15. Twin-Diffie-Hellman

The goal of this exercise is to study variants of ElGamal key encapsulation, based on the Twin
Diffie-Hellman.

15.1 Diffie-Hellman Problems

Let us consider G = (g), a cyclic group of prime order ¢q. For any X = ¢*,Y = ¢¥ € G, we
denote DH,(X,Y’) = ¢, the Diffie-Hellman value of X and Y in basis ¢g. The Diffie-Hellman
problems in basis g are defined by:

e The Computational Diffie-Hellman problem (CDH,): Given X,Y ¥id G, compute Z =
DH, (X, Y);

e The Decisional Diffie-Hellman problem (DDH,): For X,Y,Z ¥id G, decide between the
two tuples (g, X,Y,DH,(X,Y)) —a Diffie-Hellman tuple— and (g, X,Y, Z) —a random
tuple—.

We can even define more restricted versions of the Diffie-Hellman problems, for a fixed X € G
too:

e The Computational Diffie-Hellman problem (CDH, x): Given Y ¥id G, compute Z =
DH, (X, Y);

e The Decisional Diffie-Hellman problem (DDH, x): For Y, Z ¥id G, decide between the
two tuples (g, X,Y,DH,(X,Y)) —a Diffie-Hellman tuple— and (g, X,Y, Z) —a random
tuple—.

Let us consider an adversary that solves the (-Set Restricted Diffie-Hellman problem (SCDH,, x /),
with success € within time ¢: for any fixed g, X € G, but given a random Y ¥ia G, A outputs,
within time ¢, a set S of size at most ¢, such that Z = DH,(X,Y) € S with probability greater
than e: Succ™Mex¢(A4) > ¢,

Q-1. Let us consider the algorithm B that runs A, and then randomly chooses a
candidate in S as a solution to the CDH, x problem. What is its success probability
(a lower bound)?

Q-2. Give a relation between Succ™sX () and Succ**®"-X¢(¢), ignoring all the addi-
tional computations that B does beyond A.



Q-3. Let us now consider the algorithm B’ that runs A on Y®¢?, for scalars a and f3
that it has randomly chosen, to get S”:

1. How to convert the set S’ of candidates for DH,(X,Y*¢”) into a set S” of
candidates for DH,(X,Y)?

Let us now complete the algorithm B’ by running A again, but on Y, to get .S. Then,
it computes I = SN S”: if I = (, it outputs “Failure”, if I contains 2 elements or
more, it outputs “Error”, in the last case of one element, it outputs this value as the
solution.

2. Explain why, if A succeeds in the 2 calls (on Y?¢” and on Y'), our algorithm B’
outputs either the correct solution (success) or “Failure”.

3. What is the probability that I contains a wrong solution (possibly additionally
with the right one)?

4. What is the success probability of B’ (a lower bound)?

Q-4. Give a new relation between Succ™#¥(¢) and Succ™"s*(t), ignoring all the
additional computations that B does beyond A, and namely for computing the inter-
section [.

When is it better than the previous one (from Q-2)?

15.2 Key Encapsulation and Indistinguishability of Keys

A key encapsulation mechanism aims at generating a session key with a partner, in a non-
interactive way. Such a scheme S = (Setup, KeyGen, Encaps, Decaps), is defined by 4 algorithms:

Setup(1¥) generates the public parameters params;

KeyGen(params) generates the pair of private and public keys (dk, ek);

Encaps(ek) outputs a session key K € {0,1}* and an encapsulation c of this key, under
the public key ek;

Decaps(dk, ¢) outputs the session key K encapsulated in ¢ under ek, if dk is the private
key associated to the public key ek.

Such an encapsulated key should be indistinguishable from a

random key to any third party, hence the indistinguishability Expnrt (k)
security game: the challenger runs the setup algorithm Setup 1 pirém s < Setup(1¥)
and the key generation algorithm KeyGen to generate the en- 2' (ek, dk) < KeyGen(params)
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while K;_, & {0,1}*. Tt provides the triple (Kjy, K1,¢) to A. 6. RETURN b

Eventually, A has to guess b. To this aim, it outputs b'.
The quality of the adversary A is measured by its advantage
Advied(A) =Prl+ A|b=1]-Pr[l + A|b=0] = Pr[Exp?i{l(k) =1] —Pr[Exp?i{D(k‘) =1].

