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1a: Principal investigator

Curriculum Vitae

Education
• Ecole Normale Supérieure de l’Enseignement Technique, Cachan, Mathematics, 1978–1982.
• Doctorat de Troisième Cycle, Computer Science, University of Paris Orsay, 1983.
• Doctorat d’Etat, Computer Science, University of Paris Orsay, 1988.

Employment
• INRIA: Research scientist, 1982–1985.
• MIT Artificial Intelligence Laboratory: Visiting scientist, 1984–1985.
• Stanford University, Dept. of Computer Science: Research associate, 1985–1989. Sr. research
associate, 1988–1989.
• University of Illinois at Urbana-Champaign (UIUC), Dept. of Computer Science and Beckman
Institute: Asst. professor, 1990–1993. Assoc. professor (tenured), 1993–1998. Professor, 1998–2006.
• Ecole Normale Supérieure (ENS), Dept. of Computer Science: Professor, first class, 2006. Professor,
exceptional class, 2007–.

Academic honors and awards
• Xerox award for faculty research, College of Engineering (CoE), UIUC (1993, 1998): This award is
given annually to three assistant professors (Jr. award) and three associate professors (Sr. award) in
the CoE, which counts 12 departments and is ranked in the top 5 in the US. I received both awards,
in 1993 and 1998 respectively.
• Center of Advanced Study associate, UIUC (1994): This award is given annually to a dozen tenured
faculty members campuswide. In 1994, I was one of its two recipients named “Beckman associate”,
which further recognizes outstanding achievements by young researchers.
• Outstanding undergraduate advisor award, CoE, UIUC, 2000.
• IEEE fellow, 2003.

Professional activities
• Area Editor, Computer Vision and Image Understanding, 1994–2000.
• Member, ARPA/ORD RADIUS Image Understanding advisory committee, 1994–1996.
• Member, ARO Computational Geometry for Intelligent Systems advisory board, 1996–1998.
• Associate editor, IEEE Transactions on Robotics and Automation, 1998–2001.
• Member, scientific advisory board of Electricité de France, 1998–2002.
• Member, scientific advisory board of France Télécom, 2001–2004.
• Editorial board member, International Journal of Computer Vision, 2001–.
• Member, network of North American advisors to the French Academy of Engineering, 2002–2006.
• Editor-in-chief, International Journal of Computer Vision, 2003–2007.
• Editorial board member, Foundation and Trends in Computer Graphics and Vision, 2005–.
• Member, scientific advisory board of the Institute of Ecole Normale Supérieure, 2007–.
• Member, contents thematic commission, Cap Digital, 2009–.
• Editorial board member, SIAM Journal on Imaging Sciences, 2009–.

Publications
Over 150 publications, including: 1 textbook, translated in three languages (2003); 3 edited collections;
15 book chapters; 45 journal articles; and 88 refereed conference papers.

US patent
• Automated reconfigurable object manipulation device with an array of pins: US Patent # 6,633,797.
See [Akella, Blind, McCullough, Ponce, IJRR 20(10):808-818, 2001] for details.

Software
Several significant sotware packages developed in my research groups at UIUC and INRIA are available
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under open-source licenses:
• 3D recognition software: This is a C implementation of the recognition method described in [3]. It is
avaible at: http://www-cvr.ai.uiuc.edu/ponce_grp/software/3d.html, and has been transfered
to Bertin Technologies and Toyota.
• PMVS: This is a C implementation of the multi-view stereo algorithm described in [6]. It is available
at: http://grail.cs.washington.edu/software/pmvs/.
• SPAMS: This is an optimization toolbox for efficient sparse coding and dictionary learning. See
[Mairal, Bach, Ponce, Sapiro, Proc. ICML, 2009] for details. It is available at: http://www.di.ens.

fr/willow/SPAMS/.

Some recent invited lectures (2006–2010)
2006: Mathematics and Image Analysis Conference, Paris, France; Johns Hopkins University; Rensse-
laer Polytechnic Institute CS Day; University of North Carolina, Chapel Hill. 2007: ACCV’07 Vision
Workshop, Hiroshima; ICCV’07 3D Vision Workshop, Rio de Janeiro; Microsoft Research, Cambridge.
2008: European Workshop on Computational Geometry, Paris; Ecole Normale Supérieure de Cachan;
Ecole Polytechnique, Paris; Microsoft Tech Days, Paris; Télécom Paris; International Workshop on
Computer Vision, Venice; International Workshop on Shape Perception in Human and Computer
Vision, ECCV’08; New York University, NYC. 2009: Beckman Institute 20th Anniversary Sympo-
sium, Urbana; Laboratoire d’Analyse et d’Architecture des Systèmes, Toulouse; University of Southern
California, Los Angeles. 2010: Keynote speaker, British Machine Vision Conference, Aberystwyth,
Wales; Janelia Conference on What Can Computer Vision Do for Neuroscience and Vice Versa, VA;
Laboratoire d’informatique Gaspard-Monge, Paris; Laboratoire Jacques-Louis Lions, Paris.

Student and post-doc supervision
•UIUC: 8 MS students (graduated), and 10 PhD students (graduated): I. Shimshoni (1995, professor,
MIS department, Univ. of Haifa), T. Joshi (1995, MSR Bangalore), S. Sullivan (1997, head of R&D
at ILM), A. Sudsang (1999, assistant prof. at Chulalongkorn University, Thailand), Y. Genc (1999,
Siemens SCR), F. Rothganger (2004, Sandia Labs), S. Lazebnik (2006, assistant professor, UNC Chapel
Hill), K. McHenry (2008, National Center for Supercomputing Applications), A. Kushal (2008, Two
Sigma Investments), Y. Furukawa (2008, Google).
• Willow: 6 PhD students (current): Y. Boureau, F. Couzinie-Devy, O. Duchenne, A. Joulin, J.
Mairal, O. Whyte, and 3 post-docs (current): Kong H., B. Russell, J. van Gemert.

Teaching
• UIUC: Numerical methods (sophomores); introduction to computer graphics (seniors); advanced
computer graphics (seniors); introduction to artificial intelligence (seniors); geometric and symbolic
computation (seniors); geometric modeling (seniors); computer vision (graduate students); advanced
robotic planning (graduate students); geometric methods in computer vision (graduate students).
• ENS: Introduction to scientific computing and its applications; geometry and computer vision;
object recognition; geometric bases of computer science.
• Tutorials: ICCV’09 and CVPR’10 tutorials on sparse coding and dictionary learning for image
analysis.

Funding ID
At UIUC I was PI for grants totalling about $2.8M in funding from the National Science Foundation
and industry. Since returning to France, I have obtained the following awards:
• DGA (2008–2010): 2ACI. With Bertin, INRIA Rennes and Université de Caen. 130KEuros.
• DGA (2008): Itisecure. With E-vitech. 60KEuros.
• ANR: HFIMBR (2008–2010). With LASMEA and INRIA Rhône-Alpes. 110KEuros.
• ANR: Triangles (2008–2010). With INRIA Sophia-Antipolis and Lyon University. 5KEuros.
• MSR-INRIA lab (2008–2010): Image and video mining for science and humanities. 226KEuros.
• ANR-JST collaborative effort (pending): Image and video understanding for cultural heritage preser-
vation. With INRIA Rhône-Alpes, University of Tokyo, and Keio University. 200KEuros.
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• ANR (pending): Large-scale video access and understanding. With INRIA Rhône-Alpes, MRIM,
INA, and EXALEAD. 200KEuros.

Scientific leadership profile

I received the “doctorat de troisième cycle” and “doctorat d’état” degrees in computer science from
the University of Paris XI in 1983 and 1988. After over 20 years in the US, first as a research scientist
at MIT and Stanford, then as a faculty member at the University of Illinois at Urbana-Champaign
(UIUC), I returned to Europe in 2006 to join the faculty of Ecole Normale Supérieure (ENS) in Paris.
In 2007, I started a joint ENS/INRIA research team, called Willow, dedicated to computer vision and
machine learning. Willow has quickly reached maturity, with about 30 members and a well-established
international reputation. It is about to spin off its core machine learning activities, wich will give me
an opportunity, with a reduced administrative load, to focus the next five years of my own research
on the visual analysis of video data, a project with many scientific challenges but the potential for
groundbreaking research and great societal impact.

Content and impact of major scientific contributions: My main research interest is in computer
vision, the area of computer science and engineering devoted to the automated computer interpretation
of digital imagery (“what is the depth of this pixel in the scene?”, “is there a chair in this image?”).
Much of my early work was dedicated to shape representation, with the first answers to a number of
open problems, including the first effective algorithm for computing differential invariants of surfaces
from range data [CVGIP’85, 264 citations],1 the first formal proof of the existence of viewpoint invari-
ants for generalized cylinders [PAMI’89, 128 citations]; the first implemented algorithms for computing
the 3D pose of a solid bounded by a curved surface from a photograph [PAMI’90, 202 citations] and
for computing the aspect graph of such a solid [IJCV’90, 110 citations] (this had been an open prob-
lem since 1976), and the first computational characterization of compact solids bounded by algebraic
surfaces [PAMI’94, 134 citations].

In the mid-90s, I made a foray into sensorless, geometric robotics (grasp and manipulation plan-
ning). This includes two papers on the construction of stable, “form-closure” grasps for polygons
[TRA’95, 179 citations] and polyhedra [IJRR’97, 175 citations] that are now classical references in
the field. This work also resulted in the design and construction of several grippers and manipulation
devices, as well as a US patent (2003). At the same time, I wrote “Computer Vision: A Modern
Approach” (with D. Forsyth, Prentice-Hall, 2002, 1801 citations), which is now the leading computer
vision textbook worldwide: It is used at CMU, Oxford, MIT, and UC Berkeley for example, has sold
over 10,000 copies, and has been translated in Chinese, Japanese, and Russian.

