
Clock-directed Modular Code Generation
from Synchronous Block Diagrams

Dariusz Biernacki
INRIA Futurs
Orsay, France

Jean-Louis Colaco ∗

Siemens VDO
Toulouse, France

Marc Pouzet †

LRI, Univ. Paris-Sud 11
Orsay, France

ABSTRACT
The compilation of synchronous block diagrams into sequen-
tial imperative code has been addressed in the early eighties
and can be considered now as folklore. However, separate
or modular code generation, though largely used in exist-
ing compilers and particularly in industrial ones, has been
neither precisely described nor entirely formalized. Such
a formalization appears now as a fundamental need in the
long-term goal to develop a mathematically certified com-
piler for a synchronous language as well as in simplifying
existing implementations.

This article presents in full detail the modular compilation
of synchronous block diagrams into sequential code. We con-
sider a first-order functional language reminiscent of Lustre
which it extends with a general n-ary merge operator, a reset
construct and a richer notion of clocks. The clocks are used
to express activation of computations in the program and
are specifically taken into account during the compilation
process to produce efficient imperative code. We introduce
a generic object-based intermediate language to represent
transition functions and we present a concise clock-directed
translation function from the source to the intermediate lan-
guage. We also address the target code generation phase by
describing a translation from the intermediate language to
Java and C.

1. INTRODUCTION
Block diagram formalisms as found in Simulink [18] or

Scade/Lustre [22] are widely used for embedded system
design. Among them, synchronous block diagrams are based
on a discrete model of time where signals are infinite streams
and blocks define stream functions. The code generation
from synchronous block diagrams into sequential imperative
code is an old topic and has been addressed in the early years

∗This work started while the author was at Esterel-
Technologies.
†This work was partially supported by the French ACI
Sécurité Alidecs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright the authors, APGES 2007, Oct. 4th 2007, Salzburg, Austria.

of Lustre [4]. The subject can be considered now as a part
of the original folklore in synchronous programming [2].

Given a stream function f : Stream(T) → Stream(T ′) and
a stream equation y = f(x), the code generation consists in
producing a pair (ft, s0) made of a transition function of
type S → T → T ′ × S and an initial state s0 of type S
such that ∀n ∈ IN.yn, sn+1 = ft sn xn if x = (xi)i∈IN and
y = (yi)i∈IN . The transition function takes a state and the
current input and returns the current output with a new
state. Its infinite repetition produces the sequence of out-
puts. In actual implementations, the transition function is
written in imperative style with in-place modification of the
state. Synchrony finds a very practical justification here: an
infinite stream of type Stream(T) is represented by a scalar
value of type T and no intermediate memory nor complex
buffering mechanism is needed. These principles generalize
to functions with multiple inputs and multiple outputs.

Code generation is obtained through a static scheduling of
equations according to data dependences. Separate or mod-
ular code generation aims at producing a transition function
for each block definition and composing them together to
produce the main transition function. Nonetheless, modular
code generation is not always feasible, even in the absence of
causality loop, as illustrated by the equation (y, z) = f(t, y)
with f(x, y) = (x, y). This equation defines two perfectly
valid streams y and z (since y = t and z = y = t) but
it cannot be scheduled independently of the way f is com-
piled. This observation has led to two different approaches
to the compilation problem. One consists in compiling the
program after a full inlining of function calls has been per-
formed in order to keep the maximal expressiveness of the
source language. The resulting set of equations can then be
translated into imperative code through simple scheduling
techniques. Techniques for forward or backward enumera-
tion of state variables can be used to generate an explicit fi-
nite state automaton leading to a very efficient code [4, 14].
Unfortunately, this efficiency gain is at the price of mod-
ular compilation and, moreover, the size of the generated
code may explode in practice. For this reason the enumer-
ation must be restricted to a selected set of state variables
(as done in the academic Lustre compiler [15]) but finding
the adequate variables which lead to efficient code in both
time and size is difficult. Conversely, modular compilation
is mandatory in industrial compilers like the one of Scade.
Each stream function is translated into an imperative func-
tion with no preliminary inlining unless requested by the
programmer. Consequently, modular compilation imposes
stronger causality constraints stating that every feedback

loop must cross an explicit delay. These constraints are,
nonetheless, well accepted by Scade users. They are also
justified by the need for tracability of the generated code, as
required by certification authorities in the context of critical
software.

Modular compilation of synchronous block diagrams, thou-
gh largely used in the Lucid Synchrone [21] compiler or in
the industrial compiler of Lustre has never been described
precisely or formalized entirely. Such a formalization ap-
pears now as a fundamental need in the long-term goal to de-
velop a mathematically certified compiler of a synchronous
language inside a proof assistant such as Coq [10] as well
as in simplifying existing implementations. Additionally, it
complements previous work done on the formalization of
static analysis (such as clock calculus [7] and initialization
analysis [8]), general principles of compilation [5] and lan-
guage extensions [17, 6].

