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Asymmetric Cryptography

secrecy
authenticity Bob

Diffie-Hellman 1976

Alice

Asymmetric Encryption:
Bob owns two “keys”
» A public key (encryption k)

= known by everybody
= so that anybody can encrypt (including Alice)
a message for him

» A private key (decryption k)
= to help him to decrypt

= known by Bob only

Encryption / decryption
attack

David Pointcheval - CNRS-ENS Asymmetric Cryptography - Provable Security - 3

o s Granted Bob’s public key,
My fscret Q Alice can lock the safe,
e ‘2‘& with the message inside
(encrypt the message)
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Encryption / decryption
attack

- s Granted Bob’s public key,
My f:cret Alice can lock the safe,
with the message inside
(encrypt the message)

= Alice sends the safe to Bob
no one can unlock it
(impossible to break)

Encryption / decryption
attack

David Pointcheval - CNRS-ENS Asymmetric Cryptography - Provable Security - 5

- s Granted Bob’s public key,
My f:cret Q Alice can lock the safe,
/ ‘ ; with the message inside
(encrypt the message)

= Excepted Bob,
granted his private key
(Bob can decrypt)

= Alice sends the safe to Bob 2
no one can unlock it

(impossible to break)
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Provable Security

O Need of Computational Assumptions
s Provable Security
= Security Notions

Encryption Scheme
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3 algorithms:
= G - key generation
= E - encryption © G — Kk
= D - decryption
K, K,
| |
m —» C

r B D—"

David Pointcheval - CNRS-ENS Asymmetric Cryptography - Provable Security - 8




Conditional Secrecy

The ciphertext comes from ¢ = E (m; r)

s The encryption key £ _is public
= A unique m satisfies the relation
(with possibly several r)

At least exhaustive search on m and r
can lead to m, maybe a better attack!

= unconditional secrecy impossible

Algorithmic assumptions

Integer Factoring and RSA
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One-Way

s Multiplication/Factorization: )
Function

® p, g — n = p.q easy (quadratic)

® n=p.q — p, q difficult (super-polynomial)
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Integer Factoring and RSA

One-Way

= Multiplication/Factorization: )
Function

@ p, g — n = p.q easy (quadratic)

@ n=p.q — p, q difficult (super-polynomial)
= RSA Function, from £ in Z (with n=pq)

for a fixed exponent e Rivest-Shamir-Adleman 1978
@ x — x¢ mod n easy (cubic)

s y=x*mod n — x difficult (without porg) Rg
x = y?"mod n where d = ¢! mod ¢(n) Pr Oblep,

Integer Factoring and RSA
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One-Way

= Multiplication/Factorization: )
Function

@ p, g — n = p.q easy (quadratic)

@ n=p.q — p, q difficult (super-polynomial)
= RSA Function, from £ in Z (with n=pq)

for a fixed exponent e Rivest-Shamir-Adleman 1978
s x — x¢ mod n easy (cubic)
@ y=x¢ mod n — x difficult (without p or g)

x =y“mod n where d = ¢! mod ¢(n)

encryption
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Integer Factoring and RSA

Integer Factoring and RSA

One-Way

s Multiplication/Factorization: :
Function

® p, g — n = p.q easy (quadratic)
® n=p.q — p, q difficult (super-polynomial)

s RSA Function, from Z in Z (with n=pq)

for a fixed exponent e Rivest-Shamir-Adleman 1978
® x — x* mod n easy (cubic)

» y=x¢ mod n — x difficult (without p or g)

One-Way

s Multiplication/Factorization: )
Function

® p, g — n = p.q easy (quadratic)

® n=p.q — p, q difficult (super-polynomial)
» RSA Function, from Z in Z (with n=pq)

for a fixed exponent e Rivest-Shamir-Adleman 1978
@ x — x* mod n easy (cubic)

» y=x¢ mod n — x difficult (without p or g)

trapdoor
x = y?mod n where d = ¢! mod ¢(n) x = y*mod n where|d = ¢! mod ¢(n) | P
difficult _ key
to break decryption
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The RSA Problems The Discrete Logarithm

Let n=pg where p and g are large primes
= The RSA problem: for a fixed exponent e

n,e

Succ’ (A) = Pzr*[y =x‘modnA(y) = x]
Ye&,

s The Flexible RSA problem:

Succ! ™ (A) = yl:zr I y=x‘modnA(y) = (x, e)]

with the restriction for e to be prime

= Let G = (<g>, x ) be any finite cyclic group
= For any ye G, one defines

Log,(y) =min{x >0 [y =g}
One-way function

° x —y=g" easy (cubic)

o y=9" —>x difficult (super-polynomial)

Succzl (A) = x]e?zr \A(J/) =Xy = ng
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Any Trapdoor ...?

s The Discrete Logarithm is difficult
and no information could help!

s The Diffie-Hellman Problem (1976):

»> Given 4=g< and B=g*
> Compute DH(4,B) = C=g*
Clearly CDH = DL: with a = Log 4, C = B“