After completing this book, I returned full-time to computer vision research, focusing on three
fundamental problems before leaving UIUC: 3D object recognition, including an algorithm [3, 101
citations] whose implementation is publicly available under an open-source license and has been trans-
fered to Bertin Technologies and Toyota; category-level image classification and object detection,
including the widely influential spatial pyramid approach [1, 540 citations]; and 3D photography, in-
cluding the recent (2007) PMVS algorithm [6, 60 citations] for multi-view stereo reconstruction that
is generally acknowledged as the most accurate to date (winner in 4 of the 6 categories of the Middle-

1In this section, papers are refered to by the name of the journal/conference where they appear, followed by the year
of their publication. Numbered references correspond to the corresponding publications in the “top 10” list of Section
1.c. All citation numbers are from Google Scholar. Acronyms: AR = Advanced Robotics, CVGIP = Computer Vision,
Graphics and Image Processing, CVPR = IEEE Conf. on Computer Vision and Pattern Recognition, ECCV = European
Conf. on Computer Vision, FTCGV = Foundations and Trends in Computer Graphics and Vision, ICCV = Int. Conf.
on Computer Vision, ICML = Int. Conf. on Machine Learning, IJRR = Int. Journal on Robotics Research, IROS =
IEEE/RSJ Conf. on Intelligent Robots and Systems, ISRR = Int. Symp. on Robotics Research, JMLR = Journal of
Machine Learning Research, NIPS = Neural Information Processing Systems, PAMI = IEEE Trans. on Pattern Analysis
and Machine Intelligence, SJIS = SIAM Journal on Imaging Sciences, TRA = IEEE Trans. on Robotics and Automation.
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bury competition http://vision.middlebury.edu/mview/), and is also publicly available under an
open-source license.

By the time I returned to France in 2006, I realized two things: (1) with video everywhere,
from family footage to TV or the Internet (ours is a video world!), the automated analysis of digital
video is the future of computer vision; and (2) true interdisciplinary collaboration with machine
learning researchers (as opposed to rote use of textbook classification techniques) is a prerequisite to
further progress. This vision is implemented in the Willow research team, that successfully (and about
equally) divides its activities between computer vision, machine learning, and the cross-pollination of
the two fields, with video as one of the core research areas. With my recent work [ICCV’09, ICML’09,
JMLR’10] on sparse coding and dictionary learning for image restoration, a third key idea has imposed
itself: (3) a new alliance between computer vision, machine learning, and signal processing is afoot,
and VideoWorld is a unique opportunity to jump start it and make Europe its leader.

International recognition and diffusion: I am the author of over 150 technical publications, and
my h-number is 37, with over 6000 citations.2 Four of my conference papers [IROS’97, ISRR’99,
ECCV’06, CVPR’09] have been selected for publication in special issues of AR (1998), IJRR (2001),
IJCV [9], and PAMI (2010) dedicated to the best (typically four to six) papers from these conferences.
O. Duchenne, the first author on the CVPR’09 paper and one of my current PhD students, has received
the “best student paper - honorable mention” award at that conference. My scientific leadership ac-
tivities include chairing several international conferences (CVPR’97, CVPR’00, ECCV’08), organizing
numerous workshops, and serving on the editorial board of several journals (CVIU, FTCGV, IJCV,
SJIS, TRA). In particular, I served from 2003 to 2007 as editor-in-chief of IJCV, one of the top two
journals of the field. Under my tenure, the impact factor of IJCV steadily grew from 2 to 6, and IJCV
was ranked first of all journals in computer science (source: ISI Web of Knowledge) when I decided to
step down. I am also an IEEE Fellow, have served on several scientific advisory boards for academia,
government, and industry, and have received a US patent for the development of a robotic parts feeder.

Effort and ability to inspire younger researchers: I have supervised 10 PhD students at UIUC.
All of them are enjoying successful careers in academia or industry. Notable among these are Ilan
Shimshoni (PhD, 1995), who is a professor (and former department head) in the department of in-
formation management systems at Haifa University in Israel; Steve Sullivan (PhD, 1997), who is the
director of research and development at Industrial, Light and Magic, the world leading visual effects
company, and is the recipient of two Academy technical achievement awards; Attawith Sudsang (PhD,
1999), who decided to return to his native Thailand, and is now a faculty member in the department
of computer engineering at Chulalongkorn University, the top academic institution there; Svetlana
Lazebnik (PhD, 2006), who is now an assistant professor in the computer science department of the
University of North Carolina at Chapel Hill, and a recipient of an NSF career award as well as a Mi-
crosoft research faculty fellowship; and Yasutaka Furukawa (PhD, 2007), who recently joined Google
after a post-doctoral stay at the University of Washington. Lazebnik and Furukawa are the first au-
thors of the spatial pyramid and PMVS papers I mentioned earlier, and they will be stars of the new
computer vision generation. I am currently advising or co-advising 6 PhD students and 3 post-docs
within Willow. The first one of my Willow PhD students, J. Mairal, will graduate this summer.

Proven ability to productively change research fields and/or establish new interdisci-
plinary approaches: I have demonstrated twice my ability to switch fields, first in the 1990s with
my work in robotics (over 570 citations, one US patent), then in the past three years with my involve-
ment in machine learning research through the creation of Willow and (so far) two papers in NIPS
(2008) and ICML (2009), the top conferences of this field, and one article in JMLR (2010), its top

2The h-number measures scientific impact as the maximum number h of publications from a given author that have
been cited at least h times. The h-number reported here has been computed using the popular Harzing’s Publish or Perish
software. Although I have made all efforts to manually eliminate duplicates and false citations, it is nearly impossible to
account for all self citations, of which a small number likely remains.
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international journal. My recent work on image denoising and demosaicking with J. Mairal and F.
Bach [ICCV’09] is another foray into a new field, that of signal processing.

10-year track record

Top 10 publications as senior author:
For the 2000-to-present period alone, Publish or Perish records an h-number of 23 and over 3700
citations for my publications. My 10 most cited papers since 2000 are, according to Google Scholar:
1. S. Lazebnik, C. Schmid, J. Ponce, Beyond Bags of Features: Spatial Pyramid Matching for Recog-
nizing Natural Scene Categories, Proc. CVPR, II:2169-2178, 2006. 540 citations.

2. S. Lazebnik, C. Schmid, J. Ponce, A Sparse Texture Representation Using Local Affine Regions,
PAMI, 27(8):1265-1278, 2005. 244 citations, including 106 for the CVPR’03 conference version.

3. F. Rothganger, S. Lazebnik, C. Schmid, J. Ponce, 3D Object Modeling and Recognition Using Local
Affine-Invariant Image Descriptors and Multi-View Spatial Constraints, IJCV, 66(3):231-259, 2006.
198 citations, including 95 citations for the CVPR’03 conference version.

4. S. Lazebnik, C. Schmid, J. Ponce, Affine-Invariant Local Descriptors and Neighborhood Statistics
for Texture Recognition, Proc. ICCV, 649-655, 2003. 76 citations.

5. S. Lazebnik, C. Schmid, J. Ponce, Semi-Local Affine Parts for Object Recognition, Proc BMVC,
II:959-968, 2004. 71 citations.

6. Y. Furukawa and J. Ponce, Accurate, Dense, and Robust Multi-View Stereopsis, PAMI, 2010. In
press. 60 citations for the CVPR’07 conference version.

7. S. Mahamud, M. Hebert, Y. Omori and J. Ponce, Provably-Convergent Iterative Methods for
Projective Structure from Motion, Proc. CVPR, I:1018–1025, 2001. 54 citations.

8. S. Lazebnik, C. Schmid, J. Ponce, A maximum entropy framework for part-based texture and object
recognition, Proc. ICCV, I:832-838, 2005. 47 citations.

9. Y. Furukawa and J. Ponce, Carved Visual Hulls for Image-Based Modeling, IJCV, 81(1):53–67,
2009. Special issue dedicated to the best papers of ECCV’06. 43 citations.

10. F. Rothganger, S. Lazebnik, C. Schmid, J. Ponce, Segmenting, Modeling, and Matching Video
Clips Containing Multiple Moving Objects, PAMI, 29(3):477–491, 2007. 43 citations.

Notes: (1) PAMI and IJCV are the top two journals in computer vision. CVPR, ECCV, and ICCV
are the most selective, peer-reviewed international conferences in computer vision, with lower accep-
tance rates than top journals, and papers often more cited than the subsequent journal publications.
(2) I have a policy of appearing as last (senior) author on all papers with PhD students and junior
colleagues. I have made significant contributions to all publications listed above. Their first author
is one of my PhD students in all cases except [7], where he is a PhD student of my colleague M. Hebert.

Book:
• D. Forsyth and J. Ponce, Computer Vision: A Modern Approach, Prentice-Hall, 2003. This
textbook has sold over 10,000 copies, and Chinese, Japanese, and Russian translations are available.
1801 citations.

Research monographs and chapters in collective volumes:

• C. Schmid, G. Dorko, S. Lazebnik, K. Mikolajczyk, J. Ponce, Pattern Recognition with Local In-
variant Features, in Handbook of Pattern Recognition and Computer Vision, C.H. Chen and
P.S.P Wang (eds.), World Scientific Publishing Co., 2004.

• J. Ponce, M. Hebert, C. Schmid, and A. Zisserman (eds.), Toward Category-Level Object
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Recognition, Springer-Verlag, Lecture Notes in Computer Science, Vol. 4170, 2007. 34 citations.

• S. Lazebnik, C. Schmid, J. Ponce, Spatial Pyramid Matching, in Object Categorization: Com-
puter and Human Vision Perspectives, S. Dickinson (ed.), Cambridge University Press, 2009.

Granted patent:
• “Automated Reconfigurable Object Manipulation Device with an Array of Pins”, S. Akella, S. Blind,
C. Mc Cullough, and J. Ponce, US Patent # 6,633,797 (2003).

Invited presentations:
• Keynote speaker: Reconnaissance des Formes et Intelligence Artificielle, Toulouse (2004); European
Workshop on Computational Geometry, Paris (2008); British Machine Vision Conference, Aberyst-
wyth, Wales (2010).
• Invited speaker: Learning Workshop, Snowbird (2001); International Symposium on Core Research
for Evolutional Science, Technology, Tokyo (2003); Workshop on Generic Object Recognition and
Categorization, Washington DC (2004); Mathematics and Image Analysis Conference, Paris (2006);
Rensselaer Polytechnic Institute CS Day (2006); ACCV’07 Vision Workshop, Hiroshima (2007); 3D
Vision Workshop, Rio de Janeiro (2007); International Workshop on Shape Perception in Human
and Computer Vision, Marseille (2008); International Workshop on Computer Vision, Venice (2008);
Microsoft TechDays, Paris (2008); Beckman Institute 20th Anniversary Symposium, Urbana (2009);
Conference on What Can Computer Vision Do for Neuroscience and Vice Versa, Janelia Farm, VA
(2010).

Research expeditions: NA.

Organisation of international conferences:
• General chair, CVPR, Hilton Head Island, SC (2000).
• General chair, ECCV, Marseille (2008).
• Chair, International Workshop on Object Recognition, Taormina (2003, 2004, 2006).

International prizes/awards/academy memberships:
• IEEE Fellow (2003).