This article presents in detail the modular compilation
of synchronous block diagrams into sequential code. The
source language we consider is a first-order declarative lan-
guage reminiscent of Lustre, general enough to make a suit-
able intermediate language for the compilation of automata
as introduced in [6]. The language provides a n-ary merge
operator as a way to combine complementary streams, a re-
set construct to restart a component in a modular way and
a generalized notion of clocks. (Clocks express various acti-
vation conditions in the program). We introduce a generic
object-based intermediate language to represent sequential
transition functions and we illustrate its versatility by giving
a translation into Java and C. Synchronous programs are
translated modularly into programs from the intermediate
language. Clocks play a central role during the process of
translation and are specifically treated to generate good con-
trol structures. This approach is in contrast with classical
compilation methods based on enumeration techniques. The
use of an intermediate language and the special treatment of
clocks leads to a very concise description of the compilation
process.

This work is part of a long-term project to develop a cer-
tified Lustre compiler implemented in Coq. A reference
compiler (based, in particular, on the material presented in
this article) has been written in OCaml. Also, the imple-
mentation and proofs in Coq are under way. For lack of
space, we only describe the main steps in the compilation
chain and do not give the formal semantics of the source and
target languages.

The article is organized as follows. In Section 2, we present
a synchronous data-flow kernel. In Section 3, we address
the issue of schedulability of a set of equations and of trans-
forming it into a normal form. In Section 4, we define an
intermediate sequential language for representing transition
functions. In Section 5, we define the translation from the
data-flow language to the intermediate language. In Sec-
tion 6, we describe Java and C code generation from the
intermediate language. In Section 7, we sketch the construc-
tion of the entire compiler. In Sections 8 and 9, we discuss
related and future work and we conclude.

2. A CLOCKED DATA-FLOW LANGUAGE
We define a synchronous data-flow kernel considered as

a basic calculus into which any Lustre program can be
translated. Actually, we make it a little more general by
equipping it with a means to reset a function application

in a modular way, following [16] and we provide value con-
structors belonging to some enumerated types and filtering
mechanisms as introduced in [6]. Moreover, the code genera-
tion being done after type and clock verification, we assume
that every term is annotated with its proper type and clock
information.

2.1 Syntax and Intuitive Semantics
A program is made of a list of global node declarations

(d) and type declarations (td). A global node declaration
is of the form node f(p) = p with var p in D. To simplify
the presentation, only abstract and enumerated types are
provided here. a stands for annotated expressions (e) with
their clock (ct). Expressions are made of values (v), tuples
(a1, ..., an), initialized delays (v fby a), variables (x), point-
wise applications (op (a1, ..., an)), node instantiations with a
possible reset condition (f (a1, ..., an) every a), a combina-
tion operation (merge x (C1 → a1) ... (Cn → an)) or a sam-
pling operation (a when C(x)). The expression a when C(x)
is the sampled stream of a on the instants where x equals
C. Symmetrically, merge is the combination operator: if a is
a stream producing values belonging to a finite enumerated
type bt = C1 + ... + Cn and a1, ..., an are complementary
streams (at a given cycle, at most one stream is producing
a value), then it combines them to form a faster stream.
f (a1, ..., an) every a is the resetable function application:
the internal state of the application of f is reset every time
the boolean stream a is true. To simplify the presenta-
tion, we write op (a1, ..., an) for the point-wise application
of an external function op (e.g., +, not) to its argument and
f (a1, ..., an) every False for the application of a stateful
function. A value (v) can be a constructor (C) belonging
to an enumerated type or any immediate value (i) (e.g., an
integer).

A pattern pat may be a variable or a tuple of patterns
(pat, ..., pat). A declaration (D) can be a collection of par-
allel equations. An equation defines a value (pat = a). To
simplify the presentation, the boolean type is not explicitly
given and we assume the existence of an initial environment
defining bool = False + True. In the same way, combina-
torial functions are provided externally.

a ::= ect

e ::= v | x | v fby a | a when C(x) | (as)
| op (as) | f (as) every a
| merge x (C → a) ... (C → a)

as ::= a, ..., a
D ::= pat = a | D andD
pat ::= x | (pat, ..., pat)
d ::= node f(p) = p with var p in D
p ::= x : bt; ...; x : bt
td ::= type bt | type bt = C + ... + C
v ::= C | i
ck ::= base | ck on C(x)
ct ::= ck | ct× ...× ct

Clock annotations do not play any role in the data-flow se-
mantics of the language so we omit them in the examples
below. v fby a stands for the initialized delay. It is assumed
that the first parameter of fby is an immediate value.

x x0 x1 x2 x3 ...
y y0 y1 y2 y3 ...
v fby x v x0 x1 x2 ...
x + y x0 + y0 x1 + y1 x2 + y2 x3 + y3 ...

