to true. The base clock is denoted base; it is the constant
true. ck on a is true when both ck and a are true. An expression eck with clock
ck = (base on a1 · · · ) on an is evaluated only when for all 1 ≤ i ≤ n, ai is true.
An expression e is either a variable (x), an immediate value (v), the application
of an operator (op(a, . . . , a)), the i-th element of a tuple a (get(a, i)), a delay

9 The ♣’s link to http://zelus.di.ens.fr/cc2015/, which contains both examples
in Zélus and Scade hybrid, and the C code generated by the latter’s compiler.

http://zelus.di.ens.fr/cc2015/index.html#counting
http://zelus.di.ens.fr/cc2015/index.html#bouncing
http://zelus.di.ens.fr/cc2015/


d ::= letx= c | let k f(p) = a where C | d; d

a ::= eck

e ::= x | v | op(a, . . . , a) | get(a, i) | v fby a | pre(a) | integr(a, a)
| f(a, . . . , a) every a | (a, . . . , a) | up(a) | merge(a, a, a) | a when a

p ::= x | (x, . . . , x)

C ::= (xi = ai)xi∈I

ck ::= base | ck on a

k ::= D | C | A
Fig. 4. A clocked data-flow internal language

initialized with a constant (v fby a), an uninitialized delay (pre(a)), an integra-
tor whose derivative is a1 and whose output is a2 (integr(a1, a2)), a function
application reset when a signal a is true (f(a1, . . . , an) every a), an n-tuple of
values (a1, . . . , an), the zero-crossing detection operator (up(a)), the combina-
tion of signals a1 and a2 according to the boolean signal a (merge(a, a1, a2)), or
a signal a1 sampled on condition a2 (a1 when a2),

This clocked internal representation is a Single Static Assignment (SSA) rep-
resentation [11]. Every variable x has a single definition and the clock expression
defines when it is computed.

The main novelty with respect to the clocked internal language of [6] is the
introduction of operators integr(a1, a2) and up(a).

5.1 Translation

The translation from a synchronous data-flow language with the control struc-
tures if/then/else, present/else and reset/every into clocked data-flow
equations is defined in [10]. The Scade Suite KCG code generator follows the
same algorithm. We illustrate the translation on three kinds of examples.

Translation of Delays and Conditionals. In the example below, z is an input, x1
and x2 are local variables, and the last value of x1 is initialized with 42:

local x1 last 42, x2 in

if z then do x1 = 1 + lastx1 and x2 = 1 + (0 fby (x2 + 2)) done

else do x2 = 0 done

The translation of the above program returns the following set of clocked equa-
tions. To simplify the notation, we only expose the clocks of top-level expressions.

x1 = merge(z, 1 + (m1 when z),m1 when not(z))
base

m1 = (42 fby x1)
base

x2 = merge(z, 1 +m2, 0)
base

m2 = (0 fby ((x2 when z) + 2))
base on z



In this translation, the conditional branch for when z is false is implicitly com-
pleted with the equation x1 = lastx1, that is, x1 is maintained. The value of
lastx1 is stored in m1. It is the previous value of x1 on the clock where x1 is
defined: here, the base clock. The initialized delay 0 fby x2 is local to a branch,
and thus equal to the last value that was observed on x2. This observation is
made only when z is true, that is, when clock base on z is true.

Translation of Nested Resets. The second example illustrates the translation of
the reset construct and its effect on unit delays.

reset

if c then do x1 = 1 else x1 = (0 fby x1) + 1 done

reset

x2 = (1 fby x2) + 1
every k2

every k1

The condition of a reset is propagated recursively to every stateful computation
within the reset. This is the case for unit delays and applications of stateful
functions. The above program is first translated into:

x1 = merge(c, 1,m1 + 1)
base

x2 = (m2 + 1)
base

m1 = (0 fby x1)
base on not(c)

every k1
base

m2 = (1 fby x2)
base

every k1
base or k2

base

The notation (0 fby x1)
base on not(c)

every k1
base defines the sequence m1 whose

value is reset to 0 every time k1 is true. Resets of unit delays are translated into
regular clocked equations. We replace the equations for m1 and m2 with:

