
15. Twin-Diffie-Hellman

The goal of this exercise is to study variants of ElGamal key encapsulation, based on the Twin
Diffie-Hellman.

15.1 Diffie-Hellman Problems

Let us consider G = 〈g〉, a cyclic group of prime order q. For any X = gx, Y = gy ∈ G, we
denote DHg(X, Y ) = gxy, the Diffie-Hellman value of X and Y in basis g. The Diffie-Hellman
problems in basis g are defined by:

• The Computational Diffie-Hellman problem (CDHg): Given X, Y
R← G, compute Z =

DHg(X, Y );

• The Decisional Diffie-Hellman problem (DDHg): For X, Y, Z
R← G, decide between the

two tuples (g,X, Y,DHg(X, Y )) —a Diffie-Hellman tuple— and (g,X, Y, Z) —a random
tuple—.

We can even define more restricted versions of the Diffie-Hellman problems, for a fixed X ∈ G
too:

• The Computational Diffie-Hellman problem (CDHg,X): Given Y
R← G, compute Z =

DHg(X, Y );

• The Decisional Diffie-Hellman problem (DDHg,X): For Y, Z
R← G, decide between the

two tuples (g,X, Y,DHg(X, Y )) —a Diffie-Hellman tuple— and (g,X, Y, Z) —a random
tuple—.

Let us consider an adversary that solves the `-Set Restricted Diffie-Hellman problem (SCDHg,X,`),

with success ε within time t: for any fixed g,X ∈ G, but given a random Y
R← G, A outputs,

within time t, a set S of size at most `, such that Z = DHg(X, Y ) ∈ S with probability greater
than ε: Succscdhg,X,`(A) ≥ ε.

Q-1. Let us consider the algorithm B that runs A, and then randomly chooses a
candidate in S as a solution to the CDHg,X problem. What is its success probability
(a lower bound)?

Q-2. Give a relation between Succcdhg,X (t) and Succscdhg,X,`(t), ignoring all the addi-
tional computations that B does beyond A.
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Q-3. Let us now consider the algorithm B′ that runs A on Y αgβ, for scalars α and β
that it has randomly chosen, to get S ′:

1. How to convert the set S ′ of candidates for DHg(X, Y
αgβ) into a set S ′′ of

candidates for DHg(X, Y )?

Let us now complete the algorithm B′ by running A again, but on Y , to get S. Then,
it computes I = S ∩ S ′′: if I = ∅, it outputs “Failure”, if I contains 2 elements or
more, it outputs “Error”, in the last case of one element, it outputs this value as the
solution.

2. Explain why, if A succeeds in the 2 calls (on Y αgβ and on Y ), our algorithm B′
outputs either the correct solution (success) or “Failure”.

3. What is the probability that I contains a wrong solution (possibly additionally
with the right one)?

4. What is the success probability of B′ (a lower bound)?

Q-4. Give a new relation between Succcdhg,X (t) and Succscdhg,X,`(t), ignoring all the
additional computations that B does beyond A, and namely for computing the inter-
section I.
When is it better than the previous one (from Q-2)?

15.2 Key Encapsulation and Indistinguishability of Keys

A key encapsulation mechanism aims at generating a session key with a partner, in a non-
interactive way. Such a scheme S = (Setup,KeyGen,Encaps,Decaps), is defined by 4 algorithms:

• Setup(1k) generates the public parameters params;

• KeyGen(params) generates the pair of private and public keys (dk, ek);

• Encaps(ek) outputs a session key K ∈ {0, 1}k and an encapsulation c of this key, under
the public key ek;

• Decaps(dk, c) outputs the session key K encapsulated in c under ek, if dk is the private
key associated to the public key ek.

Such an encapsulated key should be indistinguishable from a
random key to any third party, hence the indistinguishability
security game: the challenger runs the setup algorithm Setup
and the key generation algorithm KeyGen to generate the en-
capsulation key ek and the associated decapsulation key dk.
It runs the encapsulation algorithm on ek, and gets the pair

(K, c). The challenger flips a bit b
R← {0, 1} and sets Kb ← K,

while K1−b
R← {0, 1}k. It provides the triple (K0, K1, c) to A.

Eventually, A has to guess b. To this aim, it outputs b′.