-- count the number of top between two tick

node counting (tick:bool; top:bool)

returns (o: int)

var v: int;

let o = if tick then v else 0 -> pre o + v;

v = if top then 1 else 0;

tel;

Figure 1: The counting node in Scade and in Lustre

If op is a combinatorial function, op (a1, ..., an) applies it
point-wise to its arguments (classical arithmetic operations
are written in infix form). The kernel provides a general
sampling mechanism based on enumerated types. This way,
the classical sampling operation e when x of Lustre, where
x is a boolean stream, is written e when True(x). In the
same way, e when not x is now written e when False(x). The
conditional if/then/else, the delay pre and initialization
operator -> of Lustre can be encoded in the following way:

if x then e2 else e3 = merge x
(True→ e2 when True(x))
(False→ e3 when False(x))

e1 -> e2 = if True fby False then e1

else e2

pre (e) = nil fby e

The conditional if/then/else is built from the merge op-
erator and the sampling operator when. The initialization
operation e1 -> e2 first returns the very first value of e1 and
then the current value of e2. The uninitialized delay opera-
tion pre (e) is a shortcut for nil fby e where nil stands for
any constant value which has the type of e. 1

h True False True False ...
x x0 x1 x2 x3 ...
y y0 y1 y2 y3 ...
x -> y x0 y1 y2 y3 ...
pre (x) nil x0 x1 x2 ...
z = x when True(h) x0 x2 ...
t = y when False(h) y1 y3 ...
merge h

(True→ z)
(False→ t)

x0 y1 x2 y3 ...

Forgetting clock annotation, the counting example of Fig-
ure 1 is written:

node counting (tick:bool; top:bool) = (o:int) with

var v: int in

o = if tick then v else 0 -> pre o + v

and v = if top then 1 else 0

2.2 Annotating Terms with Their Clocks
The code generation applies once type verification and

clock calculus have been performed. At the end of these
steps, every term is annotated with its type and clock. Typ-
ing is almost standard [20]. The purpose of the clock cal-
culus is to reject programs which cannot be executed syn-
chronously and is also defined as a type inference system.
1Then, it is the purpose of the initialization analysis to check
that the computation result does not depend on the actual
nil value.

Clocks do not have to be explicitly given in the source lan-
guage, e.g., the programmer writes (v fby x) + y instead of

((v fby xck)
ck

+ yck)
ck

, if ck is the clock of x and y, and sim-
ilarly he writes merge h (True→ z)(False→ t) instead of

(merge h (True→ zck on True(h))(False→ tck on False(h)))
ck

, if
ck is the clock of h.

To make the article self-contained, we present the associ-
ated clock conditions which must be verified by annotated
terms. In a real implementation, the clock calculus apply
to unannotated terms and produces annotated terms (the
clock calculus shown here is based on [6]). We define sev-
eral judgements to express that a program is well clocked.
For instance, the judgement H ` e : ct states that the ex-
pression e has a clock type ct under the clock environment
H, whereas the judgement H ` D states that D is a set of
well clocked equations under the clock environment H. An
environment H is of the form [x1 : ck1, ..., xn : ckn], where
xi 6= xj for i 6= j.

H ` e : ct

H ` ect : ct

H ` a1 : ck ... H ` an : ck

H ` op (a1, ..., an) : ck

H ` a1 : ck ... H ` an : ck H ` a : ck

H ` f (a1, ..., an) every a : ck × ...× ck

H ` a : ck H ` x : ck

H ` a when C(x) : ck on C(x)

H ` a : ck

H ` v fby a : ck

H ` x : ck H ` a1 : ck on C1(x) ... H ` an : ck on Cn(x)

H ` merge x (C1 → a1) ... (Cn → an) : ck

H ` a1 : ct1 ... H ` an : ctn

H ` (a1, ..., an) : ct1 × ...× ctn

H ` v : ck

H, x : ck ` x : ck

H ` pat : ct H ` a : ct

H ` pat = a

H ` D1 H ` D2

H ` D1 andD2

H, x : ck ` x : ck

H ` pat1 : ct1 ... H ` patn : ctn

H ` (pat1, ..., patn) : ct1 × ...× ctn

`base p : Hp `base q : Hq ` r : Hr Hp, Hq, Hr ` D

` node f(p) = q with var r in D

` x1 : t1, ..., xn : tn : [x1 : ck1, ..., xn : ckn]

`base x1 : t1, ..., xn : tn : [x1 : base, ..., xn : base]

In the rules for when and merge, it is assumed that the type
correctness of the control variable and the type constructors
has been verified by the type checker.

3. TOWARDS SEQUENTIAL CODE
The language of Section 2 is declarative, with the evalu-

ation of expressions controlled by the clocks formalism. In
order to generate sequential code from the source language,
we first need to address the issue of finding a right order of
equations as well as of dealing with faster, possibly stateful,
computations inside slower ones.

3.1 Syntactic Dependences and Scheduling
Following the definition introduced in [14], we say that

an expression a statically depends on x if x appears free in
a and not as an argument of a delay fby. Left (a) returns
the set of variables appearing this way in a (we overload the
notation for Left (e) and Left (D)). Def (D) defines the set
of variables defined in D. If pat = a is an equation in D,
every variable from pat immediately depends on variables
from Left (a). The transitive closure of this relation defines
the notion of static dependence. A program is causal when
for each node the corresponding graph of dependencies is
acyclic.