m1 = merge(k1, 0, r1 when not(k1))
base

r1 = (0 fby merge(c,m1 when c, x1 when not(c)))
base

m2 = merge(k1, 1, merge(k2, 1, r2) when not(k1))
base

r2 = (1 fby x2)
base

Translation of Integrators. The bouncing ball program from Section 4 becomes:

y = (y0 -> ly)
base

ly = integr(y′, y)
base

ly′ = integr(t1, y
′)
base

y′ = merge(z,−0.8∗.ly ′ when z, ly ′ when not(z))
base

t1 = merge(z, 0.0,−.g)
base

z = up(−. ly)
base



The variable y′ changes only when z is true and keeps its last value ly ′ otherwise.
The operation integr(a1, a2) defines a signal as the integration of a1 in the
continuous mode (C) and as a2 in the discrete mode (D). The derivative of ly ′

is −.g when z is false and otherwise it is 0.0 (constant ly ′).

5.2 Static Data-flow Dependencies and Well Formed Schedules

Code is generated in two steps: (a) equations are first statically scheduled accord-
ing to data-flow dependencies, (b) every equation is translated into an imperative
statement in a target sequential language. Data-flow dependencies are defined
as in Lustre [14]: an expression a which reads a variable x, must be scheduled
after x. The dependency relation is reversed when x is defined by a delay like,
for example, x = v fby a1. In this case a must be scheduled before x. In other
words, delays break dependency relations. The integrator x = integr(a1, a2)
plays the role of a delay: x does not depend instantaneously on variables in a1
or in a2, and any read of x must be performed before x is defined.

Equations are normalized so that unit delays, integrators, function calls, and
zero-crossings appear only at the roots of defining expressions. We partition
expressions into three classes: strict (se), delayed (de) and controlled (ce). An
expression is strict if its output depends instantaneously on its inputs, otherwise
it is delayed. A controlled expression ce is strict.

eq ::= x = ceck | x = f(sa, . . . , sa) every sa
ck | x = deck

sa ::= seck

ca ::= ceck

se ::= x | v | op(sa, . . . , sa) | get(sa, i) | (sa, . . . , sa) | sa when sa
ce ::= se | merge(sa, ca, ca) | ca when sa
de ::= pre(ca) | v fby ca | integr(ca, ca) | up(ca)

A controlled expression is essentially a tree of merge(·, ·, ·) expressions termi-
nated by the application of a primitive, a variable, or a constant. Merges are
implemented as nested conditionals.

Let Read(a) denote the set of variables read by a. Given a set of normalized
equations C = (xi = ai)xi∈I , a valid schedule Schedule(·) : I → {1 . . . |I|} is a
one-to-one function such that, for all xi ∈ I and xj ∈ Read(ai) ∩ I:

1. if ai is strict, Schedule(xj) < Schedule(xi), and,
2. if ai is delayed, Schedule(xi) ≤ Schedule(xj).

Checking that a given sequence of equations fulfills the well formation rules
can be done in polynomial time. Schedules can be obtained by topological sorting
but the resulting code is poor. Finding a schedule that minimizes the number of
openings and closings of control structures is NP-hard [22]. In the following, if
C = (xi = ai)xi∈I , we suppose the existence of a scheduling function SchedEq(C)
that returns a sequence of scheduled equations.

We are now ready to define the sequential target language.



md ::= letx= c | let f = class〈M, I, (method i(pi) = ei where Si)i∈[1..n]〉 | md ; md

M ::= [x : m[= v]; . . . ;x : m[= v]]

I ::= [o : f ; . . . ; o : f ]

m ::= Discrete | Zero | Cont

e ::= v | lv | get(e, i) | op(e, . . . , e) | o.method(e, . . . , e) | (e, . . . , e)
S ::= () | lv ← e | S ; S | var x, . . . , x in S | if c thenS elseS

R,L ::= S; . . . ;S

lv ::= x | lv .field | state (x)

Fig. 5. A simple object-based language

6 A Sequential Object Language

We define a simple object-based language called SOL to serve as an intermediate
language in the translation. It is designed to be easily translatable into target
languages like C and Java and resembles the language introduced in [6] and
used in KCG. Each stateful function in the source language is translated into a
class with an internal memory that a collection of methods act on. The syntax
is given in Figure 5.

