
Introduction à la vision artificielle 

Jean Ponce and Josef Sivic 
Email: Jean.Ponce@ens.fr and Josef.Sivic@ens.fr 
Web: http://www.di.ens.fr/willow/ 
 
Planches après les cours sur : 
http://www.di.ens.fr/~ponce/introvis/lect1.pptx 
http://www.di.ens.fr/~ponce/introvis/lect1.pdf 
 
Today with some slides from J. Hays and S. Seitz 



Change of time for the class 

From next week the class is on: 
 
Wednesdays 14:00-17:00 in the same room S16 
 
Next class: Wednesday 21/9 14:00-17:00  in S16 



Description: 
•  Street scene 
•  Bar 
•  Chairs 
•  People drinking coffee 
•  Ashtray, etc. 



Computer vision 
… extracting information from images and video 



Vision	
  is	
  really	
  hard	
  
•  Vision	
  is	
  an	
  amazing	
  feat	
  of	
  natural	
  
intelligence 	
  	
  
–  Visual	
  cortex	
  occupies	
  about	
  50%	
  of	
  Macaque	
  brain	
  
– More	
  human	
  brain	
  devoted	
  to	
  vision	
  than	
  anything	
  else	
  

Is that a 
queen or a 

bishop? 
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Vision is really hard 





WHY IS VISION DIFFICULT ? 

Too much information: 
•   1000x1000x24xN bits; 
•   matching n features against n features costs n!; 
•   shadows, highlights, texture.. 
 
Too little information: 
•  Physical properties (depth, orientation, reflectance..) 
of the world are not directly observable. 
 
What are appropriate representations? 
•  for images, object instances, object classes, video  
content and the interpretation process.. 
 
What are appropriate algorithms and architectures? 



(Nalwa, 1993) 



J.J. Koenderink, www.gestaltrevision.be/en/resources/clootcrans-press 



COMPUTER VISION IS INTERESTING. 

•   We know it is possible. 
 
•   We know it is difficult. 
 
•   We don’t know how to do it. 



Why	
  computer	
  vision	
  ma?ers	
  

Safety Health Security 

Comfort Access Fun 



Ridiculously	
  brief	
  history	
  of	
  computer	
  vision	
  

•  1966:	
  Minsky	
  assigns	
  computer	
  vision	
  as	
  an	
  
undergrad	
  summer	
  project	
  

•  1960’s:	
  interpretaHon	
  of	
  syntheHc	
  worlds	
  
•  1970’s:	
  some	
  progress	
  on	
  interpreHng	
  

selected	
  images	
  
•  1980’s:	
  ANNs	
  come	
  and	
  go;	
  shiO	
  toward	
  

geometry	
  and	
  increased	
  mathemaHcal	
  
rigor	
  

•  1990’s:	
  face	
  recogniHon;	
  staHsHcal	
  analysis	
  
•  2000’s:	
  broader	
  recogniHon;	
  large	
  

annotated	
  datasets	
  available;	
  video	
  
processing	
  starts	
  

•  2010’s:	
  Deep	
  learning	
  with	
  ConvNets	
  
•  2030’s:	
  …	
  

Guzman ‘68 

Ohta Kanade ‘78 

Turk and Pentland ‘91 



WHAT IS COMPUTER VISION GOOD FOR? 

Traditionally: 
•  Manufacturing: inspection, bin picking; 
•  Defense: ATR, photogrammetry, surveillance; 
•  Robotics: navigation, visual servoing. 
Recently: 
•  Computer graphics, medical imaging, HCI 
•  3D vision and recognition 
•  The Web, Internet, social networks. 
•  Robotics again. 

Really: 
•  Understanding the principles of object recognition; 
•  Building the robots of tomorrow, for home and space; 
•  Understanding how people tick; 
•  It is just difficult, fun, and interesting. 



CMU’s Chimp 
KAIST’s Hubo 



How	
  vision	
  is	
  used	
  now	
  
•  Examples	
  of	
  recent	
  real	
  world	
  applicaHons	
  

Some of the following slides by Steve Seitz 



OpHcal	
  character	
  recogniHon	
  (OCR)	
  

Digit recognition, AT&T labs 
http://www.research.att.com/~yann/ 

Technology to convert scanned docs to text 
•  If you have a scanner, it probably came with OCR software 

 

License plate readers 
http://en.wikipedia.org/wiki/Automatic_number_plate_recognition 

 



Face	
  detecHon	
  

•  Many	
  new	
  digital	
  cameras	
  now	
  detect	
  faces	
  
– Canon,	
  Sony,	
  Fuji,	
  …	
  
	
  



