Asymmetric Cryptography Provable Security

IML, Luminy, France
November 9th, 2004

David Pointcheval CNRS-ENS

Provable Security

- Need of Computational Assumptions
- Provable Security
- Security Notions

David Pointcheval - CNRS-ENS

Asymmetric Cryptography - Provable Security - 2

Asymmetric Cryptography

Alice ← secrecy authenticity Bob

Diffie-Hellman 1976

Asymmetric Encryption: Bob owns two "keys"

- A public key (encryption k_s)
 - so that anybody can encrypt a message for him
- A private key (decryption k_d)
 - to help him to decrypt

- ⇒ known by everybody (including Alice)
- ⇒ known by Bob only

Encryption / decryption attack

My secret is .../...

 Granted Bob's public key, Alice can lock the safe, with the message inside (encrypt the message)

Encryption / decryption attack

Alice sends the safe to Bob no one can unlock it (impossible to break)

David Pointcheval - CNRS-ENS

Asymmetric Cryptography - Provable Security - 5

Encryption / decryption attack

 Granted Bob's public key, Alice can lock the safe, with the message inside (encrypt the message)

> Excepted Bob, granted his private key (Bob can decrypt)

Alice sends the safe to Bob no one can unlock it (impossible to break)

David Pointcheval - CNRS-ENS

Asymmetric Cryptography - Provable Security - 6

Provable Security

▶ Need of Computational Assumptions

- Provable Security
- Security Notions

Encryption Scheme

3 algorithms:

- G key generation
- E encryption
- D decryption

Conditional Secrecy

The ciphertext comes from $c = \mathbf{E}_{k}(m; r)$

- The encryption key k₂ is public
- A unique m satisfies the relation (with possibly several *r*)

At least exhaustive search on m and r can lead to m, maybe a better attack!

⇒ unconditional secrecy impossible

David Pointcheval - CNRS-ENS

Integer Factoring and RSA

Multiplication/Factorization:

One-Way **Function**

- $p, q \rightarrow n = p.q$ easy (quadratic)
- $n = p.q \rightarrow p$, q difficult (super-polynomial)

David Pointcheval - CNRS-ENS

Asymmetric Cryptography - Provable Security - 1

Integer Factoring and RSA

Multiplication/Factorization:

One-Way **Function**

- $p, q \rightarrow n = p.q$ easy (quadratic)
- $n = p.q \rightarrow p, q$ difficult (super-polynomial)
- RSA Function, from \mathbf{Z}_n in \mathbf{Z}_n (with n=pq)

for a fixed exponent e

Rivest-Shamir-Adleman 1978

- $x \rightarrow x^e \mod n$ easy (cubic)
- $x \to x^e \mod n$ occ f(x)• $y=x^e \mod n \to x$ difficult (without p or q) RSA Problem

Integer Factoring and RSA

Multiplication/Factorization:

One-Way **Function**

- $p, q \rightarrow n = p.q$ easy (quadratic)
- $n = p.q \rightarrow p, q$ difficult (super-polynomial)
- RSA Function, from \mathbf{Z}_n in \mathbf{Z}_n (with n=pq)

for a fixed exponent e

Rivest-Shamir-Adleman 1978

- $x \to x^e \mod n$ easy (cubic)
- $y=x^e \mod n \to x$ difficult (without p or q) $x = v^d \mod n$ where $d = e^{-1} \mod \varphi(n)$

encryption

David Pointcheval - CNRS-ENS

Integer Factoring and RSA

Multiplication/Factorization:

One-Way Function

- $p, q \rightarrow n = p.q$ easy (quadratic)
- $n = p.q \rightarrow p, q$ difficult (super-polynomial)
- RSA Function, from \mathbf{Z}_n in \mathbf{Z}_n (with n=pq)

for a fixed exponent *e*

Rivest-Shamir-Adleman 1978

- $x \rightarrow x^e \mod n$ easy (cubic)
- $y = x^e \mod n \to x$ difficult (without p or q)

 $x = y^d \mod n$ where $d = e^{-1} \mod \varphi(n)$

difficult to break

David Pointcheval - CNRS-ENS

Asymmetric Cryptography - Provable Security - 13

Integer Factoring and RSA

• Multiplication/Factorization:

One-Way Function

- $p, q \rightarrow n = p.q$ easy (quadratic)
- $n = p.q \rightarrow p, q$ difficult (super-polynomial)
- RSA Function, from \mathbf{Z}_n in \mathbf{Z}_n (with n=pq)

for a fixed exponent *e*

Rivest-Shamir-Adleman 1978

- $x \rightarrow x^e \mod n$ easy (cubic)
- $y=x^e \mod n \to x$ difficult (without p or q)

 $x = y^d \mod n$ where $d = e^{-1} \mod \varphi(n)$

trapdoor

decryption key

David Pointcheval - CNRS-ENS

Asymmetric Cryptography - Provable Security - 14

The RSA Problems

Let n=pq where p and q are large primes

The RSA problem: for a fixed exponent e

$$\operatorname{Succ}_{n,e}^{\operatorname{rsa}}(\mathbf{A}) = \Pr_{y \in \mathbf{Z}_n^*} [y = x^e \bmod n | \mathbf{A}(y) = x]$$

The Flexible RSA problem:

$$\operatorname{Succ}_{n}^{\text{fl-rsa}}(\mathbf{A}) = \Pr_{\mathbf{y} \in \mathbf{Z}_{n}^{*}} \left[y = x^{e} \bmod n \middle| \mathbf{A}(y) = (x, e) \right]$$

with the restriction for e to be prime

The Discrete Logarithm

- Let $G = (\langle g \rangle, \times)$ be any finite cyclic group
- For any $y \in G$, one defines

$$Log_g(y) = \min\{x \ge 0 \mid y = g^x\}$$

One-way function

- $x o y = g^x$ easy (cubic)
- $y = g^x \rightarrow x$ difficult (super-polynomial)

$$\operatorname{Succ}_{g}^{\operatorname{dl}}(\mathbf{A}) = \Pr_{x \in \mathbf{Z}_{q}} \left[\mathbf{A}(y) = x \middle| y = g^{x} \right]$$

Any Trapdoor ...?