Succ:"(A)= Pr |A(4,B)=CA=g".B=g".C=g"
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Complexity Estimates

Estimates for integer factoring

Lenstra-Verheul 2000

Modulus | Mips-Year | Operations
(bitS) (Ing) (en logz)
512 13 58
1024 35 80
2048 66 111
4096 104 149
8192 156 201

Can be used for RSA too
Lower-bounds for DL in Zp*

avid Pointcheval - CNRS-ENS
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Provable Security

s Need of Computational Assumptions

@ Provable Security
= Security Notions

Algorithmic Assumptions
necessary
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RSA Encryption
s E(m) = m°*mod n

* D(c) =c’modn

n=pq : public modulus
e : public exponent
d=e!' mod ¢(n) : private
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Algorithmic Assumptions
sufficient?

Security proofs give the guarantee that the
assumption is enough for secrecy:

= if an adversary can break the secrecy
= one can break the assumption
= “reductionist” proof
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Proof by Reduction

Reduction of a problem P to an attack Atk:
= Let A be an adversary that breaks the scheme

s Then A can be used to solve P

G

sA
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Proof by Reduction

Reduction of a problem P to an attack Atk:
* | et A be an adversary that breaks the scheme

s Then A can be used to solve P

{ Pt O
Instance | ¢ KN
lof P — 1 Sy

Solution
— ofl
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Proof by Reduction

Reduction of a problem P to an attack Atk:
* et A be an adversary that breaks the scheme

s Then A can be used to solve P

Instance
Solution

L P O
\ ()
lof P — 1 Sy
— ofl
P intractable = scheme unbreakable
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Provably Secure Scheme

To prove the security of a cryptographic scheme,
one has to make precise
= the algorithmic assumptions
@ some have been presented
= the security notions to be guaranteed
@ depend on the scheme
= a reduction:

an adversary can help
to break the assumption

Practical Security
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Adversary Alggrithm
within ¢ against P
within ¢ = T (¢)

s Complexity theory: T polynomial
s Exact Security: T explicit
s Practical Security: 7 small (linear)
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Complexity Theory
Adversary Alggrithm
within 7 against P
within ¢ = T'(¢)

s Assumption:
@ P is hard = no polynomial algorithm
= Reduction:
@ polynomial = T'is a polynomial
= Security result:
@ no polynomial adversary
= no attack for parameters large enough

Complexity Theory: Results
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General results (under polynomial reductions,
and against polynomial time adversaries):

= One-way functions are enough
for secure signatures

= Trap-door one-way permutations are enough
for secure encryption
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Exact Security

Adversary @ ':L]gaoirrli:r;
within ¢
S within = T (?)

s Assumption:

@ Solving P requires N operations (or time 1)

= Reduction:

@ Exact cost for 7,
in z, and some other parameters

s Security result:
@ no adversary within time 7 such that 7' () <t

Provable Security
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» Need of Computational Assumptions
= Provable Security
I Security Notions
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Signature: EF-CMA

e @G —— k

|
AL, 8
.29 V(' 2")=1

Exact Security: FDH
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s Signature FDH (Bellare-Rogaway 1996):

Succ? " (t) < (g, +qs +1) % Succ (¢ +(q, +4s)T;)

s Security bound: 27
@ and 2°° hash queries and 23’ signing queries
s Break the scheme within ¢, invert / within time
1'<(q,tqs+t D)+ (q,1q9 T,) <2'°T,
» RSA: 1024 bits — 213° (NFS: 2%)

X
2048 bits — 212 (NFS: 21"1)  x
4096 bits — 23 (NFS: 21%)

David Pointcheval - CNRS-ENS Asymmetric Cryptography - Provable Security - 32




Practical Security: FDH

= Signature FDH (Coron 2000):

el —cma +1 ow
Succ? " (f) < %e xSucc?(1+(q, +gs +DT,)

= Security bound: 27
@ and 2% hash queries and 23° signing queries
= Break the scheme within ¢, invert / within time
'<(gst )+ (gytast 1) T)/ e<2¥t+2%T,
» RSA: 1024 bits — 25 (NFS: 2%) x

2048 bits — 2197 (NFS: 2!11)
4096 bits — 2'° (NFS: 2'4)

Encryption: One-Wayness

o @G K

|

m’" random
r* random
m c
., E A
s 2
m =m m
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Encryption: IND-CCA2

hh— @ ——

l C
b {01} <D D
r random m" ] mor L CCA1
1 -
m,— c
rJE A C#C
. b
b=b . | e L CCA2

Practical Security: Encryption
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s Security bound: 27
@ and 2% hash queries

= RSA-OAEP
s 1024 bits — 214 (NFS: 2%)  x
s 2048 bits — 214 (NFS: 2111)  x
s 4096 bits — 219 (NFS: 214)

= RSA-REACT: ¢’ = 2¢
s 1024 bits — 276 (NFS: 2%)
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