Left (eck) = Left (e) ∪Vars(ck)
Left (v fby a) = ∅
Left (op (a1, ..., an)) = ∪1≤i≤nLeft (ai)
Left (f (a1, ..., an) every a) = ∪1≤i≤nLeft (ai) ∪ Left (a)
Left (x) = {x}
Left (v) = ∅
Left (merge x (C1 → a1)

...
(Cn → an))

= ∪1≤i≤nLeft (ai) ∪ {x}

Left (a when C(x)) = {x} ∪ Left (a)

Left (pat = a) = Left (a)
Left (D1 andD2) = Left (D1) ∪ Left (D2)

Def (pat = v fby a) = ∅
Def (pat = a) = Vars(pat)
Def (D1 andD2) = Def (D1) ∪Def (D2)

Vars(x) = {x}
Vars((pat1, ..., patn)) = ∪1≤i≤nVars(pati)

An equation pat = a from a set of equations D is ready
((pat = a) ∈ R (D)) when it does not depend on any other
equations. We make a particular treatment of equations
of the form pat = (v fby a)ck. Indeed, in this case, pat
corresponds to a memory so it will have to be scheduled
after any other computation reading variables from pat.

(pat = v fby ack) ∈ R (D) if Vars(pat) ∩ Left (D) = ∅
(pat = a) ∈ R (D) if Left (a) ∩Def (D) = ∅

We write D|pat=e for the exclusion of the equation pat = e
from D. A sequence of equations l = pat1 = e1, ..., patn =
en is a feasible schedule of D if l ∈ Sch (D), where:

pat = a ∈ Sch (pat = a) if Left (a) ∩Vars(p) = ∅
pat = a, l ∈ Sch (D) if (pat = a) ∈ R (D)

∧ l ∈ Sch (D|pat=a)

In the remainder, we assume that programs have passed a
causality check to insure the existence of a schedule.

The data-flow nature of this language makes the imple-
mentation of classical graph-based optimization (e.g., copy
elimination, common-subexpression elimination) particularly
easy. We do not detail them here.

3.2 Putting Equations in Normal Form
We introduce a source-to-source transformation which con-

sists in extracting stateful computations which appear inside
expressions. This is a necessary step towards the translation
into sequential code. For example, the following equation
(omitting nested clock annotations for clarity):

z = ((((4 fby o) ∗ 3) when True(c)) + k)ck on True(c)

and o = (merge c (True→ (5 fby (z + 1)) + 2)
(False→ ((6 fby x)) when False(c)))ck

is rewritten into:

z = (((t1 ∗ 3) when True(c)) + k)ck on True(c)

and o = (merge c (True→ t2 + 2)
(False→ t3 when False(c)))ck

and t1 = (4 fby o)ck

and t2 = (5 fby (z + 1))ck on True(c)

and t3 = (6 fby x)ck on False(c)

In the same way, node instances (f (a1, ..., an) every e) are
extracted from nested expressions. The extraction is made
through a linear traversal, introducing equations for each
stateful computation.

After the extraction, equations and terms can be charac-
terized by the following grammar.

a ::= eck

e ::= a when C(x) | op (a, ..., a) | x | v
ce ::= merge x (C → ca) ... (C → ca) | e
ca ::= ceck

eq ::= x = ca | x = (v fby a)ck

| (x, ..., x) = (f (a, ..., a) everyx)ck

D ::= D andD | eq

The extraction is straightforward and not detailed here. In
the remainder we assume that equations have been normal-
ized.

Note that it would also be possible to introduce a new
intermediate language instead of the source-to-source trans-
formation. This is essentially a matter of taste, the main
advantage of the present formulation being to save the re-
definition of auxiliary definitions.

4. A SIMPLE OBJECT-BASED LANGUAGE
A classical way to encapsulate a state and a collection of

functions that manipulate this state is given by the object
paradigm. We are not interested in inheritance and object
polymorphism aspects but only in the capability to encapsu-
late a piece of memory managed exclusively by the methods
of the class. We propose here to define a very simple object-
based language (in the sense of encapsulation) that will be
used as an intermediate language for the translation. Adopt-
ing this point of view has two main advantages compared to
a direct translation into one target language like C or Java.
First, object orientation is a well known paradigm and this
may help to understand the basic principles of the first level
of our transformation. Second, using it as a generic inter-
mediate language allows to derive a very simple translation
to any target language like C or Java.

A stateful stream function or node can be considered as a
simple class definition with instance variables and two meth-
ods step and reset. Variables are used to represent the
internal state of the node (i.e., one for each delay). The

method step inherits its signature from the node it was
generated from and it implements a single step of the node.
The method reset is parameterless and it is in charge of
the initialization of state variables. One difference with re-
spect to object orientation is the absence of dynamic object
creation since block diagrams we have considered are not
recursive.