Smile	
  detecHon	
  

Sony Cyber-shot® T70 Digital Still Camera  



3D	
  from	
  thousands	
  of	
  images	
  

Agarwal et al. 2009 



Object	
  recogniHon	
  (in	
  supermarkets)	
  

LaneHawk by EvolutionRobotics 
“A smart camera is flush-mounted in the checkout lane, continuously 
watching for items. When an item is detected and recognized, the 
cashier verifies the quantity of items that were found under the basket, 
and continues to close the transaction. The item can remain under the 
basket, and with LaneHawk,you are assured to get paid for it… “ 



Vision-­‐based	
  biometrics	
  

“How the Afghan Girl was Identified by Her Iris Patterns”  Read the story  
wikipedia 



Login	
  without	
  a	
  password…	
  

Fingerprint scanners on 
many new laptops,  

other devices 

Face recognition systems now 
beginning to appear more widely 

http://www.sensiblevision.com/ 
 



Object	
  recogniHon	
  (in	
  mobile	
  phones)	
  

Point	
  &	
  Find,	
  Nokia	
  
Google	
  Goggles	
  



The Matrix movies, ESC Entertainment, XYZRGB, NRC 

Special	
  effects:	
  	
  shape	
  capture	
  



Pirates of the Carribean, Industrial Light and Magic 

Special	
  effects:	
  	
  moHon	
  capture	
  



Sports	
  

Sportvision first down line 
Nice explanation on www.howstuffworks.com 

 
http://www.sportvision.com/video.html 



Medical	
  imaging	
  

Image guided surgery 
Grimson et al., MIT 

3D imaging 
MRI, CT 



Smart	
  cars	
  

•  Mobileye	
  
– Market	
  CapitalizaHon:	
  11	
  Billion	
  dollars	
  
– See	
  also	
  CVPR	
  2016	
  keynote	
  

Slide content courtesy of Amnon Shashua 



Google	
  cars	
  

Oct 9, 2010. "Google Cars Drive Themselves, in Traffic". The New York Times. John 
Markoff 
June 24, 2011. "Nevada state law paves the way for driverless cars". Financial Post. 
Christine Dobby 
Aug 9, 2011, 
"Human error blamed after Google's driverless car sparks five-vehicle crash". The 
Star (Toronto) 





InteracHve	
  Games:	
  Kinect	
  
•  Object	
  RecogniHon:	
  

h?p://www.youtube.com/watch?
feature=iv&v=fQ59dXOo63o	
  

•  Mario:	
  h?p://www.youtube.com/watch?v=8CTJL5lUjHg	
  
•  3D:	
  h?p://www.youtube.com/watch?v=7QrnwoO1-­‐8A	
  
•  Robot:	
  h?p://www.youtube.com/watch?v=w8BmgtMKFbY	
  



Industrial	
  robots	
  

Vision-guided robots position nut runners on wheels 



Vision	
  in	
  space	
  

Vision systems (JPL) used for several tasks 
•  Panorama stitching 
•  3D terrain modeling 
•  Obstacle detection, position tracking 
•  For more, read “Computer Vision on Mars” by Matthies et al. 

NASA'S Mars Exploration Rover Spirit captured this westward view from atop  
a low plateau where Spirit spent the closing months of 2007.  



Mobile	
  robots	
  

http://www.robocup.org/ 
 

NASA’s Mars Spirit Rover 
http://en.wikipedia.org/wiki/Spirit_rover 

Saxena et al. 2008 
STAIR at Stanford 



Amazon	
  Prime	
  Air	
  

https://www.amazon.com/b?node=8037720011 



Skydio	
  

https://www.skydio.com/ 



Augmented	
  Reality	
  and	
  Virtual	
  Reality	
  

Magic Leap, Oculus, Hololens, etc. 



State	
  of	
  the	
  art	
  today?	
  

With enough training data, computer vision nearly 
matches human vision at some recognition tasks 
 
Deep convolutional neural networks have been a 
disruption to the field. More and more techniques are 
being “deepified”. 
 
Major research challenges, however, remain. 