A program is a sequence of constant and class definitions (md). Class def-
initions take the form class〈M, I, (method i(pi) = ei where Si)i∈[1..n]〉 and
comprise a list M of memories, a list I of instances and a list of methods. A
memory entry [x : m[= v]] defines a variable x of kind m, optionally initialized
to a constant v. A memory x is either a discrete state variable (Discrete), a zero-
crossing (Zero), or a continuous state variable (Cont). An instance entry [o : f ]
stores the internal memory of a nested function f . The memories, instances, and
methods in a class must be pair-wise distinct.

An expression (e) is either an immediate value (v), an access to the value of
a variable (lv), an access to a tuple (get(e, i)), an application of an operation to
an argument (op(e, . . . , e)), a method invocation (o.method(e, . . . , e)), or a tuple
((e1, . . . , en)). An instruction (S) is either void (()), an assignment of the value
of e to a left value lv (lv ← e), a sequence (S1 ; S2), the declaration of local
variables (var x1, . . . , xn in S), or a conditional (if e thenS1 elseS2).

To make an analogy with object-oriented programming, memories are in-
stance variables of a class. The value of a variable x of kind Discrete is read
from state (x) and is modified by writing state (x) ← c. Variables x of kind
Zero are used to compile up(e) expressions. Each x has two fields: state (x).zin
is a boolean set to true only when a zero-crossing on x has been detected, and
state (x).zout stores the current value of the expression for monitoring during in-
tegration. A variable x of kind Cont is a continuous state variable: state (x).der
is its instantaneous derivative and state (x).pos its value.

We do not present the translation from SOL to C code (see [6] for details).



6.1 Producing a Single Step Function

We now describe the translation of the clocked internal language into SOL code.
Every function definition is translated into a class with two methods: a method
reset which initializes the internal memory and a method step which, given
an internal memory and current input value, returns an output and updates
the internal memory. The translation follows the description given in [6] and
implemented in KCG. Here we describe the novelties related to ODEs and zero-
crossings. Given an environment ρ, an expression e, and an equation E:

– TrExp(ρ)(e) returns an expression of the target language.
– TrIn(ρ)(lv)(a) translates a and returns an assignment S that stores the

result of a into the left value lv.
– TrEq(ρ)(eq) = 〈I,R, L〉 translates an equation eq and returns a set of in-

stances I, a sequence of instructions R to be executed at initialization, and
a sequence of instructions L to be executed at every step.

– TrEq(ρ)(eq1 · · · eqn) = 〈I,R, L〉 translates sequences of equations eq1 · · · eqn.

An environment ρ associates a name and a kind to every local name in the source
program. A name is either a variable (kind Var) or a memory (kind Mem(m)).
We distinguish three kinds of memories: discrete (Discrete), zero-crossing (Zero),
and continuous (Cont). Memories can optionally be initialized.

ρ ::= [ ] | ρ, x : s s ::= Var | Mem(m) | Mem(m) = v

The main function translates global definitions of values and functions into global
values and classes. It uses auxiliary functions whose definitions follow.10

TrDef (let k f(p) = a where C) =
let ρ = Env(C) in let M, (x1, . . . , xn) = mem(ρ) in

let [eq1 · · · eqn] = SchedEq(C) in

let (〈Ii, Ri, Li〉 = TrEq(ρ)(eqi))i∈[1..n] in

let e = TrExp(ρ)(a) in

let I = I1 + · · ·+ In and R = R1; . . . ;Rn and L = L1; . . . ;Ln in

let f = class〈M, I, reset = R step(p) = e where var x1, . . . , xn in L〉
TrDef (letx= e) = letx=TrExp([ ])(e)

First of all, equations in C must conform to the well formation rules defined
in Section 5.2. Env(C) builds the environment associated to C and ρ(xi) defines
the kind associated to a defined variable from C:

Env({x1 = a1, . . . , xn = an}) = Env(x1 = a1) + · · ·Env(xn = an)

Env(x = pre(a)
ck

) = [x : Mem(Discrete)]

Env(x = up(e)
ck

) = [x : Mem(Zero)]

Env(x = integr(a1, a2)
ck

) = [x : Mem(Cont)]