The syntax of the language is given below. A program
is made of a sequence of global definitions (d) of classes.
An instruction S may be the assignment of a local variable
(x := c) or of a state variable (state (x) := c), a sequence
(S ; S), the re-initialization method invocation of an object
o (o.reset), the invocation of the step method of object o
(o.step (e1, . . . , en)), a void statement (skip) or a control
structure (case (x) {C1 : S1; ...; Cn : Sn}). If x is of type
a = C1 + ... + C + ... + Cn, we shall write case (x) {C : S}
or case (x) {C1 : skip; ...; C : S; ...; Cn : skip} indifferently.
An expression (e) can be either the access to a local variable
(x) or to a state variable (state (x)), an immediate integer
constant (i) or a value constructor (C), a tuple (e1, ..., en) or
a function call (f (e1, . . . , en)). A class (f) defines a set of
memories (m), a set of instances for objects used inside the
body of the methods step or reset and these two methods.

d ::= fun f (p) returns (p) = var p in S |
class f =
memory m
instances j
reset() returns () = S
step (p) returns (p) = var p in S

S ::= x := c | state (x) := c | S ; S | skip
| o.reset | (x, ..., x) = o.step (e, ..., e)
| case (x) {C : S; ...; C : S}

e ::= x | v | state (x) | op(e, ..., e)
v ::= C | i
j ::= o : f, ..., o : f

p, m ::= x : t, ..., x : t

5. THE TRANSLATION
The translation closely follows the principle of the co-

iterative semantics described in [5]. The main differences
are that absent values are not explicitly represented at run-
time and states are modified in-place instead of being re-
turned by transition functions. Moreover, we restrict it to
the first-order case.

We introduce the following notation. If p = [x1 : t1; ...; xn :
tn] and p2 = [x′1 : t′1; ...; x′k : t′k] then p1 + p2 = [x1 :
t1; ...; xn : tn; x′1 : t′1; ...; x′k : t′k] provided for all i, j such
that 1 ≤ i ≤ n, 1 ≤ j ≤ k, xi 6= x′j . [] denotes the
empty substitution. In the same way, we write m1 + m2

for the composition of two substitutions on memory vari-
ables and j1 + j2 on object instances. If s1 = S1, ..., Sn

and s2 = S′
1, ..., S

′
k are two lists of instructions, we write

s1@s2 = S1, ..., Sn, S′
1, ..., S

′
k for their concatenation.

Clocks in the source language are transformed into control
structures in the target language. Intuitively, a computation
S on clock base on C1(x1) on C′

1(x′1) is transformed into
the code: case (x1) {C1 : case (x′1) {C′

1 : S}}. We define
the function Control(., .) such that Control(ck, S) returns a
control structure so that S is executed only when ck is true:

Control(base, S) = S
Control(ck on C(x), S) = Control(ck, case (x) {C : S})

We define the function Join(., .) which merges two control
structures gathered by the same guards:

Join(case (x) {C1 : S1; ...; Cn : Sn},
case (x) {C1 : S′

1; ...; Cn : S′
n})

= case (x) {C1 : Join(S1, S
′
1); ...; Cn : Join(Sn, S′

n)}
Join(S1, S2) = S1; S2

JoinList(S) = S
JoinList(S1, ..., Sn) = Join(S1, JoinList(S2, ..., Sn))

The translation is defined by a set of mutually recursive
functions. TE (m,si,j,d,s) (e) defines the translation of an un-
annotated expression e in a context (m, si, j, d, s) and re-
turns an expression from the target language c. We over-
load the notation for annotated expressions a. m stands for
a memory environment, si stands for a list of instructions
that initialize the memory, j is an environment for node in-
stances, d is an environment for local variables and s is a
list of instructions. TA(m,si,j,d,s) (x, ca) defines the transla-
tion of an expression which is stored into x and it returns
a new context. TEq(m,si,j,d,s) (eq) defines the translation of
an equation. We use two auxiliary functions: the operation
TEList(m,si,j,d,s) (a1, ..., an) translates a list of expressions
and returns a list of expressions from the target language,
whereas TEqList(m,si,j,d,s) (l) translates a list of equations.

The definitions of the translation functions are given in
Figure 2. The first six rules apply to stateless expressions.
The translation of a merge operator whose result is stored
into a pattern pat is obtained by translating each branch
and storing the corresponding result in pat. Note that since
the result of each branch is annotated with its proper clock,
the merge construction does not generate any code by itself.
For a node instance (f (a1, ..., an) everyx)ck, we introduce a
fresh name o which is an object of class f . The initialization
code consists in calling the reset method. The step function
is essentially the result of calling the reset method when x is
true and calling the step function associated to o. These two
actions must be performed only when ck is true. A memory
equation x = (v fby a)ck is translated into an assignment of
the state variable x executed when ck is true. Finally, the
code generation of a node consists in first scheduling the set
of equations and then to translate them iteratively.

6. TARGET CODE GENERATION
The intermediate language of Section 4 can be quite nat-

urally translated into either a fully-fledged object-oriented
language or into a low-level imperative language. Our main
interest lies in the generation of C code which is the tradi-
tional target of compilers of synchronous languages. More-
over, a compiler for C has been recently certified in Coq [3]
which should make it possible to develop a complete certified
compiler from Lustre to assembly code. Nonetheless, in or-
der to illustrate the versatility of the intermediate language,
we consider also Java code generation.

6.1 Translation into Java
As already pointed out, the intermediate language of Sec-

tion 4 can be seen as a sequential language with the data
encapsulation mechanism characteristic of object-oriented
languages. As such, it lends itself to a straightforward trans-
lation into existing object-oriented languages, e.g, Java.