Membership to editorial board of international journals:
• Area editor, Computer Vision and Image Understanding (1994-2000).
• Associate editor, IEEE Transactions on Robotics and Automation (1998-2001).
• Editorial board member, International Journal of Computer Vision (2001–). (This includes serving
as editor-in-chief from 2003 to 2007.)
• Editorial board member, Foundation and Trends in Computer Graphics and Vision (2005–).
• Editorial board member, SIAM Journal on Imaging Sciences (2009–).
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1b: Extended synopsis of the project

Digital video is everywhere, at home, at work, and on the Internet. Yet, effective technology
for organizing, retrieving, improving, and editing its content is nowhere to be found. Models
for video content, interpretation and manipulation inherited from still imagery are obsolete,
and new ones must be invented. With a new convergence between computer vision, machine
learning, and signal processing, the time is right for such an endeavor. Concretely, we
will develop novel spatio-temporal models of video content learned from training data and
capturing both the local appearance and nonrigid motion of the elements—persons and their
surroundings—that make up a dynamic scene. We will also develop formal models of the
video interpretation process that leave behind the architectures inherited from the world of
still images to capture the complex interactions between these elements, yet can be learned
effectively despite the sparse annotations typical of video understanding scenarios. Finally,
we will propose a unified model for video restoration and editing that builds on recent
advances in sparse coding and dictionary learning, and will allow for unprecedented control
of the video stream. This project addresses fundamental research issues, but its results are
expected to serve as a basis for groundbreaking technological advances for applications as
varied as film post-production, video archival, and smart camera phones.

A video world. An enormous amount of resources is dedicated to the creation of digital video
content (home movies, films, surveillance tapes, TV, video games), its storage (DVD libraries, DVRs,
news archives), and its distribution (Institut National de l’Audiovisuel (INA), video on demand,
YouTube). Effective general-purpose technology for doing something with this content in an auto-
mated or semi-automated fashion, on the other hand, is cruelly missing. I will focus in this project on
two fundamental tasks:

1. Understanding video content—this is automatically answering queries such as what is hap-
pening in a scene, who is in it, where it is shot, and when some particular type of action is
occurring.

2. Manipulating video content—that is restoring (e.g., deblocking, deblurring, denoising)
damaged videos, and/or editing their content (e.g., adding, removing, replacing, or resizing
objects and people).

Any solutions to these two problems will have an immediate impact on everyday life (e.g., organizing
your family vacation clips), and applications in domains as varied as video archival (e.g., content-based
retrieval), sociology (e.g., studies of cigarette use in sitcoms), entertainment (e.g., rig removal during
post-production), or the camera phone industry (e.g., video denoising, crucial in this context with
small lenses and sensing areas).

Of course, specialized tools have been developed for particular instances of these two problems, for
example in surveillance [13] and sports [25] applications (Figure 1, top). As argued below, these do
not generalize to unconstrained, real-life imagery as found in home videos, feature films, newscasts,
and TV series. Likewise, existing technology for the specific problems of film restoration or rig and
wire removal (Figure 1, bottom) typically require painstaking human intervention. Progress on both
fronts requires scientific breakthroughs in computer vision, and will have immediate economic and
societal impact. Thus, the first tenet of this project is that:

Developing a general framework for the understanding and manipulation of
unconstrained video is today’s frontier for computer vision research.

This is the topic of this project.

7
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Figure 1: Top: Sample frames from the Weizmann dataset (http://www.wisdom.weizmann.ac.il/~vision/
SpaceTimeActions.html), a KTH football video (http://www.nada.kth.se/cvap/res_widescreen_track.
htm), and French news footage from the 1950s, courtesy of INA. Bottom: Damaged frames in a film restoration
scenario, with scratches and dirt (images courtesy of Laurent Joyeux and Louis Laborelli, INA), and an example
of rig removal (the traffic light), reprinted from “The importance of invisible effects” [Wright’09].

The need to move forward. Human activity recognition in restricted settings has been the
subject of active research for over 20 years. Much of it focuses on surveillance scenarios with little
clutter and a fixed viewpoint ([13], Figure 1, top left), or stylized settings like sport events ([25],
Figure 1, top center). Both are of course still very relevant today, but new methods are needed for
more general scenarios involving home videos, feature films, newscasts, and TV series, with all the
clutter, occlusions, personal interactions, and camera motion they entail. A slow shift toward this
more realistic setting has taken place in the past couple of years, but today’s methods rely on precise
annotations (obtained manually or by automatically aligning subtitles and scripts [10]), implicitly
assume fixed viewpoints and static cameras, and cannot handle hours of newscast or family footage
with very sparse (if any) annotations. Understanding human activities and other “semantic” content
is essential for effectively accessing, archiving and indexing video data. The ability to “intelligently”
manipulate the content of a video is just as essential in many applications: This ranges from restoring
old films (Figure 1, bottom left) or removing unwanted wires and rigs from new ones in post production
(Figure 1, bottom right), to cleaning up a shot of your daughter at her birthday party, which is lovely
but noisy and blurry because the lights were out when she blew the candles, or editing out a tourist
from your Roman holiday video. Going beyond the modest abilities of current “digital zoom” (bicubic
interpolation in general) so you can close in on that birthday cake, “deblock” a football game on TV,
or turn your favorite DVD into a Blu-ray, is just as important.

A new alliance. I fear that a lack of communication between the computer vision and signal
processing communities may have negative effects: computer vision researchers may wrongly perceive
image processing techniques as a bit “old fashioned”, while signal processing researchers may deplore
the lack of comparative testing of computer vision algorithms against state-of-the-art image processing
ones on established benchmark data. Thus, another theme of this project is a necessary convergence
between computer vision, machine learning, and signal processing. The process has already started:
For example, the idea of exploiting self-similarities in image analysis, originally introduced in computer
vision for texture synthesis applications, is the basis for non-local means [4], one of today’s most
successful approaches to image restoration. In turn, by combining a powerful sparse coding approach

8
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to non-local means [7] with modern machine learning techniques for dictionary learning [20], we have
obtained denoising and demosaicking results that are the state of the art on standard benchmarks
[22]. I will come back in much more detail to sparse coding and dictionary learning for image and
video analysis in the second part of this document, but it is clear that a number of key algorithmic,
mathematical, and more generally methodological tools are common to the computer vision, machine
learning and signal processing communities. Others are likely to emerge in the next few years. Thus,
another tenet of this project is that:

A new alliance between computer vision, machine learning, and signal processing
is afoot, and this project is a unique opportunity to jump start it.

The tools available today in each of these domains are not powerful enough, alone, to account for the
diversity of content typical of everyday video. My third, and last tenet is thus that, as often in image
analysis:

The main scientific challenges that stand in the way of true breakthroughs in
video understanding and manipulation are modeling issues.

This is argued below with three identified challenges.

Challenge 1: What is the right model for video content? In the world of still pictures,
SIFT [19] has imposed itself as the local model of choice for image appearance in the past decade
or so. Many variants have been proposed, but none does really better. This stems in part from the
fact that SIFT is the result of years of careful design and experimentation with digital images, and
incorporates the “know how” accumulated in the computer vision community for many years. In
the dynamic world of video, no such consensus has emerged. Current local models like STIP [15]
are fairly straightforward spatio-temporal extensions of SIFT and its variants, and they have not
demonstrated their supremacy. At a more global level, human activities are depicted from a very large
range of viewpoints in typical personal or professional video footage. Yet current approaches to action
recognition use features that (implicitly) depend on viewpoint and/or assume static cameras. This is
due once again, at least in part, to a relatively straightforward adaptation of models imported from
the world of still images. Today, there is no satisfactory model for video content. Inventing the right
one3 is a major challenge, but also an opportunity to experiment with new spatio-temporal models
learned from training data, and capturing both the local appearance and the nonrigid
motion of the elements that make up a dynamic scene.

Challenge 2: What is the right model for video interpretation? Modern approaches to
object recognition from still images are, by and large, minor variants of the so-called bag-of-features
approach [6, 27], inherited from the text processing domain. There, it is reasonable to represent
a document by the frequency vector (histogram) of the words that occur in it. There is of course
no predefined dictionary of visual words, and various simple clustering methods have been used to
construct such a vocabulary from SIFT features (for example) via vector quantization. Discarding
all spatial information in the histogram of a bag of features builds some invariance to minor image
transformations, but also throws away valuable spatial information. Adding some spatial structure to
bags of features (in the form of spatial pyramids [17] for example) for related work) indeed improves
recognition performance, but does not change the overall model structure. Recent efforts at activity
recognition in unconstrained settings such as newscasts or TV series (as opposed to, say, surveillance
scenarios, see [16, 23, 24]) are essentially straightforward spatio-temporal extensions of bags of features.
This is not sufficient for capturing the complex interactions of the persons and objects present in typical

3Of course, I do not claim the existence of a single “right” model for video content, nor will I claim the existence of
a single right model for the next two challenges. I use these words to emphasize the importance of the issue.
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scenes. Thus, we will develop formal models of the video interpretation process that capture
these interactions, yet can be learned effectivey despite the sparse annotations typical of
video understanding scenarios.

Challenge 3: What is the right model for video manipulation? The question is worth ask-
ing for both the “low-level” (restoration) and “high-level” (editing) ends of the spectrum. Indeed,
consumer-grade camcorders remain susceptible to noise at high sensitivity settings and/or low-light
conditions, a problem that is exacerbated for camera phones with their small lenses and sensor areas.
The classical problem of image and video restoration is thus still of acute and in fact growing impor-
tance. So are the related problems of deblurring, inpainting, and superresolution, that have received
much attention lately with the emergence of computational photography. Tools for editing the content
of a video—that is, for example, resizing, repainting, removing or adding objects and people in the
scene it depicts, are also emerging. The underlying models vary greatly (epitomes, mosaics, layered
representations, “soups” of patches, etc.), and a unified model for video restoration and editing is miss-
ing. Inventing such a model is the challenge of this part of the project. Our recent work on sparse
coding and dictionary learning for image understanding [20, 22] will form the backbone
of this effort, with major extensions in several new directions, including encoding spatial
consistency and task constraints in the learning, restoration, and editing tasks.

Datasets and applications. A small, but significant part of this project will be dedicated to gath-
ering new datasets. Existing ones are not sufficient because they are sometimes “too easy” (e.g., the
Weizmann datasets) and perhaps sometimes “too hard” (e.g., the Hollywood datasets). They are not
always representative of realistic tasks, but mix the effects of different factors, from occlusion and
clutter, to interactions among people, or camera motion, which biases evaluation results. This part
of our effort will be conducted in collaboration with M. Hebert at CMU. Although this project ad-
dresses fundamental research issues, its results are expected to serve as the basis for groundbreaking
technological advances for applications as varied as film post-production, video archival, and smart
camera phones. These will be explored in an opportunistic manner via our close contacts with end
users, including F. Guichard at DXO, L. Laborelli and D. Teruggi at INA, P. Pérez at Technicolor,
and S. Sullivan at Industrial, Light and Magic.