Expind−bS,A (k)
1. params← Setup(1k)
2. (ek, dk)← KeyGen(params)
3. (K, c)← Encaps(ek)

4. Kb ← K, K1−b
R← {0, 1}k

5. b′ ← A(ek, K0, K1, c)
6. RETURN b′

The quality of the adversary A is measured by its advantage

AdvindS (A) = Pr[1← A | b = 1]−Pr[1← A | b = 0] = Pr[Expind−1S,A (k) = 1]−Pr[Expind−0S,A (k) = 1].

The security of the key encapsulation scheme S is measured by the advantage of the best
adversary within time t:

AdvindS (t) = max
A≤t
{AdvindS (A)}.
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15.3 Hashed ElGamal

Let us consider G = 〈g〉, a cyclic group of prime order q of length 2k, together with a hash
function H onto {0, 1}k, where k is the security parameter. The setup algorithm outputs the
triple params = (g, q,H). Then,

• KeyGen(params): the private key is a scalar, dk = x ∈ Z?q, and the public key is the
associated group element ek = X = gx;

• Encaps(ek): in order to generate an encapsulated key under ek = X, one chooses a
random scalar y ∈ Z?q, and computes c = Y = gy, while K = H(Y, Z), where Z = Xy =
DHg(X, Y );

• Decaps(dk, c): in order to decapsulate c, with dk = x, one computes Z = cx1 and then
K = H(Y, Z).

Q-5. Show that this scheme provides indistinguishability under a SCDH problem, in
the random oracle model. Detail the proof by successive alterations of the security
game.

Q-6. Show that a decapsulation oracle provides a kind of DDH-oracle. Precise this
oracle available to an adversary when it can ask decapsulation queries.

Then indistinguishability with decapsulation-oracle access relies on the Gap-Diffie-Hellman
problem GDHg,X : Solve CDHg,X given access to a DDHg,X oracle.

15.4 Twin Diffie-Hellman Problems

Let us consider G = 〈g〉, a cyclic group of prime order q. The Twin Diffie-Hellman problems
are defined by:

• The Computational Twin Diffie-Hellman problem (CTDHg): Given X1, X2, Y
R← G, com-

pute (Z1, Z2) = (DHg(X1, Y ),DHg(X2, Y ));

• The Decisional Twin Diffie-Hellman problem (DTDHg): For X1, X2, Y, Z1, Z2
R← G, decide

between the tuples (X1, X2, Y,DHg(X1, Y ),DHg(X2, Y )) and (X1, X2, Y, Z1, Z2).

We can also define the restricted versions CTDHg,X1,X2 and DTDHg,X1,X2 , when X1 and X2 are
fixed too, and thus instances are respectively a group element Y , or a triple (Y, Z1, Z2).

Q-7. For fixed g,X1 ∈ G, but any chosen X2 ∈ G (any way one wants), prove that
the CTDHg,X1,X2 problem is at least as hard as the CDHg,X1 problem. Give the relation
between the success probabilities.

Q-8. For fixed g,X1 ∈ G, let us choose random scalars r, s
R← Z?q, and set X2 = gs/Xr

1 .

1. Explain why no information leaks about s from X1 and X2.

2. When we receive a DTDHg,X1,X2 instance (Y, Z1, Z2), prove that Zr
1Z2 = Y s if

and only if both Z1 = DHg(X1, Y ) and Z2 = DHg(X2, Y ), but with negligible
probability, which provides a DTDHg,X1,X2 distinguisher.
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15.5 Hashed Twin Diffie-Hellman

Let us consider G = 〈g〉, a cyclic group of prime order q of length 2k, together with a hash
function H onto {0, 1}k. The setup algorithm outputs the triple params = (g, q,H). Then,

• KeyGen(params): the private key is a scalar, dk = (x1, x2) ∈ Z?q
2, and the public key is

the associated group elements ek = (X1 = gx1 , X2 = gx2);

• Encaps(ek): in order to encapsulate a key under ek = (X1, X2), one chooses a random
scalar y ∈ Z?q, and computes c = Y = gy, while K = H(Y, Z1, Z2), where Z1 = Xy

1 and
Z2 = Xy

2 ;

• Decaps(dk, c): in order to decapsulate c, with dk = x, one computes Z1 = cx1 and Z2 = cx2

and eventually K = H(Y, Z1, Z2).

Q-9. For any fixed X1 ← G, and two random scalars r, s
R← Z?q. If we define

ek = (X1, X2 = gs/Xr
1), show that the knowledge of (r, s) allows to simulate the

decapsulation oracle, in the random oracle model, but with negligible probability.

Q-10. Show that this scheme provides indistinguishability even with decapsulation-
oracle access under the CDHg assumption, in the random oracle model.
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