Each class definition is translated into a Java class defini-
tion with two methods step and reset. The state variables

TE (m,si,j,d,s) (ect) = TE (m,si,j,d,s) (e)
TE (m,si,j,d,s) (v) = v
TE (m,si,j,d+[x:t],s) (x) = x
TE (m+[x:t],si,j,d,s) (x) = state (x)
TE (m,si,j,d,s) (op(a1, ..., an)) = let c1, ..., cn = TEList(m,si,j,d,s) (a1, ..., an) in op(c1, ..., cn)
TE (m,si,j,d,s) (a when C(x)) = TE (m,si,j,d,s) (a)

TEList(m,si,j,d,s) (a1, ..., an) = (TE (m,si,j,d,s) (a1), ...,TE (m,si,j,d,s) (an))

TAList(m,si,j,d,s) (x1, ..., xn)(ca1, ..., can) = let (m1, si1, j1, d1, s1) = TA(m,si,j,d,s) (x1, ca1) in
...TA(mn−1,sin−1,jn−1dn−1,sn−1) (xn, can)

TA(m,si,j,d,s) (y, (merge x (C1 → ca1)...(Cn → can))ck) = TAList(m,si,j,d,s) (y, ..., y)(ca1, ..., can)
TA(m,si,j,d,s) (x, eck) = (m, si, j, d,Control(ck, x := TE (m,si,j,d,s) (e)))

TEq(m,si,j,d,s) (x = ca) = TA(m,si,j,d,s) (x, ca)

TEq(m,si,j,d+[x:t],s) (x = (v fby a)ck) = let c = TE (m,si,j,d,s) (a) in
(m + [x : t], [state (x) := v]@si, j, d,
[Control(ck, state (x) := c)]@s)

TEq(m,si,j,d,s) ((x1, ..., xk) = (f (a1, ..., an) everyx)ck) = let (c1, ..., cn) = TEList(m,si,j,d,s) (a1, ..., an) in
(m, [o.reset]@si, [(o, f)] + j, d,
Control(ck, case (x) {(True : o.reset)})@
Control(ck, (x1, ..., xn) = o.step (c1, . . . , cn))@s)
where o 6∈ Dom(j)

TEqList(m,si,j,d,s) (eq) = TEq(m,si,j,d,s) (eq)
TEqList(m,si,j,d,s) (eq, l) = TEqTEqList(m,si,j,d,s) (l) (eq)

TP (node f(p) = q with var r in D) = let m, si, j, d, s = TEq([],[],[],r,[]) (l) in
class f =
memory m
instances j
reset() returns () = si
step (p) returns (q) = var d in JoinList(s)

where l ∈ Sch (D)

Figure 2: The Translation Function

specified in the memory section are translated into field dec-
larations. The instance variables specified in the instances

section are translated into object creations using their de-
fault constructors. Actions and expressions are directly trans-
lated into the corresponding Java constructs. In case of
multiple outputs, the answer type of the step method is
represented as a structure with the fields representing the
subsequent elements of the tuple.

For instance, the counting example of Figure 1 is trans-
lated into the following Java code:

public class counting {
boolean x_1;
int x_2;

public void reset() { x_1 = true; x_2 = 0; }

public int step(boolean tick, boolean top) {
int o; int x_3; int v; boolean b;
b = x_1;
x_1 = false;
if (top) {v = 1;} else {v = 0;}
if (b) {x_3 = 0;} else {x_3 = x_2 + v;}
if (tick) {o = v;} else {o = x_3;}
x_2 = o;
return o; }}

6.2 Translation into C

The C code generator follows the principles already demon-
strated by the ReLuC compiler. 2 For each class, the state
variables specified in the memory section and the instance
variables specified in the instances section are gathered in
a separate structure, used for representing the internal state
of each object. Both the reset and the step functions are
translated into functions that accept an additional argument
self, passed by reference, that points to a concrete instance
of the corresponding state structure (object). If necessary,
the answer type of the step function again is represented as
a structure that allows for tuples to be returned. 3 Actions
and expressions are directly translated into the correspond-
ing C constructs.

For instance, the counting example of Figure 1 is trans-
lated into the following C code:

typedef struct {
int x_1; int x_2; } counting_mem;

void counting_reset(counting_mem *self) {

2ReLuC is a prototype compiler developed at Esterel Tech-
nologies; it is used as an implementation reference for the
next Scade generation.
3As a matter of fact, ReLuC differs from our approach in
the way multiple outputs are handled. In ReLuC a memory
structure is extended with an appropriate number of fields
for storing the outputs.

self->x_1 = 1;
self->x_2 = 0; }

int counting_step(int tick, int top,
counting_mem *self) {

int o; int x_3; int v; int b;
b = self->x_1;
self->x_1 = 0;
if (top) {v = 1;} else {v = 0;}
if (b) {x_3 = 0;} else {x_3 = x_2 + v;}
if (tick) {o = v;} else {o = x_3;}
self->x_2 = o;
return o; }

7. TOWARDS A COMPLETE COMPILER
In this section, we discuss the organization of the entire

compiler as well as possible extensions of the technique pro-
posed in this article.