To conclude this part of the project presentation, I will now try to assess the associated risks.

High risk, high gain. Until the mid 1990s, object recognition from (still) images was limited
to isolated, unoccluded objects on a uniform background or, equivalently to hand-segmented images;
experiments were conducted on a handful of images, and typically restricted to specific objects (“is this
my car?”) instead of object categories (the much more difficult question “is this a car?”). Today, such
category-level image classification is sometimes perceived (perhaps wrongly) as a solved problem, and
very good results have also been obtained for the even more difficult detection problem (“where are
the cars in this image?”) on large and very challenging datasets such as those from the PASCAL VOC
Challenge (http://pascallin.ecs.soton.ac.uk/challenges/VOC/). My goal with this project is
to achieve a similar leap in performance for video understanding and manipulation. Here are two
examples of specific success measures:

True scene understanding. What is in the scene? Where? What is happening to a person or in
the scene? This goes further than generalizing to video today’s still image technology. This goes back
to one of the old and grand objectives of computer vision: scene understanding. This will be assessed
on a large set of videos representative of movies, newscasts, as well as new datasets acquired during
the course of the project.

True mid-scale inpainting. Today, we know how to replace a few missing pixels in an image using
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its self-similarities (say erase text, such as sub-titles, for example), remove rigs and wires from a video
by borrowing pixels from other frames with a cut-and-paste approach, or fill in very large areas of
a photograph by borrowing content from another image that is overall similar. Despite attemps at
respecting structural image constraints during the inpainting process, there is no satisfactory solution
today to the problem of filling in mid-scale areas with complex internal structures, such as the missing
wheel of a car for example. We will develop such a solution in this project.

Overall, this is a high-risk proposition: Can a small group achieve as much in five years as the computer
vision community did in ten? But this is also a high-gain one.

Why there is a reasonable chance to succeed. This is a focused effort, with clear goals, and
recent research by myself and other members of Willow is directly relevant to this project; see, for
example (for the past two years only): [9, 16, 23] for action recognition and localization, [3] for models
of the object recognition process, [22, 29] for image deblurring and restoration, and [20, 21] for sparse
coding and dictionary learning for image classification. Several of these recent efforts have been
conducted in close collaboration with machine learning (F. Bach and Y. LeCun) and signal processing
(G. Sapiro) experts. This brings me to the next point.

The right team at the right time. After over 20 years in the US, I proposed upon my return to
France in 2006 to create a computer vision team common to INRIA and Ecole Normale Supérieure
(ENS). The Willow team officially started in the Spring of 2007. From the start, it was clear that
machine learning was a key ingredient to new breakthroughs, and our activities have steadily grown
in this area. In three short years, Willow has grown into a mature group of almost 30 people, and
it divides its activities between computer vision, machine learning, and the cross-pollination of the
two fields, with video as one of the core research areas. We have been very successful, with many
publications in all the major international conferences and leading journals in both areas, but we are
a large group with very diverse interests, ranging from camera geometry to statistics, and from image
retrieval to bioinformatics applications of structured sparse coding, and I believe it is time to become
lean again, by spinning off the core machine learning activities of Willow to a new group, headed by
Francis Bach, who just received a Jr. ERC grant. The two teams will continue collaborating with each
other (they will remain colocated at the INRIA site in central Paris), but they will have a sharper
focus on their respective computer vision and machine learning activities.

The new, smaller Willow will consist of two permanent researchers besides myself—Ivan Laptev
and Josef Sivic, whose main activities revolve around video understanding and image retrieval, plus
several post-docs and about ten PhD students. The members of Willow form the core group for
this project. A second circle of external collaborators complete the team: Martial Hebert (CMU)
for computer vision, Francis Bach (INRIA) and Yann LeCun (NYU) for machine learning, and
Guillermo Sapiro (Minnesota) for signal processing.

An opportunity for Europe. Historically, computer vision research has been associated with the
US since its start in the 1960s. Its center of gravity started shifting toward Europe in the early 90s,
with several groups gaining international recognition. The European Conference on Computer Vision
is now considered to be in the same league as the top US and international conferences, CVPR and
ICCV. When I chaired it in 2008, it brought together over 900 researchers (a 20% increase compared
to the previous edition), with over 40% non Europeans and 200 American participants. At the same
time, Asian countries, and China in particular, are emerging as strong competitors to Europe and the
US. By recognizing the image/vision/learning convergence, and its incarnation through Willow and
this project, Europe can gain a significant strategic advantage at the cutting edge of these fields, with
breakthrough advances in video understanding and manipulation.
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2. Research project

We now present the state of the art and the overall objectives of our project, considering in turn its
three main research challenges: modeling video, interpretation, and manipulation. We then present
the main aspects of the proposed research, with five work packages, including the proposed formulation
for the corresponding scientific problems and a research plan.

i. State of the art and objectives

(a) Video content
Appearance models. In the world of still pictures, SIFT [19] has now imposed itself as the local
model of choice for image appearance in matching and recognition taks. Many variants have been
proposed, but none does really better. This stems in part from the fact that SIFT is the result of
years of careful design and experimentation with digital images, and incorporates the “know how”
accumulated in the computer vision community for many years. In the dynamic world of video, no
such consensus has emerged. Current local models like STIP [15] are fairly straightforward spatio-
temporal extensions of SIFT and its variants, and they have not demonstrated their supremacy. Sparse
coding provides a promising alternative: Consider a signal (say an image patch or a spatio-temporal
block of data) represented by a vector x in Rm. We say that it admits a sparse approximation over a
dictionary D = [d1, . . . ,dp] in Rm×p when one can find a linear combination of a “few” columns dj
of D that is “close” to the vector x. Finding a sparse encoding of the signal x over D amounts to
solving an optimization problem of the form

α?(x,D) = arg min
α

||x−Dα||22 + λΦ(α),

where Φ is a sparsity-inducing regularizer, for example the `0 pseudo-norm counting the number of
nonzero elements in α, the `1 norm, or the more robust elastic-net regularizer. Experiments have
shown that modeling signals with such sparse decompositions (sparse coding) is very effective in many
signal processing applications. For natural images, predefined dictionaries based on various types of
wavelets have been used for this task. Introduced initially in [26] for modeling the spatial receptive
fields of simple cells in the mammalian visual cortex, the idea of learning the dictionary from data
instead of using off-the-shelf bases has been shown to significantly improve signal reconstruction.
Learned dictionaries have also recently proven useful in image classification tasks.

Motion models. Much of the current work on human action representation and recognition from
video sequences (implicitly) assumes that the action is observed from a fixed viewpoint [13, 25]. To
achieve robustness to viewpoint changes, several recent methods exploit key frames observed from
different viewpoints, geometric constraints (e.g., homographies induced by planar patterns, planar
invariants, or rank constraints on motion parameters), or temporal self-similarities, but they usually
assume that the camera remains static throughout filming. This is not realistic for many films and
TV or homemade videos where the camera may undergo complex motions in a single shot (e.g., pan,
tilt, and/or translation of a camera that may be hand-held or mounted on a tripod, a dolly, or a
crane). This point is becoming crucial as the focus of today’s research shifts from relatively simple
videos as depicted in the Weizmann dataset for example to much more realistic ones such as those in
the Hollywood datasets.

Objectives. Our goal in this part of the project is to develop new spatio-temporal models of video
content that can effectively be learned from training data, and capture both the local appearance and
the nonrigid motion of the elements that make up a dynamic scene.

(b) Video interpretation
Template matching. Much of the work on activity recognition is aimed at surveillance scenarios
with little clutter and fixed background, where silhouettes can be extracted reliably and used to define
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spatio-temporal templates [13], amenable to nearest-neighbor classification for example. Scenarios
involving clutter and a moving camera are of course much more challenging.

Bags of features and their variants. Recent work has adapted to that setting the bag-of-features
approach [6, 27] that has proven very successful in the still image domain: Briefly, local spatio-
temporal features [15] are vector-quantized into predetermined visual words, and histograms of the
words occurrences are classified using support vector machines (SVMs) for example [16]. In still image
interpretation, plain bags of features, that discard all (global) spatial information, are often replaced
by their structured variants, such as HOG descriptors or spatial pyramids, that retain some of this
information. The same is true in action understanding [16, 23]. Likewise, SVMs may be replaced by
other classifiers.

Weakly-supervised learning. Recent work on action recognition [16, 23] relies on textual annota-
tions (obtained manually or through automated script alignment [10]) for learning action models. So
will the approach to video understanding proposed in this project. It is important, however, to realize
that textual annotations of video footage are often imprecise and quite sparse. On the other hand,
unlabelled data is abundant. It is therefore desirable to develop semi- or weakly-supervised learning
methods that can handle this type of data. Recent efforts in this direction, inlcuding ours [9] use the
frameworks of discriminative clustering or multiple-instance learning.

Objectives. Our goal in this part of the project is to develop formal models of the video interpretation
process that capture the complex interactions of the persons and object present in everyday videos,
yet can be learned effectivey despite the sparse annotations typical of video understanding scenarios.
We will adress both the classical problem of action recognition and detection, and that, more difficult,
of scene understanding, with queries like: What is in the scene? Where? What is happening to a
person or in the scene?

(c) Video manipulation
Video restoration. With recent advances in sensor design, the quality of the signal output by dig-
ital SLRs and hybrid/bridge cameras is remarkably high. Point-and-shoot cameras, however, remain
susceptible to noise at high sensitivity settings and/or low-light conditions, and this problem is exac-
erbated for mobile phone cameras with their small lenses and sensor areas, for both photographs and
videos. Thus, the classical problem of image and video denoising is still of acute and in fact grow-
ing importance. So are the related problems of deblurring, demosaicking, and superresolution, that
have received much attention lately with the emergence of computational photography (e.g., [12, 18]).
Early work relied on various smoothness assumptions—such as anisotropic filtering, total variation,
or image decompositions on fixed bases such as wavelets for example. More recent approaches include
non-local means filtering, which exploits image self-similarities, learned sparse models, Gaussian scale
mixtures, fields of experts, and block matching with 3D filtering (BM3D) [7]. As noted earlier, sparse
coding using either predefined dictionaries or learned ones provides a very effective alternative in image
restoration tasks [1, 22].