Env(x = a) = [x : Var ] otherwise

10 The let used in defining the translation function is not the syntactic let of programs.



TrExp(ρ)(v) = v

TrExp(ρ)(x) = state(ρ)(x)

TrExp(ρ)(get(a, i)) = get(TrExp(ρ)(a), i)

TrExp(ρ)(op(a1, . . . , an)) = let (ci = TrExp(ρ)(ai))i∈[1..n] in op(c1, . . . , cn)

TrExp(ρ)((a1, . . . , an)) = let (ci = TrExp(ρ)(ai))i∈[1..n] in (c1, . . . , cn)

TrExp(ρ)(a1 when a2) = TrExp(ρ)(a1)

TrIn(ρ)(lv)(a1 when a2) = TrIn(ρ)(lv)(a1)

TrIn(ρ)(lv)(merge(a1, a2, a3)) = ifTrExp(ρ)(a1) thenTrIn(ρ)(lv)(a2)
elseTrIn(ρ)(lv)(a3)

TrIn(ρ)(lv)(a) = lv ← TrExp(ρ)(a) otherwise

Fig. 6. The translation function for combinatorial expressions

mem(ρ) returns a pair M, (x1, . . . , xn) where M is an environment of memories
(kind Mem(m)), and (x1, . . . , xn) is a set of variables (kind Var).

The set of equations C is statically scheduled with an auxiliary function
SchedEq(C). Every equation is translated into a triple 〈Ii, Ri, Li〉. The set of
instances I1, . . . , In are gathered, checking that defined names appear only once.
Finally, the code associated to f is a class with a set of memories M , a set of
instances I and two methods: reset is the initialization method used to reset all
internal states, and step is the step function parameterized by p.

Given a clock expression ck and an instruction S, Control(ck)(S) returns an
instruction that executes S only when ck is true. We write if e then S as a
shortcut for if e thenS else ().

Control(base)(S) = S

Control(ck on e)(S) = Control(ck)(if e then S)

The translation function for expressions is defined in Figure 6 and raises no
difficulties. It uses the auxiliary function state(ρ)(x):

state(ρ)(x) =


state (x) if ρ(x) = Mem(Discrete)

state (x).zin if ρ(x) = Mem(Zero)

state (x).pos if ρ(x) = Mem(Cont)

x otherwise

Access to a discrete state variable is written state (x). The current value of a
zero-crossing event (kind = Zero) is stored into state (x).zin while the current
value of a continuous state variable (kind = Cont) is stored into state (x).pos.

The translation function for equations is given in Figure 7:



TrEq(ρ)(x = (f(a) every eck
′
)
ck

) = let (ei = TrExp(ρ)(ai))i∈[1..n] in

let e = TrExp(ρ)(eck
′
) in

let L = Control(ck ′)(if e then o.reset);
Control(ck)(x← o.step(e1, . . . , en))

in 〈[o : f ], o.reset , L〉

TrEq(ρ)(x = pre(a)ck ) = let S = TrIn(ρ)(state (x))(a) in

〈[ ], [ ],Control(ck)(S)〉

TrEq(ρ)(x = v fby ack ) = let S = TrIn(ρ)(state (x))(a) in

〈[ ], state (x)← v,Control(ck)(S)〉

TrEq(ρ)(x = integr(a1, a2)ck ) = let S1 = TrIn(ρ)(state (x).der)(a1) in

let S2 = TrIn(ρ)(state (x).pos)(a2) in

〈[ ], [ ],Control(ck)(S1;S2)〉

TrEq(ρ)(x = up(a)ck ) = Control(ck)(TrIn(ρ)(state (x).zout)(a))

TrEq(ρ)(x = eck ) = Control(ck)(TrIn(ρ)(state(ρ)(x))(a)) otherwise

Fig. 7. The translation function for equations

1. The translation of a function application (f(a1, . . . , an) every eck
′
)
ck

defines
a fresh instance [o : f ]. This instance is reset by calling method o.reset every
time ck′ on e is true. It is activated by calling method o.step when ck is true.

2. A unit delay pre(a) or v fby a is translated into a clocked assignment to a
state variable.

3. An integrator is translated into two assignments: one defining the current
derivative state (x).der , and the other defining the current value of the
continuous state state (x).pos.