Computer	
  Vision	
  and	
  Nearby	
  Fields	
  
•  Computer	
  Graphics:	
  Models	
  to	
  Images	
  
•  Comp.	
  Photography:	
  Images	
  to	
  Images	
  
•  Computer	
  Vision:	
  Images	
  to	
  Models	
  



Steve Sullivan 
 
•  Ph.D., UIUC, 1996 
 
•  Head of R&D, ILM, 2003 
 
•  Cover, IEEE Spectrum, 2004 

•  CSO, Lucasfilm, 2009-2012 

•  Microsoft (2013-) 

•  3 Academy Awards 



Computer vision as a job 

Vincent Delaitre 
Phd, 2015 
Start-up Deepomatic.com  

Guillaume Seguin 
Phd, 2016 
Start-up regaind.io  

https://www.inria.fr/centre/
paris/actualites/deepomatic-
un-shazam-de-l-image-
pour-le-e-commerce-et-les-
medias 

Piotr Bojanowski  
Phd, 2016 
Facebook AI Research 

Oliver Whyte 
Phd, 2012 
Engineer at Microsoft  

Mathieu Aubry 
Phd, 2015 
Faculty at ENPC 

Relja Arandjelovic 
Post-doc, 2016 
Google DeepMind 



Computer vision books 

•  D.A. Forsyth and J. Ponce, “Computer Vision: A Modern   
  Approach”, Prentice-Hall, 2003, 2nd edition, 2011. 
 
•  R. Szeliski, “Computer Vision: Algorithms and  
  Applications”, Springer, 2010. 
 
•  O. Faugeras, Q.T. Luong, and T. Papadopoulo, 
  “Geometry of Multiple Images,” MIT Press, 2001. 
 
•  R. Hartley and A. Zisserman, “Multiple View  
  Geometry in Computer Vision”, Cambridge  
  University Press, 2004. 



Other relevant books 

•  J.J. Koenderink, “Solid Shape”, MIT Press, 1990. 

•  J.J. Koenderink, http://www.gestaltrevision.be/en/
resources/clootcrans-press 

•  M.  Berger, “Géométrie”, Nathan, 1992. 

•  D.  Hilbert and S. Cohn-Vossen, “Geometry and the 
Imagination”, Chelsea, 1952. 



Course outline: 
 
1. Camera geometry and calibration  
2.  Filtering, edge and feature detection 
3.  Radiometry, shading and color 
4.  One-view (differential) geometry 
5.  Two-view geometry and stereo 
6.  Multi-view geometry and stereo, SFM 
7.  Projective cameras 
8.  Range data 
9.  Segmentation 
10. Recognition 

Programming assignments + final presentation 



Reconnaissance d’objets 
et vision artificielle 

http://www.di.ens.fr/willow/teaching/recvis16/ 

Cordelia Schmid Josef Sivic Ivan Laptev Jean Ponce 

Tuesdays 16h15 salle Conference, at 46 rue d’Ulm 
First class: Tuesday Oct 4th  



Course outline: 
 
1. Camera geometry and calibration  
2.  Filtering, edge and feature detection 
3.  Radiometry, shading and color 
4.  One-view (differential) geometry 
5.  Two-view geometry and stereo 
6.  Multi-view geometry and stereo, SFM 
7.  Projective cameras 
8.  Range data 
9.  Segmentation 
10. Recognition 

Programming assignments + final presentation 



Images are two-dimensional patterns of brightness values. 

They are formed by the projection of 3D objects. 





High-fidelity multi-view stereopsis 
(Furukawa and Ponce, CVPR’07,PAMI’10) 

http://www.cs.washington.edu/homes/furukawa/research/pmvs/index.html 

Data courtesy of S. Leigh, UIUC Anthropology Department. See for example  
(Hernandez and Schmitt, 2004; Strecha et al., 2006) for related work. 





•  Google Maps Photo Tour 
•  Lucasfilm 
•  Weta Digital 

(© Bath & Burke, Weta Digital, Siggraph’11) 

PMVS (http://www.di.ens.fr/pmvs) 



Course outline: 
 
1. Camera geometry and calibration  
2.  Filtering, edge and feature detection 
3.  Radiometry, shading and color 
4.  One-view (differential) geometry 
5.  Two-view geometry and stereo 
6.  Multi-view geometry and stereo, SFM 
7.  Projective cameras 
8.  Range data 
9.  Segmentation 
10. Recognition 

Programming assignments + final presentation 



Filtering 



Edge Detection 



Edge Detection 



(Image courtesy of C. Schmid) 

•  Find features (interest points) 
•  Match them using local invariant descriptors (jets, SIFT) 

(Lowe 2004) 

Interest points and 
 local appearance models 



Course outline: 
 
1. Camera geometry and calibration  
2.  Filtering, edge and feature detection 
3.  Radiometry, shading and color 
4.  One-view (differential) geometry 
5.  Two-view geometry and stereo 
6.  Multi-view geometry and stereo, SFM 
7.  Projective cameras 
8.  Range data 
9.  Segmentation 
10. Recognition 

Programming assignments + final presentation 



Radiometry/Shading 



Color 



Course outline: 
 