Video editing. Tools for editing the content of a video—that is, for example, resizing, repainting,
removing or adding objects and people in the scene it depicts, are also emerging. The underlying
models vary greatly (e.g., epitomes, mosaics, or layered representations [14]), and a unified model
for video restoration and editing is missing. A popular approach to inpainting uses a “cut-and-paste”
paradigm, by borrowing pixels from similar regions to fill in small holes in images, or from other frames
to remove wires and rigs from a video, or by filling in very large areas of a photograph by borrowing
content from another image that is overall similar. Despite attemps at respecting structural image
constraints during the inpainting process (e.g., [5]), there is no truly satisfactory solution today to the
problem of filling in mid-scale areas with complex internal structures.

Objectives. Our goal in this part of the project is to develop a unified model for video restoration and
editing. Our recent work on sparse coding and dictionary learning for image understanding [20, 22] will
form the backbone of this effort, with major extensions in several new directions, including encoding
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spatial consistency and task constraints in the learning, restoration, and editing tasks.

ii. Methodology

The project is structured into five work packages (WPs). The first four are methodological, and the
last one is experimental.

WP1: Supervised sparse coding models of video content.
This WP proposes a general formulation for a supervised, task-oriented approach to sparse coding and
dictionary learning. This formulation will be used to model the spatio-temporal appearance of video
elements in WPs 3 and 4.
WP2: Motion models of video content.
This WP proposes to break away from view-dependent models of video content with a temporally
local but spatially global model of nonrigid motion that is fully independent of camera motion. This
model will be used in WP2 to gain a better understanding of the role of geometry and motion in the
analysis of video footage, and as a feature in WP3 for video interpretation.
WP3: Modeling video interpretation.
This WP unifies several current models of visual recognition and generalizes them to the video setting
using the models of video content developed in WP1 and WP2. The problems of weakly-supervised
training, action recognition, and scene understanding will be addressed.
WP4: Modeling video manipulation.
This WP proposes a unified model of video restoration and editing. It generalizes the supervised sparse
coding model of WP1 to take into account physical constraints associated with video restoration and
spatial consistency constraints associated with video manipulation. The problems of deblurring, su-
perresolution, and inpainting will be addressed.
WP5: Datasets.
This WP is dedicated to the construction of a new action dataset for controlled experiments in support
of WPs 2 and 3.

In the upcoming sections, we will present in some detail, for each one of the methodological work
packages (WPs 1 to 4), our initial formulation of the corresponding scientific problems. This is to
ground our project in specifics, and also because these all correspond to novel, as of yet unpublished
work. It is of course more than likely that, in a five-year project as ambitious as this one, they will
evolve, and we also present detailed research plans for each WP.

WP1: Supervised sparse coding models of video content

1.1 Background
Learning local models of (spatio-temporal) appearance instead of using off-the-shelf ones is an at-
tractive idea, and as discussed in Section 2a, this has led to significant progress in image and video
restoration tasks [1, 22]. This is not surprising since these models are by construction adapted to
reconstruction tasks. We now argue that sparse representations learned in a supervised, task-oriented
manner can serve as a unified model of local appearance and lead to significant progress in video
understanding and manipulation tasks.

1.2 Proposed formulation
Unsupervised sparse coding. Let us start with the simpler unsupervised case where a dictionary
adapted to image reconstruction/restoration is learned from natural images or videos. Given a dictio-
nary D in Rm×p, some signal x in X ⊂ Rm, and some code α in Rp, we can measure the discrepancy
between x and its encoding by α with the elastic net cost function

ϕ(x,D,α)
M
=

1

2
||x−Dα||22 + λ1||α||1 +

λ2
2
||α||22,
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Figure 2: Learning to classify image pixels as belonging to a bicycle or to the background [21]. This is an
instance of sparse coding for image understanding where a dictionary is adapted to the task of discriminating
between two object classes, here small images patches belonging to bicycles, and patches belonging to the
background.

which is a sparsity-inducing regularizer in the sense defined in Section 2a. The corresponding sparse
code α?(x,D) and residual function ϕ?(x,D) for x given D are respectively defined by

α?(x,D)
M
= arg min

α∈Rp
ϕ(x,D, α) and ϕ?(x,D)

M
= min

α∈Rp
ϕ(x,D,α) = ϕ(x,D,α?(x,D)), (1)

and they are both uniquely defined when λ2 > 0. In this context, traditional (unsupervised) dictionary
learning amounts to finding the dictionary D in some convex subset D of Rm×p that minimizes the
empirical cost:

min
D∈D

n∑
i=1

ϕ?(xi,D) = min
D∈D,α1,...,αn∈Rp

n∑
i=1

ϕ(xi,D,αi) (2)

over n data points xi (i = 1, . . . , n).4 However, as pointed out in [2], one is usually not interested in a
perfect minimization of the empirical cost, but instead in the minimization of the expected cost—that
is,

min
D∈D

Ex[ϕ?(x,D)] (3)

where the expectation is taken relative to the (unknown) probability distribution p(x) of the data,
and is supposed to be finite. We have recently proposed [20] a very efficient online algorithm that
iteratively solves the unsupervised dictionary learning problem by minimizing at each step a quadratic
surrogate function of the empirical cost, and is guaranteed to converge to a stationary point of the
expected cost function.

Supervised sparse coding. Once the dictionary D has been learned, the code α?(x,D) associated
with each data vector x can be used as a feature vector in classification tasks for example. It is,
however, preferable to adapt the dictionary to the task at hand. Previous approaches to this problem,
including ours (Figure 2, see [21]) had to relie on heuristics to solve it in the specific case of classification
tasks. We propose here a novel and general formulation for learning a dictionary in a supervised way
for prediction tasks such as regression or classification. Concretely, suppose that we want to predict
a variable y in Y from the observation x, where Y is either an element of {0, 1}q (or equivalently, a
finite set of labels) in a classification task, or Rq in a regression task. We propose to jointly learn the
dictionary D and a parameter matrix W for the task by solving the following optimization problem

min
D∈D,W∈W

S(D)
M
= E(y,x)[ψ

?(y,x,W,D)] +
µ

2
||W||2F, (4)

where µ is a regularization parameter, and ψ? is a cost function adapted to the task, for example

ψ?(y,x,W,D) =
1

2
||y −Wα?(x,D)||22, (5)

4In practice, one often takes D M
= {D ∈ Rm×p} s.t. ∀j ∈ {1, . . . , p}, ||dj ||2 ≤ 1.
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where the elements of y are real for regression, and binary for classification. The same setting applies
to loss functions other than the square loss, e.g., logistic regression.

The main difficulty of this optimization problem comes from its dependency on the solution of the
nonsmooth optimization problem (1). Indeed, α? is not differentiable with respect to D. We have
very recently proven, however, that, under mild assumptions (compact support for and continuity of
p, C2 continuity of ψ?), the expected supervised cost S in Eq. (4) is differentiable, and that its gradient
can itself be written “in closed form” as the expectation of a simple function of W and D. In turn,
it follows that the optimization of S is amenable to efficient projected first-order stochastic gradient
techniques. Of course, this learning problem is not convex, but unsupervised sparse coding can be
used to provide a reasonable initial estimate (although non-convex as well, unsupervised dictionary
learning is empirically very stable under changes in initial conditions [20]). It should also be noted
that, at test time, the computation of y is a convex problem for all convex losses, including the square
and logistic ones.

1.3 Research plan
This part of the project will implement and extend the proposed problem formulation along several
lines: (1) We will design a stochastic gradient algorithm for supervised sparse coding guaranteed to
converge to a stationary point of the expected cost function (as we did in [20] for the much simpler
unsupervised case), and construct an efficient implementation of this algorithm. (2) We will extend
the proposed framework to the semi-supervised setting where some (or most) of the data is unlabelled,
which is particularly relevant to video scenarios. (3) As a proof of concept, we will demonstrate the
application of supervised sparse coding to image classification and deblocking on standard datasets,
comparing its performance to the state of the art. (4) We will then demonstrate its application to
video classification and manipulation tasks, as further explained in the presentation of WPs 3 and 4.

WP2: Motion models of video content

2.1 Background
We propose in this part of the project to focus on the dependency of human activity representation
on camera motion by addressing the following problem: Assuming that a nonrigid scene is observed
by a camera undergoing some unknown motion, can we construct a model of the corresponding video
that is independent of that motion and affords an effective method for matching videos taken by
two cameras with different motions? This is reminiscent of several approaches that generalize rigid
structure-from-motion constraints to the nonrigid case by representing the nonrigid scene structures
by linear combinations of elementary shapes or trajectories, assuming parametric (polynomial) motion
models. In contrast with these methods, we will assume that, over a short period of time, the scene
is globally nonrigid but locally rigid, and concentrate on modeling the relative motions of its locally
rigid elements independently of the camera motion.

2.2 Proposed formulation
Factoring away camera motion. Concretely, let us assume short videos so that the motions of
all objects of interest are globally nonrigid, but locally rigid within some image region. Specifically,
we will divide each frame into a relatively small number of blocks—say, 100 blocks defined on a
10 × 10 grid, and track point features within each block over a short period of time—say, 30 frames,
or 1s (Figure 3, left).5 This model can be thought of as spatially global but temporally local since it
pools information from entire image frames into coarse blocks, but only uses a few frames at a time.
Assuming a weak perspective projection model and rigid motion within each block, the corresponding
“tracklets” can be fed to the Tomasi-Kanade factorization method and used to recover the motion of
the corresponding rigid bodies at each frame up to an inherent ambiguity due to the mixture of camera

5Although it may be impossible to reliably track points across thousands of frames, it is quite reasonable with today’s
technology to expect being able to reliably track dozens of points across 30 frames or so.
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Figure 3: A spatio-temporal model for nonrigid motion. Left: Decomposition of a short clip into coarse
spatio-temporal blocks, with the tracklets associated with one of the blocks shown in the upper left. Right: A
spherical representation of the corresponding nonrigid motion: The rotations Pst(i) can be represented by the
trajectories of the unit directions ui(t) (t = 0, . . . , T ) of the corresponding vectors p0t(i) on the unit sphere and
the magnitudes of these vectors along the trajectories. A similar representation can be used for the matrices
Qij(t).

and body motions. However, exploiting the fact that all the bodies are observed by the same (moving)
camera, it is possible to reconstruct two sets of rotation matrices Pst(i) and Qij(t) that respectively
describe the motion of a block i between two time frames s and t, and the relative orientation of
two blocks i and j at a given time t, so that, if any other camera was filming the same scene while
undergoing an arbitrary (and different) motion, the corresponding matrices would be related by:

P′st(i)R = RPst(i) and Q′ij(t)R = RQij(t) (6)

for some rotation matrix R independent of i, j, s, and t. In other words, the matrices Pst(i) and
Qij(t) provide a representation of the nonrigid motion of the scene elements that is only defined up
to a (global) rotational ambiguity R, but is completely independent of the camera motion.