4. A zero-crossing is translated into an equation that defines the current value
of the signal to observe (state (x).zout).

6.2 Slicing

The translation to SOL generates a step method for each function declaration.
Functions declared to be discrete-time (k = D) are regular synchronous func-
tions and they require no additional treatment. But functions declared to be
continuous-time (k = C) require specializing the method step to obtain the three
functions f , g and next introduced in Section 2:

– The next function is obtained by copying the body of step and removing
the computation of derivatives, that is, writes to the state (x).der field of



memories of kind Cont , and the computation of zero-crossings, that is, writes
to the state (z).zout field of memories of kind Zero.

– A method called cont is added to compute the values of derivatives and
zero-crossing signals. Functions f and g call this method and then return,
respectively, the computed derivatives and the computed zero-crossings. The
cont method is obtained by removing all code activated on a discrete clock,
that is, by replacing all reads of the state (z).zin fields of memories of kind
Zero with false. Indeed, we know that the status z of zero-crossings is always
false in the continuous mode C. Writes to the state (x).pos field of mem-
ories of kind Cont can also be removed. Finally, all conditions on an event
(variables of type zero) are replaced with the value false.

The goal of this transformation is to optimize the generated code and to avoid
useless computation. The behavior of the generated code is not changed—the
code removed, for a given mode, is either never activated or computes values
that are never read. Traditional optimizations like constant propagation and
dead-code removal can be applied after slicing to further simplify each method.

6.3 Transferring Data to and from a Solver

The transformations described above scatter the values of continuous states and
zero-crossings across the memories of the objects that comprise a program. Nu-
merical solvers must able to read and write these memories in order to perform
simulations. A simple solution is to augment each object with new methods that
copy values to and from the memory fields and arrays provided by a solver. When
generating C code, another approach is to define a global array of pointers to
the continuous states that can be used to read and write directly to memory
fields. Zélus implements the first solution; KCG implements the second.

7 Practical Experiments

7.1 Zélus with SUNDIALS

Zélus is, at its core, essentially the language defined in Section 4. It is compiled
into the intermediate language defined in Section 6, which is, in turn, translated
directly into OCaml. To produce working simulations, the loop described at a
high-level in Section 2 is implemented in two parts: (a) additional methods in
the intermediate language, and, (b) a small run-time library.

The additional methods derivatives and crossings are specializations of
the generated step function that present the interface expected by the run-
time library. These functions contain assignments that copy between the vectors
passed by a numerical solver and the internal variables described in Section 6.1.

Another additional method implements the looping implied by the transition
labelled ‘encore’ in Figure 1. It makes an initial step that only updates the
internal values of ‘last’ variables, then a discrete step with zero-crossings from
the solver, and then further discrete steps, without solver zero-crossings, until



the calculated horizon exceeds the current simulation time. There is a trade-off
to make between code generated by the compiler and code implemented in the
run-time library. In this case, looping within the generated code allows us to
exploit several invariants on the values of internal variables.

The run-time library implements the other transitions of Figure 1 and man-
ages numerical solver details. The library declares generic interfaces for ‘state
solvers’ and ‘zero-crossing solvers’. The state solver interface comprises functions
for initialization, reinitialization, advancing the solution by one step, and inter-
polating between the last step and the current step. The zero-crossing solver in-
terface includes almost the same functions, but with different arguments, except
that interpolation between steps is replaced by a function for finding instants
of zero-crossing between two steps. Modules satisfying these two interfaces are
combined by generic code to satisfy the ‘solver’ interface described in Section 2.

7.2 SCADE with FMIs

In a second experiment, we extended the Scade Suite KCG code generator of
SCADE 6 using the ideas presented in earlier sections. This generator produces
a C code instantiation of a ‘Functional Mockup Unit’ (FMU) that respects the
FMI for Model Exchange 1.0 standard [19]. An FMU describes a mix of ODEs
and discrete events. It is simulated, with or without other components, by an
external solver provided by a host. The execution model of FMI [19, Section 2.9]
resembles the scheme described in Section 2 and is readily adapted to give the
behavior described by Figure 1.