1. Camera geometry and calibration  
2.  Filtering, edge and feature detection 
3.  Radiometry, shading and color 
4.  One-view (differential) geometry 
5.  Two-view geometry and stereo 
6.  Multi-view geometry and stereo, SFM 
7.  Projective cameras 
8.  Range data 
9.  Segmentation 
10. Recognition 

Programming assignments + final presentation 



One-view (differential) geometry 

(Marr & Nishihara, 1978; Koenderink, 1984) 



(Marr & Nishihara, 1978; Koenderink, 1984) 

One-view (differential) geometry 



The Geometry of  
the Gauss Map 

Cusp of 
Gauss 

Gutterpoint 

Concave 
fold 

Convex 
fold 

Gauss 
sphere 

Image of 
parabolic 
curve 

Moving 
great 
circle 



Course outline: 
 
1. Camera geometry and calibration  
2.  Filtering, edge and feature detection 
3.  Radiometry, shading and color 
4.  One-view (differential) geometry 
5.  Two-view geometry and stereo 
6.  Multi-view geometry and stereo, SFM 
7.  Projective cameras 
8.  Range data 
9.  Segmentation 
10. Recognition 

Programming assignments + final presentation 



How do we perceive depth? 



Depth	
  from	
  Stereo	
  
•  Goal:	
  recover	
  depth	
  by	
  finding	
  image	
  coordinate	
  x’	
  
that	
  corresponds	
  to	
  x	
  

f 

x x’ 

Baseline 
B 

z 

C C’ 

X 

f 

X 

x 

x' 

Slide: D. Hoiem 



Two-View Geometry: Stereo 



Two-View Geometry: Stereo 



Multi-Camera Geometry 



(Snavely, Seitz, Szeliski, 2006) 
http://phototour.cs.washington.edu/ 

Phototourism 



(Furukawa & Ponce, 2009) 



Course outline: 
 
1. Camera geometry and calibration  
2.  Filtering, edge and feature detection 
3.  Radiometry, shading and color 
4.  One-view (differential) geometry 
5.  Two-view geometry and stereo 
6.  Multi-view geometry and stereo, SFM 
7.  Projective cameras 
8.  Range data 
9.  Segmentation 
10. Recognition 

Programming assignments + final presentation 



What is a  
camera? 

x 



What is a  
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x 

x 

c 
ξ 

r y 



x 

c 
ξ 

r y 

c 



x 

c 
ξ 

r y 

x 

c 

ξ 



x 

c 
ξ 

r y 

x 

c 

ξ 

ξ 



x 

c 
ξ 

r y 

x 

ξ 

r y 

Linear  
family 
of lines 

x 

ξ 

x 

c 

ξ 

ξ 

ξ 



Course outline: 
 
1. Camera geometry and calibration  
2.  Filtering, edge and feature detection 
3.  Radiometry, shading and color 
4.  One-view (differential) geometry 
5.  Two-view geometry and stereo 
6.  Multi-view geometry and stereo, SFM 
7.  Projective cameras 
8.  Range data 
9.  Segmentation 
10. Recognition 

Programming assignments + final presentation 



Problem: find the 3D skeleton of people 
 
Solution: Use random forest to classify pixels as belonging to 
some body part 

New sensors 



(Shotton et al., 2011) 



Course outline: 
 
1. Camera geometry and calibration  
2.  Filtering, edge and feature detection 
3.  Radiometry, shading and color 
4.  One-view (differential) geometry 
5.  Two-view geometry and stereo 
6.  Multi-view geometry and stereo, SFM 
7.  Projective cameras 
8.  Range data 
9.  Segmentation 
10. Recognition 

Programming assignments + final presentation 



Segmentation 

(Joulin, Bach, Ponce, CVPR’12) 



(Suha et al., 2015) 

Unsupervised 
object discovery 



Layered person segmentation 
[Seguin et al., 2015] 



Course outline: 
 
1. Camera geometry and calibration  
2.  Filtering, edge and feature detection 
3.  Radiometry, shading and color 
4.  One-view (differential) geometry 
5.  Two-view geometry and stereo 
6.  Multi-view geometry and stereo, SFM 
7.  Projective cameras 
8.  Range data 
9.  Segmentation 
10. Recognition 

Programming assignments + final presentation 



How to make sense of “pixel-chaos”? 