The source language we have presented is a first-order
data-flow language similar to Lustre. Nonetheless, it ex-
hibits specific constructions which make it both a good tar-
get for implementing extensions of Lustre as well as a good
input language to generate efficient sequential code. The two
specificities are the n-ary merge (instead of the current oper-
ator of Lustre) and a modular reset construct (also absent
in Lustre). The merge is used to combine n complemen-
tary streams which introduces a general notion of clocks.
The reset is used to restart the behavior of a node. These
two constructions can be encoded in Lustre but then the
generated code is inefficient or calls for complex optimization
techniques to cancel the effect of the encoding. Providing
merge and reset as basic primitives allows for a more direct
and efficient compilation.

In [6], we have proposed a conservative extension of Lus-
tre with hierarchical state automata, basing it on a transla-
tion semantics into the clocked data-flow kernel considered
in the present article. The merge and reset constructs were
used extensively in this encoding. We advocated that this
translation not only gives the semantics of the whole lan-
guage but appears to be an effective way to implement the
compiler in the sense that the generated code is reasonably
good in terms of size and efficiency. This solution has been
integrated in the ReLuC compiler of Lustre and the Lucid
Synchrone compiler. Thus, the present article completes
this work and highlights the missing part of the compilation
chain. Altogether, these results serve as the basis of Scade
6, the next version of Scade.

The code generation is done after type checking, clock
checking and specific static analyzes such as causality or
initialization analysis. If one of these steps fails, the compi-
lation process stops. Type checking is almost standard [20].
The clock calculus rejects programs which cannot be exe-
cuted synchronously and is defined as a type inference prob-
lem [7]. The causality analysis checks the absence of instan-
taneous loops in order to ensure that a static schedule is
feasible. Finally, the initialization analysis checks that the
behavior does not depend on the initial values of delays [8].
At the end of these analyzes, the program is annotated with
type and clock information. Then, constructs that are not
part of the data-flow kernel (e.g., control structures such as
activation conditions or state machines) are translated into
the clocked data-flow kernel.

In Section 1, we have stressed the importance of mod-
ular compilation for separate compilation, code tracability
and to keep the size of the generated code linear in the

size of the source program. The price to pay is an extra
constraint on feedback loops which must explicitly cross a
delay (not nested inside nodes). Thus, in practice, modular
compilation affects the causality analysis which has to re-
ject semantically correct programs because they cannot be
compiled modularly. To avoid this restriction, an industrial
compiler such as the one present in the Scade-Suite pro-
poses to inline, on user demand, specific nodes of the model.
This feature can also be used to find a good compromise in
terms of program size/program speed (as any compiler opti-
mizer silently does). This explains why it is important to
complement a synchronous compiler with an inliner. Note
that such an inliner is a trivial task in Lustre thanks to its
substitution principle.

In Section 5 we have presented a control optimization
which gathers two consecutive control structures on the same
guard. There are other optimizations that can be imple-
mented in this translation, particularly around the schedul-
ing policy. The role of scheduling is to transform a partially
ordered bunch of equations into a sequence of assignments.
The solution is not unique, in general, and we can take ad-
vantage of the freedom to favor certain optimizations. For
instance, the scheduling can contain heuristics which try to
schedule consecutively equations that are guarded by the
same clock. Then the merging of consecutive control struc-
tures will be able to factorize more control conditions. An-
other classical optimization is related to the reuse of vari-
ables (which corresponds to removing copy variables in clas-
sical compilation terminology [19]). As mentioned in [14], a
stream x and its previous value pre x can be stored in the
same variable if the computation of x is not followed by a
use of pre x. The ReLuC compiler as well as the reference
compiler we have developed to support the present article
implement a scheduling heuristics for that purpose.

8. DC AND DC+
This article is related to the work done on the code gen-

eration of synchronous languages and in particular Lustre
and Signal. We have already pointed out the differences
with the academic compiler of Lustre. The distinction with
Signal comes from the different expressiveness of our source
language and its associated clock calculus. For example, the
language does not allow to express relations as Signal does
but only functions. Moreover, we use a simpler clock calcu-
lus based on ML-type inference whereas the clock calculus
of Signal calls for boolean resolution [1, 11]. It is not possi-
ble, for example, to express in our language the disjunctive
clocks of Signal of the form ck1 ∨ ck2 (stating that a value
is present if one of the two clocks is true). Clocks are only of
the form base on c1 on ... on cn and they correspond directly
to nested control-structures. The introduction of an n-ary
merge and the general form of clocks presented here does
not seem to have been considered in Signal. Whereas this
construction could be encoded in Signal, obtaining good
code would call for the full expressiveness of its clock cal-
culus. It would be interesting to know if the resulting code
would coincide with the one obtained here with simpler (but
dedicated) techniques.

This work is connected also with the works on the DC
format [13] and its extension DC+ [9] introduced for the
compilation of synchronous languages. The DC format al-
lows for the control properties that the source language, we
consider, does. However, as the author in [13] points out,

DC was not considered a programming language whereas
the language we consider does have a static and dynamic
semantics. This means that the result of all steps in the
compilation chain can be statically typed or clock checked.
This feature is important in compilers used for critical soft-
ware and has already been used in the qualification process
of industrial projects that use Scade as a development tool.

Finally, code generation is often related to code distribu-
tion (see [12] for a survey and most recent references). It
does not seem, however, that the description of the modular
compilation of a language such as the one treated here has
been considered in this context.