A spherical model of nonrigid motion. It is well known that a rotation matrix A can be
parameterized by a vector a such that A = exp([a]×]). This vector is parallel to the axis of the
rotation, with a magnitude equal to the rotation angle, and [a]× is the skew-symmetric cross-product
operator such that, for any vector b, [a]×b = a × b. This exponential representation of rotations
provides a convenient way to parameterize the matrices Pst(i) and Qij(t). Indeed, it can be shown
that Eq. (6) is equivalent to

p′st(i) = Rpst(i) and q′ij(t) = Rqij(t), (7)

where, as before, lowercase vectors (e.g., pst(i)) are associated with the corresponding rotation matrices
(e.g., Pst(i) = exp([pst(i)]×). In particular, our motion model now admits a spherical representation
in terms of the unit directions of the vectors pst(i) and qij(t) and their magnitudes (Figure 3, right),
so that the representations of videos of the same scene filmed by two cameras with arbitrary and
different motions are separated by a rotation of the sphere.

Matching two videos. Each video can be represented by a graph whose nodes are the corresponding
spatio-temporal blocks, and edges link nodes within some spatial neighborhood. Matching two videos
reduces to minimizing∑

i,s,t

||p′st(τ(i))−Rpst(i)||22 +
∑
i,j,t

||q′τ(i)τ(j)(t)−Rqij(t)||22 (8)

with respect to the assignment function τ and the rotation R. Here, the first sum is computed over the
nodes of the graph and some fixed time samples s, t chosen a priori, and the second sum is computed
over all the edges (i, j) of the graph and fixed times samples t.6 Note that, for a given function τ ,

6This assumes that there is a bijection between the two graphs. In practice, since the scene will be filmed from
different viewpoints, some nodes and edges may not match. This can be handled by adding dummy nodes to both
graphs.
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finding the rotation R minimizing (8) and thus best aligning the spherical models is easily reduced to
an eigenvalue problem using quaternions.

Several formulations of this matching problem are possible: The first one is reminiscent of classical
schemes for matching spherical representations of shape (as opposed to motion in our case), where the
sphere is discretized into an icosahedron (or a finer subdivision if necessary), and the set of rotations
aligning two discretized spheres can be explored efficiently. The second one explicitly solves a graph
matching problem: When using the first term of (8) only, the optimization can be done using block
coordinate descent, alternating steps where quaternions are used to estimate R with steps where the
assignment problem of determining τ can be solved in cubic time by the Hungarian algorithm. Initial
assignment guesses can be obtained without estimating R by matching rotations based on their angles.
Taking the second term into account is more difficult, but standard techniques apply, in theory at least:
Given the rotation R, (8) can be written as a quadratic form in Π, the permutation matrix (equal
to 1 if point i is assigned to point j, and zero otherwise). The standard technique for solving such a
problem is to consider local linear approximations (e.g., conditional gradient or power methods). In
order to make this a descent algorithm, it may be necessary to subtract a term of the form tr(Π Π>)
to make the objective function concave. This leads again to an alternating minimization algorithm.

2.3 Research plan
We will implement and extend the proposed problem formulation along several lines: (1) We will
implement the proposed nonrigid motion model for video content, which will require handling ambi-
guities neglected so far in our presentation (e.g., the fact that a direction u and an angle θ define the
same rotation as −u and 2π− θ). (2) We will develop and implement an efficient matching algorithm
for discretized spherical representations of nonrigid motion. (3) We will develop an efficient graph
matching approach to the same problem. (4) As a proof of concept, we will first demonstrate this
implementation on videos of the same scene captured by different moving cameras. (5) We will then
develop coding and indexing techniques to effectively match and compare videos of different actors
filmed by different cameras but performing the same activities despite the variability in their play.
This will be integrated in the video understanding strategies presented in WP3.

WP3: Modeling video interpretation

3.1 Background
Modern approaches to visual object, scene, or activity recognition usually follow the classical super-
vised classification paradigm where, given some global feature extraction process, the feature vectors
associated with a number of positive and negative training samples are used to train a classifier. Once
trained, this classifier can be used to classify test images or videos using the corresponding feature
vectors, or to detect an object or an activity using the sliding window paradigm. We have shown
recently [3] that many of these approaches can be decomposed into three steps (Figure 4, left):

1. Filtering: Some local descriptor is extracted at key points or on a dense grid, using linear
filtering or a nonlinear operator.

2. Coding: The local descriptors are encoded using hard or soft vector quantization, or sparse
coding into sparse binary of real vectors (codes).

3. Pooling: A simple (elementwise mean or max) operator is applied to pool all codes in some
spatial or spatio-temporal neighborhood into a single one and build robustness to image trans-
formations and clutter.

The pooled codes associated with the entire image or spatio-temporal block are finally concatenated
into a single feature vector, that can be passed to a classifier such as a support vector machine.
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Figure 4: Left: Three approaches to (static) object recognition that fit the filtering/coding/pooling model:
from left to right, bags of features [6], HOG [8], and a recent variant [30] of spatial pyramids. Right: The
approach to action classification of [16] also naturally fits in this paradigm.

Examples of this architecture include convolutional nets, bags of features, and spatial pyramids for
example. Recent work on action recognition also fits in this framework (Figure 4, right).

3.2 Proposed formulation
Pooling and class separability. Consider a two-class categorization problem. Intuitively, classifi-
cation is easier if the distributions from which points of the two classes are drawn have no overlap. In
fact, if the distributions are simply shifted versions of one another (e.g., two Gaussian distributions
with same variance), linear separability increases monotonically with the magnitude of the shift (e.g.,
with the distance between the means of two Gaussian distributions of same variance). We propose to
examine how pooling affects the separability of the resulting feature distributions when the features
being pooled are binary vectors (e.g., 1-of-K codes obtained by vector quantization in bag-of-features
models). Our preliminary findings show that max pooling can sometimes increase, sometimes decrease
the separation between the expected pooled feature values when compared to mean pooling, depend-
ing on the sample size P and the class-conditional probabilities of the feature being present at each
individual sample. With mean pooling, the variance of the pooled feature decreases like 1

P . Thus, it
is always better to take into account all available samples of a given spatial pool in the computation
of the mean. This is not the case with max pooling, where the variance can increase with pool size
depending on the foreground distribution. We propose to conduct a thorough theoretical and empirical
study of this class separability problem.

Discriminative sparse coding. As noted above, images and videos are often encoded before pooling
into sparse binary or real vectors. In the simplest formulation of this approach [27], a codebook of K
codewords is first learned by an unsupervised algorithm (e.g., K-means), and a binary, 1-of-K code α ∈
{0, 1}K is obtained by minimizing the distance to the codebook: αj = 1 iff j = arg mink≤K ‖x−dk‖22,
where dk denotes the k-th of the K codewords. The codes are then pooled over a (spatio-temporal)
region of interest: In the case of mean pooling (histogramming) for example, this yields a feature
vector of the form h = 1

P

∑
i∈N αi, where N denotes the region and P the number of features in that

region. Van Gemert et al. [28] have improved this formulation by replacing hard by soft quantization.
Instead of using a 1-of-K code where only the component corresponding to the nearest neighbor is
non-zero, each codeword is assigned a score which reflects how closely it matches the input patch. This
amounts to using codewords of the dictionary as centers of a Gaussian mixture model and performing
coding as in the E-step of the expectation-maximization algorithm.

Yang et al. [30] have shown that unsupervised (reconstructive) dictionary learning could be used
to construct sparse codes α for local image features, and demonstrated that this leads to significant
classification performance improvement on classical benchmarks. Here, we propose instead to use a
variant of our supervised sparse coding framework by optimizing a discriminative cost of the form

min
D∈D,W∈W

Ey[||y − Exy(Wα?(xy,D))||22] +
µ

2
||W||2F , (9)
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Figure 5: Sample frames of actions (left: “sit down”, right: “open door”) whose models have been learned in
a weakly-supervised fashion, before being automatically detected in four movies [9].

where we assume mean pooling, and the signals xy are part of the y class. As before, a logistic
regression (or softmax for the multi-class case) loss could be used instead.

Beyond bags of features and their variants. As noted earlier, we plan to learn our models of
video content from large amounts of automatically aligned videos and text. We will address both
the classical action recognition problem and the more difficult one of scene understanding, where
the goal is to parse a video in terms of its components (people and their surroundings) and their
interactions. Thus, we will mine the text not only for action names, but for names of people, settings,
and situations (see [23] for an early effort in this direction), with the goal of identifying objects,
scenes, particular people, person attributes, human actions, and their relations/interactions. This will
take advantage of modern technology for detecting and tracking people in videos. We believe that
spatial (and temporal) reasoning will also prove crucial in this endeavor. In particular we plan to
investigate spatio-temporal extensions of the deformable part model of Felzenszwalb et al. [11], and
use the motion models constructed in WP2 to reason about the spatial relationship between scene
components in localization/detection tasks.

Weakly-supervised learning. In typical video understanding scenarios, text annotations may be
imprecise and quite sparse. Unlabelled data, on the other hand, is plentiful. The semi-supervised
extension of our supervised sparse coding framework will prove particularly useful in this context. We
also plan to use discriminative clustering methods to find and localize relevant instances of each concept
in the video. We have already demonstrated that temporal human action detectors outperforming
state-of-the-art methods can be learned using imprecisely aligned textual annotations from movie
scripts (see [9] and Figure 5). We plan to continue this line of research and address spatial as well as
temporal localization of human actions in the video.

3.3 Research plan
As with the other work packages, we will implement and extend the proposed problem formulation
along several lines: (1) We will conduct a probabilistic theoretical investigation of the factors that
influence different pooling strategies and validate it with experiments on synthetic and real data.
(2) We will use our supervised approach to dictionary learning to implement discriminative sparse
coding and validate this approach through comparisons with the state of the art on standard action
recognition benchmarks. (3) We will investigate more complex models of visual recognition such as
spatio-temporal extensions of the deformable part model of [11], and use the motion models constructed
in WP2 as features to represent the spatial relationship between scene components in spatio-temporal
localization tasks. (4) We will develop weakly- and semi-supervised methods for learning the corre-
sponding video content models. (5) We will adapt our framework to video scene understanding, and
evaluate its implementation on a large set of videos representative of movies and newscasts, as well as
new datasets acquired during the course of the project.
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Figure 6: From left to right and top to bottom: examples of denoising (left: noisy image, right: restored
one) [22], demosaicking (left: raw image with its Bayer pattern, right: reconstructed color image) [22], inpainting
(left: original image, right: restored image with the text removed) [20], and deblurring (left: image with blur
due to camera shake, right: deblurred image) [29]. Our denoising and demosaicking results are the state of the
art on standard image processing benchmarks.