The code generated by the compiler is linked to a run-time library which
implements the functions required by the FMI standard. There are generic func-
tions to instantiate and terminate the FMU, to enable logging, to set the sim-
ulation time, and so on. The implementation of the set function for continuous
states (fmiSetContinuousStates), called by the host before an event, copies
the given inputs to the corresponding continuous states lx . The get function
(fmiGetContinuousStates) returns the new value of lx to the solver after an
event. Similar functions exist for inputs, outputs, and zero-crossings (termed
event indicators in FMI). At any instant, the first of these set or get functions
calls the cont method of the root node; subsequent calls used cached values. In
response to a discrete event (fmiEventUpdate), the step method is called once,
and then repeatedly while encore(n+1) is true. For the additional calls, the sta-
tus of z(n) is computed by comparing the current value of zero-crossing signals
with their values after the previous discrete step. The reinit flag, which is set if
a continuous state is reset, corresponds to the stateValuesChanged field of the
fmiEventInfo input structure of fmiEventUpdate.

8 Discussion and Related Works

This work is related to the definition of an operational semantics for block dia-
gram languages that mix discrete and continuous time behaviors [17]. A unified



semantics is given to PtolemyII [21] in which basic operators are characterized
by four atomic step functions that depend on input, internal state, and simu-
lation time and that act on an internal state according to a calling policy [23].
This semantics is modular in the sense that any composition of operators results
in the same four functions. It generalizes the operational semantics of explicit
hybrid modelers presented in [17] and [12]. The idea that a state transformer
can be represented by a collection of atomic functions is much older and has
been implemented since the late 1990s in Simulink s-functions11. It is also the
basis of the FMI and FMU standards for model exchange and co-simulation. In
our compiler organization, the four functions would correspond to four methods
of a SOL machine. The novelty is not the representation of a state transformer
as a set of methods but rather the production of those methods in a traceable
way that recycles an existing synchronous compiler infrastructure. The result is
not an interpreter, as in [23], but a compiler that produces statically scheduled
sequential code.

The observation that the synchronous model could be leveraged to model
the simulation engine of hybrid systems was made by Lee and Zheng [18]. Our
contribution is the use of a synchronous compiler infrastructure to effectively
build a hybrid modeling language.

The present work deliberately avoids considering the early compiler stages
that perform static typing and causality analysis. These stages are defined in [3,1]
for a similar language kernel. Presented with a program that has not passed static
checking and causality analysis, code generation either fails or generates incor-
rect code. For instance, the equation x = x + 1 cannot be statically scheduled
according to Section 5.2 and code generation thus fails. Activating an equation
x = 0 -> pre x + 1 in a continuous block would produce imperative code that
increments x during integration.

Previous work on Zélus [7] compiled ODEs to purely synchronous code by
adding new inputs and outputs to each continuous node. For each continuous
state, the node takes as input the value computed by the solver and returns
the derivative and the new value of the continuous state. We have chosen here
to delay this translation to the generation of sequential code. This approach is
much easier to integrate into more complex languages like Scade 6 with higher-
order constructs like iterators [20]. It also avoids the cost of copying the added
arguments at every function call.

9 Conclusion

This full-scale experimental validation confirms the interest of building a hybrid
systems modeling language on top of a synchronous language. We were surprised
to discover that the extension of Scade 6 with hybrid features required only 5%
extra lines of code in total. It confirms the versatility of the compiler architecture
of Scade 6, which is based on successive rewritings of the source program into
several intermediate languages.

11 http://www.mathworks.com/help/pdf_doc/simulink/sfunctions.pdf

http://www.mathworks.com/help/pdf_doc/simulink/sfunctions.pdf


Moreover, while sequential code generation in hybrid modeling tools is rou-
tinely used for efficient simulation, it is little used or not used at all to produce
target embedded code in critical applications that are submitted to strong safety
requirements. This results in a break in the development chain: parts of appli-
cations must be rewritten into either sequential or synchronous programs, and
all properties verified on the source model cannot be trusted and have to be re-
verified on the target code. The precise definition of code generation, built on the
proven compiler infrastructure of a synchronous language avoids the rewriting
of control software and may also increase confidence in simulation results.
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