9. CONCLUSION AND FUTURE WORK
This article has presented the code generation of a syn-

chronous data-flow language into imperative code. This
code generation is modular in the sense that each node
definition is translated into an independent pair of impera-
tive functions. The principles presented in this article have
been in use for several years in the compilers of Lucid Syn-
chrone and the ReLuC compiler of Scade/Lustre and
have been experimented with on various real-size examples.
However, their precise description has never been published
or described before. Such a formalization appears now as
a fundamental need in order to develop a certified compiler
for a synchronous language in a proof assistant as well as
to simplify existing implementations. Moreover, it offers an
opportunity to replace process-based certification as used
today by Scade customer with a stronger mathematical ar-
gument of certification using proof techniques.

Acknowledgements: We thank Alexandre Bertails, Ma l-
gorzata Biernacka, Florence Plateau and the anonymous re-
viewers for useful comments on the presentation of this work.

10. REFERENCES
[1] T. Amagbegnon, L. Besnard, and P. Le Guernic.

Implementation of the data-flow synchronous language
signal. In Programming Languages Design and
Implementation (PLDI), pages 163–173. ACM, 1995.

[2] A. Benveniste, P. Caspi, S.A. Edwards, N. Halbwachs,
P. Le Guernic, and R. de Simone. The synchronous
languages 12 years later. Proceedings of the IEEE,
91(1), January 2003.

[3] Sandrine Blazy, Zaynah Dargaye, and Xavier Leroy.
Formal verification of a C compiler front-end. In FM
2006: Int. Symp. on Formal Methods, volume 4085 of
Lecture Notes in Computer Science, pages 460–475.
Springer-Verlag, 2006.

[4] P. Caspi, N. Halbwachs, D. Pilaud, and J. Plaice.
Lustre: a declarative language for programming
synchronous systems. In 14th ACM Symposium on
Principles of Programming Languages. ACM, 1987.

[5] Paul Caspi and Marc Pouzet. A Co-iterative
Characterization of Synchronous Stream Functions. In
Coalgebraic Methods in Computer Science
(CMCS’98), Electronic Notes in Theoretical
Computer Science, March 1998. Extended version
available as a VERIMAG tech. report no. 97–07 at
www.lri.fr/∼pouzet.

[6] Jean-Louis Colaço, Bruno Pagano, and Marc Pouzet.
A Conservative Extension of Synchronous Data-flow

with State Machines. In ACM International
Conference on Embedded Software (EMSOFT’05),
Jersey city, New Jersey, USA, September 2005.

[7] Jean-Louis Colaço and Marc Pouzet. Clocks as First
Class Abstract Types. In Third International
Conference on Embedded Software (EMSOFT’03),
Philadelphia, Pennsylvania, USA, october 2003.

[8] Jean-Louis Colaço and Marc Pouzet. Type-based
Initialization Analysis of a Synchronous Data-flow
Language. International Journal on Software Tools for
Technology Transfer (STTT), 6(3):245–255, August
2004.

[9] Sacres consortium. The declarative code dc+ , version
1.4. Technical report, Esprit project EP 20897 :
Sacres, 1997.

[10] The coq proof assistant, 2007. http://coq.inria.fr.

[11] Thierry Gautier and Paul Le Guernic. Code
generation in the sacres project. In Towards System
Safety, Proceedings of the Safety-critical Systems
Symposium, SSS’99, pages 127–149, Huntingdon, UK,
Feb 1999. Springer.

[12] Alain Girault. A survey of automatic distribution
method for synchronous programs. In International
Workshop on Synchronous Languages, Applications
and Programs (SLAP), Edinburg, UK, April 2005.
ENTCS.

[13] N. Halbwachs. The declarative code DC, version 1.2a.
Vérimag, Grenoble, France, October 1995.
unpublished report.

[14] N. Halbwachs, P. Raymond, and C. Ratel. Generating
efficient code from data-flow programs. In Third
International Symposium on Programming Language
Implementation and Logic Programming, Passau
(Germany), August 1991.

[15] N. Halbwachs and Pascal Raymond. A tutorial of
lustre. http://www-verimag.imag.fr/SYNCHRONE/,
2002.

[16] Grégoire Hamon and Marc Pouzet. Modular Resetting
of Synchronous Data-flow Programs. In ACM
International conference on Principles of Declarative
Programming (PPDP’00), Montreal, Canada,
September 2000.

[17] F. Maraninchi and Y. Rémond. Mode-automata: a
new domain-specific construct for the development of
safe critical systems. Science of Computer
Programming, (46):219–254, 2003.

[18] The MathWorks.
http://www.mathworks.com/products/simulink.

[19] Steven S Muchnick. Advanced Compiler Design and
Implementation. Morgan Kaufmann, 1997.

[20] B. C. Pierce. Types and Programming Languages. MIT
Press, 2002.

[21] Marc Pouzet. Lucid Synchrone, version 3. Tutorial
and reference manual. Université Paris-Sud, LRI,
April 2006. Distribution available at:
www.lri.fr/∼pouzet/lucid-synchrone.

[22] SCADE.
http://www.esterel-technologies.com/scade/,
2007.