WP4: Modeling video manipulation

4.1 Background
The non-local means approach [4] to image restoration exploits self-similarities in natural images
to average out the noise among similar patches We have proposed in [22] to combine unsupervised
dictionary learning with non-local means by using simultaneous sparse coding [7] to make similar
patches share the same dictionary elements in their sparse decomposition. Experiments with images
corrupted by synthetic and real noise have shown that this method outperforms the state of the art in
both image denoising and image demosaicking tasks (Figure 6, top), making it possible to effectively
restore raw images from digital cameras. In addition, we have recently demonstrated with our online
unsupervised dictionary learning algorithm [20] that high-quality, small-scale inpainting (text removal)
was possible for very large images (12MPixel, Figure 6, bottom left) at a reasonable cost. We are now
poised to go much further by adapting these methods and our supervised sparse coding framework to
the video domain.

4.2 Proposed formulation
Deblurring and superresolution. Let us assume a known, uniform blur, so the blurry image
B is obtained from the sharp one S via convolution with some kernel k—that is, B = k ? S. For
corresponding blurry and sharp patches b and s of these two images, we can define the error function

ψ?(s,b,W,Ds,Db) =
1

2
||s−Dbα

?(b,Db)−Wb||22,

and apply our task-driven dictionary approach to this problem by solving the optimization problem

min
Ds,Db∈D,W∈W

E(s,b)[ψ
?(s,b,W,Ds,Db)] +

µ

2
||W||2F. (10)

At test time, the sharp image can be recovered, with B, Ds, Db and W now fixed, by solving

min
S

n∑
i=1

ψ?(si,bi,W,Ds,Db)] +
τ

2
||k ? S−B||22. (11)

Note that Eqs. (10) for training and (11) for testing are consistent: Adding the term τ
2 ||k?S−B||22 to

(10) does not change the result of this optimization problem. Adding the term µ
2 ||W||

2
F to (11) does

not change its result either. This approach is easily extended to the superresolution problem.
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Figure 7: A flat dictionary (left) vs an epitome (right).

Blind deblurring. The formulation of deblurring presented so far assumes, as is common in the
image processing community [7], that the blur kernel is known. Blind deblurring, where the kernel
must also be estimated, has also received quite a bit of interest in the last few years [18]. Our method
can in principle be extended to this case when training pairs of sharp and blurry images associated
with the same kernel k are available, k being learned at the same time as the other parameters of the
model. We are also pursuing an alternative approach to blind removal of non-uniform blur under the
assumption that it is due to camera shake, itself mostly accounted for by a rotation of the camera
about its optical axis [29]. We plan to combine the two approaches into a single framework.

Epitomes. Jojic, Frey and Kanna [14] introduced in a probabilistic generative image model called an
epitome. Intuitively, the epitome is a small image E that summarizes the content of a larger one, X,
and from which X can be reconstructed, denoised, etc. This is an intriguing notion, and epitomes have
been extended to the video domain, where they have been used in denoising, superresolution, object
removal and video interpolation. Aharon and Elad [1] have introduced an alternative formulation
within the sparse coding framework. We want to go further in this project by proposing a notion of
epitome adapted to our dictionary learning approach. We present below this formulation with image
patches for simplicity, but it applies to spatio-temporal patches in a straightforward manner.

Sparse coding with an epitome is similar to sparse coding with a “flat” dictionary, except that the
atoms are extracted from the epitome and may overlap instead of being chosen from an unstructured
set of patches and assumed to be independent from each other (Figure 7). Concretely, let us denote
by E the epitome of size q, and by p the number of (overlapping) patches of size m in E.7 Let us
choose some arbitrary ordering for these patches, and denote by Rj the linear operator that extracts
patch number j from the epitome (j = 1, . . . , p). We define the linear operator T : Rq → Rm×p by

T(E) = [R1E, . . . ,RpE].

With this notation, we can define sparse coding just as before, by replacing the original function ϕ by

ϕ(x,E,α)
M
=

1

2
||x−T(E)α||22 + λ1||α||1 +

λ2
2
||α||22.

Likewise, epitome learning can be formulated as solving the optimization problem

min
E∈E

Ex[ϕ?(x,E)], (12)

where E is an appropriate convex domain for E.

Inpainting with epitomes. Learned dictionaries can be used for small-scale inpainting (for removing
text as in Figure 6, bottom left, for example). The task is much more difficult for larger areas: For
example, although Criminisi et al. [5] try to preserve both texture and linear structure in their work,
and achieve remarkable results (removing a person from a photograph for example), their approach

7We continue to identify image (and epitome) patches with vectors in Rm.
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is greedy, and there is no guarantee that structural details within the reconstructed area will be
preserved. We propose to modify the epitomes proposed in the previous paragraph to enforce spatial
consistency constraints, by requiring for example that overlapping patches use elements of the epitome
that are within some preset distance from each other. It is also possible to enforce a global consistency
constraint during inpainting. The corresponding optimization problem is of course more difficult in
this case.

4.3 Research plan
We propose in this work package to implement and extend the proposed formulation. (1) We will
implement the proposed approach to video deblurring and superresolution. (2) We will extend it to
the blind deblurring case. (3) We will implement our sparse coding approach to epitome construction,
and test it in inpainting tasks. (4) We will develop an efficient algorithm for imposing local spatial
consistency constraints during epitome learning and global spatial consistency during testing. (5) We
will use this algorithm for inpainting tasks with large missing areas and complex internal structures,
such as the missing wheel of a car for example. In all cases, the developed video manipulation will
first be tested on still images first as a proof of concept, then extended to videos and compared to the
state of the art on standard benchmarks.

WP5: Datasets

Annotated data is always hard to come by in computer vision. This is particularly true in the video
domain, where manual annotation is very time consuming. As others [16, 23], we will rely in this
project on the rich (but temporally imprecise) annotations obtained by automatically aligning subtitles
and scripts [10] in datasets such as the Hollywood ones [16, 23]. We will also rely on the much
sparser annotations available in newscasts thanks to the work of archivists at the “Institut National
de l’Audiovisuel” (INA). This data is available to us through an existing collaborative project with
INA and the MSR-INRIA laboratory in Saclay. Existing datasets are sometimes “too easy” (e.g.,
the Weizmann datasets) and perhaps sometimes “too hard” (e.g., the Hollywood datasets): They are
not always representative of realistic tasks, but mix the effects of different factors, from occlusion
and clutter, to interactions among people, or camera motion, which biases evaluation results. Thus,
we will create, manually annotate, and make publicly available an action dataset of our own. It
will feature multiple, controlled scenarios, including combinations of (1) multiple fixed or mobile
cameras to understand the dependency of action recognition on viewpoint and camera motion, (2)
isolated actors performing the same action to understand its dependency on inter-actor variability, (3)
multiple actors interacting with each other, and (4) simple and more complex backgrounds (see http:
//www.cs.rochester.edu/~rmessing/uradl/ for a related effort with fixed viewpoint). This dataset
will be annotated manually during its creation, and used to support controlled experiments for WPs
2 and 3. This part of our effort will be conducted in collaboration with M. Hebert at CMU, and will
involve filming volunteers in our lab. We will seek the advice of ethics experts at INRIA and the Cap
Digital competitiveness cluster before any use of this data.
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iii. Resources (incl. project costs)

(i) Core team members
The core team members are the PI and the members of the Willow team, which consists of two
permanent researchers besides myself—Ivan Laptev and Josef Sivic, whose main activities revolve
around video understanding and image retrieval, several post-docs and about ten PhD students.

(ii) External team members
A second circle of four external collaborators complete the team: Martial Hebert (CMU) for com-
puter vision, Francis Bach (INRIA) and Yann LeCun (NYU) for machine learning, and Guillermo
Sapiro (Minnesota) for signal processing.

To promote the development of an alliance between computer vision, machine learning, and signal
processing, we will also organize regular workshops with a third circle of researchers, who although
not directly involved in the project, will contribute their ideas and expertise: D.A. Forsyth (UIUC),
F. Durand (MIT), A. Efros (UIUC), and C. Schmid and her team (INRIA) in computer vision; M.
Elad (Technion), S. Mallat (Polytechnique), and J.-M. Morel (ENS Cachan) in signal processing.

Applications are not the main focus of this project, but we will pursue them in an opportunistic
manner through our contacts in the industry: F. Guichard (DXO – camera phones), L. Laborelli and
D. Teruggi (INA – video archival), P. Pérez (Technicolor – post production), S. Sullivan (ILM – post
production).

(iii)Available resources Our current grants are listed below:
• DGA (2008–2010): 2ACI. With Bertin, INRIA Rennes and Université de Caen. 130KEuros.
• DGA (2008): Itisecure. With E-vitech. 60KEuros.
• ANR: HFIMBR (2008–2010). With LASMEA and INRIA Rhône-Alpes. 110KEuros.
• ANR: Triangles (2008–2010). With INRIA Sophia-Antipolis and Lyon University. 5KEuros.
• MSR-INRIA lab (2008–2010): Image and video mining for science and humanities. 226KEuros.

All of these grants, except for the MSR-INRIA one, which is expected to be renewed for three years
in 2010, will have expired by the beginning of this project. Two more grants are pending:
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• ANR-JST collaborative effort (pending): Image and video understanding for cultural heritage preser-
vation. With INRIA Rhône-Alpes, University of Tokyo, and Keio University. 200KEuros.
• ANR (pending): Large-scale video access and understanding. With INRIA Rhône-Alpes, MRIM,
INA, and EXALEAD. 200KEuros.

If funded, these grants will provide additional resources for the Willow activities in video analysis.

The Willow team is equipped with numerous PCs as well as a 128-core PC cluster.

(d) Requested resources and project costs.

Personnel costs:
• 110KEuros per year for the PI’s salary with a 70% commitment of his time.
• 43,4Keuros per year for 5 years to cover the travel and living expenses of our foreign academic
partners.
• 100KEuros per year to fund 2 post-docs per year for 5 years. The post-doc salary is at a higher-
than-usual level to allow us to hire the best possible post-docs: The best French PhD students should
go abroad for their post-doc, and the usual French salaries are too low to attract top foreign post-docs.
• 70.4KEuros per year to fund 2 PhD students for years 1 to 3 of the project.
• 35.2KEuros per year to fund 1 PhD student for years 2 to 4 of the project.
• 70.4KEuros per year to fund 2 PhD students for years 3 to 5 of the project.