The security of the key encapsulation scheme S is measured by the advantage of the best
adversary within time t¢:

Advitd(t) = %gf{AdviSd (A)}.
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15.3 Hashed ElGamal

Let us consider G = (g), a cyclic group of prime order ¢ of length 2k, together with a hash
function H onto {0,1}*, where k is the security parameter. The setup algorithm outputs the
triple params = (g, ¢, H). Then,

e KeyGen(params): the private key is a scalar, dk = = € Zy, and the public key is the
associated group element ek = X = ¢%;

e Encaps(ek): in order to generate an encapsulated key under ek = X, one chooses a
random scalar y € Z, and computes ¢ =Y = g¥, while K = H(Y,Z), where Z = XV =
DH, (X, Y);

e Decaps(dk,c): in order to decapsulate ¢, with dk = x, one computes Z = ¢f and then
K=H(Y,Z).

Q-5. Show that this scheme provides indistinguishability under a SCDH problem, in
the random oracle model. Detail the proof by successive alterations of the security
game.

Q-6. Show that a decapsulation oracle provides a kind of DDH-oracle. Precise this
oracle available to an adversary when it can ask decapsulation queries.

Then indistinguishability with decapsulation-oracle access relies on the Gap-Diffie-Hellman
problem GDH, x: Solve CDH, x given access to a DDH, x oracle.

15.4 Twin Diffie-Hellman Problems

Let us consider G = (g), a cyclic group of prime order g. The Twin Diffie-Hellman problems
are defined by:

e The Computational Twin Diffie-Hellman problem (CTDH,): Given X, X5,Y ¥id G, com-
pute (Zl, ZQ) = (DHg(Xl, Y), DHg(XQ, Yv))7

e The Decisional Twin Diffie-Hellman problem (DTDH,): For Xy, X»,Y, Z;, Z, ¥id G, decide
between the tuples (X7, X, Y,DH,(X1,Y),DHy(X5,Y)) and (X3, X»,Y, Z1, Zs).

We can also define the restricted versions CTDH, x, x, and DTDH, x, x,, when X; and X, are
fixed too, and thus instances are respectively a group element Y, or a triple (Y, Z1, Z5).

Q-7. For fixed g, X; € G, but any chosen X; € G (any way one wants), prove that
the CTDHy x, x, problem is at least as hard as the CDH, x, problem. Give the relation
between the success probabilities.

Q-8. For fixed g, X; € G, let us choose random scalars r, s ¥id Zy, and set Xy = 9°/ X7,
1. Explain why no information leaks about s from X; and Xo.

2. When we receive a DTDH, x, x, instance (Y, Zy, Z5), prove that Z{Z, = Y* if
and only if both Z; = DH,(X;,Y) and Z; = DH,(X5,Y), but with negligible
probability, which provides a DTDH, x, x, distinguisher.



15.5 Hashed Twin Diffie-Hellman

Let us consider G = (g), a cyclic group of prime order ¢ of length 2k, together with a hash
function H onto {0,1}*. The setup algorithm outputs the triple params = (g, ¢, H). Then,

e KeyGen(params): the private key is a scalar, dk = (21, 75) € Z*?, and the public key is

q )
the associated group elements ek = (X; = g™, Xy = ¢*2);

e Encaps(ek): in order to encapsulate a key under ek = (Xj, Xs), one chooses a random
scalar y € Z7, and computes ¢ =Y = g¥, while K = H(Y, Zy, Zy), where Z; = X{ and

e Decaps(dk, ¢): in order to decapsulate ¢, with dk = x, one computes Z; = ¢™* and Zy = ¢
and eventually K = H(Y, Zy, Zs).

Q-9. For any fixed X; + G, and two random scalars r, s ¥id Zy. 1t we define
ek = (X1, Xy = ¢°/X7]), show that the knowledge of (r,s) allows to simulate the
decapsulation oracle, in the random oracle model, but with negligible probability.

Q-10. Show that this scheme provides indistinguishability even with decapsulation-
oracle access under the CDH, assumption, in the random oracle model.