3D Scene reconstruction 

Object class recognition 

Face recognition Action recognition 

Drinking 



Object instance recognition 



“Charade” [Donen, 1963] 

Visually defined query 

“Find this bag” 

Example: Visual search in an entire feature length movie 

Demo: 
http://www.robots.ox.ac.uk/~vgg/research/vgoogle/index.html 



Instance level recognition : still difficult 

See also: this workshop, e.g. Perdoch et al.’15, Fernando et al.’14, Schindler et 
al.’06, Martin-Buralla’15, Matzen&Snavely’14 



Inputs: paintings, drawings,  
historical photographs, 

reference 3D model 
Output: recovered artist/camera 

viewpoints 

Example I.: Localize non-photographic 
depictions 

[Aubry, Russell, Sivic, 2013] 
http://www.di.ens.fr/willow/research/painting_to_3d/ 



Matching non-photographic depictions 



Geo-localization of historical and non-photographic 
depictions 





Recognizing people 

(Sivic, Everingham, Zisserman, 2005) 



Faces: 
Region tubes for tracking faces 

[Sivic, Everingham and Zisserman, 2005] 



Raw face   
detections 



Tracking by 
detection and 

recognition 

 

Connected face 
tracks 



Recognition 

(Kushal et al., 2007) 
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(a) Input images (b) DPM [13] output (c) Our aligned outputs (d) Retrieved 3D chairs

Figure 3: Comparison of our algorithm output with the deformable parts model (DPM) [13]. While the DPM correctly
predicts the 2D location of the depicted chairs, along with the 2D location of its parts, our algorithm is able to predict the 3D
pose and style of the chair.

Figure 4: For each image (left), we show the most confident matches (right). Even if we do not have an exact match in our
dataset, our algorithm returns meaningful matches.

5. Conclusion

We have demonstrated successful detection and align-
ment of 3D CAD chair models to chairs depicted in 2D im-
agery. Our approach relied on matching spatial configura-
tions of mid-level discriminative visual elements extracted
from a large database of CAD models having a large num-
ber of rendered views. Our algorithm is able to recover
the chair pose, in addition to its style. We evaluated our
approach on the challenging PASCAL VOC dataset and
showed that, when combined with the output of the de-
formable parts model detector [13], we are able to achieve
higher detection accuracy than using either method alone.

We also demonstrated that our algorithm is able to reliably
recover the chair pose and style, as shown in our user study.
The output alignments produced by our system open up the
possibility of joint 3D reasoning of the depicted objects in a
scene toward the larger goal of full 3D scene understanding.

References
[1] http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2012/,

2012. 2
[2] R. Arandjelović and A. Zisserman. Smooth object retrieval

using a bag of boundaries. In ICCV, 2011. 2
[3] M. Aubry, B. Russell, and J. Sivic. Painting-to-3d model

alignment via discriminative visual elements. Technical Re-
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5. Conclusion

We have demonstrated successful detection and align-
ment of 3D CAD chair models to chairs depicted in 2D im-
agery. Our approach relied on matching spatial configura-
tions of mid-level discriminative visual elements extracted
from a large database of CAD models having a large num-
ber of rendered views. Our algorithm is able to recover
the chair pose, in addition to its style. We evaluated our
approach on the challenging PASCAL VOC dataset and
showed that, when combined with the output of the de-
formable parts model detector [13], we are able to achieve
higher detection accuracy than using either method alone.

We also demonstrated that our algorithm is able to reliably
recover the chair pose and style, as shown in our user study.
The output alignments produced by our system open up the
possibility of joint 3D reasoning of the depicted objects in a
scene toward the larger goal of full 3D scene understanding.
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(Aubry	
  et	
  al.,	
  2014)	
  



•  The main principles are known since LeCun’88 
•  Has 60M parameters and 650K neurons. 
•  Success is determined by (a) lots of labeled images and 

(b) fast GPU implementation. Both (a) and (b) have not 
been available until very recently. 

Convolutional neural networks 
[Krizhevsky et al. NIPS’12] 

Convolutional Neural Networks: 



Some results 

[Oquab, Bottou, Laptev, Sivic, CVPR 2014] 



Automatic learning from video scripts 

24:25	
  

24:51	
  

Input:	
  Videos	
  with	
  aligned	
  shoo?ng	
  scripts.	
  

Output:	
  Recognizer	
  for	
  each	
  character	
  in	
  the	
  video	
  

Waiter 

Laszlo 



Recognizing people 

(Everingham, Sivic, Zisserman, 2009) 



Automatic learning from video scripts 

24:25	
  

24:51	
  

Input:	
  Videos	
  with	
  aligned	
  shoo?ng	
  scripts.	
  

Output:	
  detector	
  of	
  human	
  ac?ons.	
   See also [Laptev, Marszałek, 
Schmid, Rozenfeld 2008] 



Weakly-supervised video interpretation 

(Bojanowski et al., 2014) 



What about scene  
understanding? 

 
  

The blocks world revisited 

2010 
(Gupta, Efros, Hebert, ECCV’10) 
 