Other direct costs:
• 30KEuros of travel per year for 5 years to visit our partners and attend international conferences.
• 50KEuros during years 1 and 4 to upgrade our cluster.

The rest of the costs consists of eligible indirect costs, at the rate of 20% of the direct costs. The
grand total amounts to 2,454,090Euros over a period of 5 years, as detailed below.
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ERC Advanced Grants Grants

Budget tables to be inserted in section c) "Resource", heading iii. "Budget"

iii. Budget - Table 1 Please enter duration in months
1
 ==> : 60

Personnel:

P.I.
2 165 000,00          165 000,00          165 000,00          55 000,00            550 000,00          

Senior Staff (experienced researcher 30%) 65 167,50            65 167,50            65 167,50            21 722,50            217 225,00          

Post docs (2 per year) 150 000,00          150 000,00          150 000,00          50 000,00            500 000,00          

PhD Grant 123 165,00          228 735,00          140 760,00          35 190,00            527 850,00          

Other -                        -                        -                        -                        -                        

Total Personnel: 503 332,50        608 902,50        520 927,50        161 912,50        1 795 075,00     

Other Direct Costs:

Equipment 50 000,00            -                        50 000,00            -                        100 000,00          

Consumables -                        -                        -                        -                        

Travel 45 000,00            45 000,00            45 000,00            15 000,00            150 000,00          

Publications -                        -                        -                        -                        -                        

Total Other Direct Costs: 95 000,00          45 000,00          95 000,00          15 000,00          250 000,00        

Total Direct Costs: 598 332,50     653 902,50     615 927,50     176 912,50     2 045 075,00  

Indirect Costs (overheads): 20% of Direct Costs 119 666,50          130 780,50          123 185,50          35 382,50            409 015,00          

Subcontracting Costs: (No overheads) -                        -                        -                        -                        -                        

Total Requested Grant: (by reporting period and total) 717 999,00     784 683,00     739 113,00     212 295,00     2 454 090,00  

[1] Adapt to actual project duration.

[2] Please take into account the percentage of your dedicated working time (minimum 50%) to run the ERC funded activity when calculating the salary

For the above cost table, please indicate the % of working time the PI dedicates to the project over the period of the Grant : 70,00%

iii. Budget - Table 2

Workpackage, as defined in 

section 2.ii.
Estimated % of total requested grant

Expected to be 

completed on 

month :

1 20% 36

2 20% 36

3 30% 60

4 20% 60

5 10% 36

Total 100%

WP3 will  involve PhD students # 3 and #4 and 1 post-doc. PhD student #3 will 

start after 12 months, and PhD student #4 after 24 months. WP3 will build on WP1 

and WP2, and complete with the graduation of  PhD student #4.

WP5 will involve PhD students #1 and #2, and complete when they graduate.

WP4 will  involve PhD student # 5  and 1 post-doc. PhD student #5 will start after 

24 months. WP4 will build on WP1, and complete with the graduation of PhD 

student #5.

Total

Comment

WP1 will  start at the beginning of the project and involve PhD student #1 and 1 

post-doc. Its completion with coincide with the graduation of the PhD student.

WP2 will  start at the beginning of the project and involve PhD student #2 and 1 

post-doc. Its completion with coincide with the graduation of the PhD student.

month 37 to 54 month 55 to 60month 19 to 36

Direct Costs:

Cost Category month 1 to 18

iv. Ethical issues

This project is dedicated in part to the automated understanding of human activities in video footage.
Publicly-available datasets are not always representative of realistic tasks, and mix the effects of
different factors, from occlusion and clutter, to interactions among people, or camera motion, which
biases evaluation results.

Thus, we plan to create, manually annotate, and make publicly available an action dataset of our
own. It will feature multiple, controlled scenarios, including combinations of (1) multiple fixed or
mobile cameras to understand the dependency of action recognition on viewpoint and camera motion,
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(2) isolated actors performing the same action to understand its dependency on inter-actor variability,
(3) multiple actors interacting with each other, and (4) simple and more complex backgrounds. These
datasets will be annotated manually during their creation, and used to support controlled experiments
for WPs 2 and 3. This part of our effort will be conducted in collaboration with M. Hebert at CMU.

Data protection: The production of these datasets will involve filming volunteers in our lab. We
are aware of the potential ethical problems with the use of video materials. The video and image
materials we will use, process, and disseminate will be chosen with the concern to avoid any problem
of confidentiality, privacy, copyright or IPR, and we will process all data lawfully, in accordance with
EC and national regulations.

Proper information will be given to all persons involved, written informed consent sought from
them, and the research will be submitted to the data protection authority. Copy of approval would
then be provided to the European Commission.

Privacy: In addition, the technology that will be developed in this project allows the enhancement
of the content of several media (blurred images, low-quality music and audio signals). However, our
target is to enhance images and signals which are naturally corrupted (usually by noise), and we will not
tackle the problem of manually corrupted images so as to avoid the associated privacy issues. We will
also seek the advice of ethics experts at INRIA and in the Cap Digital competitiveness cluster to help us
with these issues (see http://www.capdigital.com/wp-content/uploads/CP-CNRS-INRIA-120110.
pdf and http://www.capdigital.com/wp-content/uploads/Rapport-ETIC-COMETS.pdf for reports
showing the concerns of these organizations for ethics issues.
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d. Ethical Issues 

Ethical issues Table: 
 
  Research on Human Embryo/ Foetus YES  NO 
 Does the proposed research involve human Embryos?    O NO 
 Does the proposed research involve human Foetal Tissues/ Cells?    O NO 
 Does the proposed research involve human Embryonic Stem Cells (hESCs)?    O NO 
 Does the proposed research on human Embryonic Stem Cells involve cells in culture?    O NO 

 Does the proposed research on Human Embryonic Stem Cells involve the derivation of 
cells from Embryos? 

  O NO 

  DO ANY OF THE ABOVE ISSUES APPLY TO MY PROPOSAL?  O NO 

 
  Research on Humans YES  NO 
 Does the proposed research involve children?    O NO 
 Does the proposed research involve patients?    O NO 
 Does the proposed research involve persons not able to give consent?    O NO 
 Does the proposed research involve adult healthy volunteers?    O NO 
  Does the proposed research involve Human genetic material?    O NO 
  Does the proposed research involve Human biological samples?    O NO 
  Does the proposed research involve Human data collection?    O NO 
  DO ANY OF THE ABOVE ISSUES APPLY TO MY PROPOSAL?  O NO 

 
  Privacy YES  NO 

  Does the proposed research involve processing of genetic information or personal data 
(e.g. health, sexual lifestyle, ethnicity, political opinion, religious or philosophical 
conviction)? 

   O NO 

   
Does the proposed research involve tracking the location or observation of people? 
 

  
 

  
O YES 

   DO ANY OF THE ABOVE ISSUES APPLY TO MY PROPOSAL?  O YES 

 
  Research on Animals YES  NO  
  Does the proposed research involve research on animals?    O NO 
  Are those animals transgenic small laboratory animals?    O NO 
  Are those animals transgenic farm animals?    O NO 
 Are those animals non-human primates?    O NO 
  Are those animals cloned farm animals?    O NO 
  DO ANY OF THE ABOVE ISSUES APPLY TO MY PROPOSAL?  O NO 

 
  Research Involving Developing Countries                                       YES  NO 

  Does the proposed research involve the use of local resources (genetic, animal, plant, 
etc)? 

  O NO 

  Is the proposed research of benefit to local communities (e.g. capacity building, access to 
healthcare, education, etc)?  

  O NO 

  DO ANY OF THE ABOVE ISSUES APPLY TO MY PROPOSAL?  O NO 
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  Dual Use  YES  NO 
  Research having direct military use     O NO 

  Research having the potential for terrorist abuse    O NO 

  DO ANY OF THE ABOVE ISSUES APPLY TO MY PROPOSAL?  O NO 

 
  Other Ethical Issues YES NO 

Are there OTHER activities that may raise Ethical Issues?     O 
NO 

If YES please specify:    O 
NO 
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3. Research environment

The PI and his research team, Willow, are part of the Laboratoire d’Informatique de l’Ecole Normale
Supérieure (LIENS), a Joint INRIA/ENS/CNRS Research Unit (JRU). Two of the members of the
LIENS are members of the French Academy of Sciences, one received the CNRS gold medal in 2007,
one is a Turing price winner, two have received an ERC advanced grant, and one has received an ERC
junior grant.

INRIA will be physically hosting the project in its Place d’Italie offices in the center of Paris.

i. PI’s host institution

INRIA, the French national institute for research in computer science and control, operating under the
dual authority of the Ministry of Research and the Ministry of Industry, is dedicated to fundamental
and applied research in information and communication science and technology (ICST). The Institute
also plays a major role in technology transfer. The PI will be hosted at INRIA Paris-Rocquencourt.
INRIA Paris-Rocquencourt is one of the eight research centers of INRIA and is composed of 34
research teams. It is located in Rocquencourt, West of Paris, with INRIA’s head office, and an
additional branch opened in central Paris in 2009. INRIA Paris-Rocquencourt’s research teams take
part in many European and international projects. A third of the permanent researchers recruited
in the past few years comes from abroad (from Europe, Japan, United States of America, etc.).
INRIA Paris-Rocquencourt also hosts 170 foreign researchers every year. It has established many
joint ventures, and plays an important part in Cap Digital, Moveo and System@tic competitiveness
clusters. INRIA Paris-Rocquencourt is a founding member of Digiteo advanced research thematic
network. In close collaboration with Universities and higher education schools in the Ile-de-France
area, INRIA Rocquencourt considers training by and for research to be particularly important. INRIA
Paris-Rocquencourt takes part in the main Information and Communication Sciences and Technologies,
Masters degree courses with currently about 150 PhD students.

It is worth noting that the organization of INRIA in “project-teams” is particularly well suited
to the ERC Advanced Grant program: An INRIA project-team like Willow brings together a group
of researchers, post-docs, and PhD students, under the leadership of an experienced scientist. Their
common goal is to address a particular scientific and technological challenge. INRIA project-teams
must be approved by an evaluation committee particularly qualified in the corresponding scientific
field, and are thoroughly reviewed by a similar scientific committee every four years. Each INRIA
project-team enjoys organisational and management autonomy. It decides what use to make of its own
financial resources. It can also draw on the resources made available by the “research support” services
of INRIA’s eight regional centres (development and transfer, human resources, funding, information
technology, communication, etc.). The Institute promotes exchange and collaboration among the
project-teams of its eight centres. It also encourages them to cooperate with their counterparts in
other countries.
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