- The Discrete Logarithm is difficult and no information could help!
- The Diffie-Hellman Problem (1976):
 - Given $A=g^a$ and $B=g^b$
 - Compute $DH(A,B) = C = g^{ab}$

Clearly CDH \leq DL: with $a = \text{Log}_g A$, $C = B^a$

$$\operatorname{Succ}_{g}^{\operatorname{cdh}}(\mathbf{A}) = \Pr_{a,b \in \mathbf{Z}_{a}} \left[\mathbf{A}(A,B) = C \middle| A = g^{a}, B = g^{b}, C = g^{ab} \right]$$

David Pointcheval - CNRS-ENS

Asymmetric Cryptography - Provable Security - 17

Provable Security

- Need of Computational Assumptions
- ▶ Provable Security
- Security Notions

Complexity Estimates

Estimates for integer factoring

Lenstra-Verheul 2000

Modulus (bits)	Mips-Year (log ₂)	Operations (en log ₂)
512	13	58
1024	35	80
2048	66	111
4096	104	149
8192	156	201

Can be used for RSA too Lower-bounds for DL in **Z**_{*}*

David Pointcheval - CNRS-ENS

Asymmetric Cryptography - Provable Security - 18

Algorithmic Assumptions necessary

n=pq: public modulus

■ e : public exponent

• $d=e^{-1} \mod \varphi(n)$: private

RSA Encryption

 \blacksquare \blacksquare $(m) = m^e \mod n$

 $\mathbf{D}(c) = c^d \bmod n$

If the RSA problem is easy, secrecy is not satisfied: anybody may recover *m* from *c*

Algorithmic Assumptions sufficient?

Security proofs give the guarantee that the assumption is **enough** for secrecy:

- if an adversary can break the secrecy
- one can break the assumption
 - ⇒ "reductionist" proof

David Pointcheval - CNRS-ENS

Asymmetric Cryptography - Provable Security - 21

Proof by Reduction

Reduction of a problem **P** to an attack *Atk*:

- Let A be an adversary that breaks the scheme
- Then A can be used to solve P

David Pointcheval - CNRS-ENS

David Pointcheval - CNRS-ENS

Asymmetric Cryptography - Provable Security - 22

Proof by Reduction

Reduction of a problem **P** to an attack *Atk*:

- Let A be an adversary that breaks the scheme
- Then A can be used to solve P

Proof by Reduction

Reduction of a problem **P** to an attack *Atk*:

- Let A be an adversary that breaks the scheme
- Then A can be used to solve P

P intractable ⇒ scheme unbreakable

David Pointcheval - CNRS-ENS Asymmetric Cryptography - Provable Security - 23

Asymmetric Cryptography - Provable Security - 24

Provably Secure Scheme

To prove the security of a cryptographic scheme, one has to make precise

- the algorithmic assumptions
 - some have been presented
- the security notions to be guaranteed
 - depend on the scheme
- a reduction:
 - an adversary can help to break the assumption

David Pointcheval - CNRS-ENS

Asymmetric Cryptography - Provable Security - 25

Practical Security

Adversary within *t*

Algorithm against **P** within t' = T(t)

- Complexity theory: T polynomial
- Exact Security: T explicit
- Practical Security: T small (linear)

David Pointcheval - CNRS-ENS

Asymmetric Cryptography - Provable Security - 26

Complexity Theory

Adversary within *t*

Algorithm against **P** within t' = T(t)

- Assumption:
 - P is hard = no polynomial algorithm
- Reduction:
 - polynomial = T is a polynomial
- Security result:
 - no polynomial adversary
 - ⇒ no attack for parameters large enough

Complexity Theory: Results

General results (under polynomial reductions, and against polynomial time adversaries):

- One-way functions are enough for secure signatures
- Trap-door one-way permutations are enough for secure encryption

Exact Security

Adversary within *t*

Algorithm against **P** within t' = T(t)

- Assumption:
 - Solving \mathbf{P} requires N operations (or time τ)
- Reduction:
 - Exact cost for T, in t, and some other parameters
- Security result:
 - no adversary within time t such that $T(t) \le \tau$

David Pointcheval - CNRS-ENS

David Pointcheval - CNRS-ENS

Asymmetric Cryptography - Provable Security - 29

Provable Security

- Need of Computational Assumptions
- Provable Security
- **I**Security Notions

David Pointcheval - CNRS-ENS

Asymmetric Cryptography - Provable Security - 30

Signature: EF-CMA

Exact Security: FDH

Signature FDH (Bellare-Rogaway 1996):

$$\operatorname{Succ}^{ef-cma}(t) \leq (q_H + q_{\mathbf{S}} + 1) \times \operatorname{Succ}_f^{ow}(t + (q_H + q_{\mathbf{S}})T_f)$$

Security bound: 2⁷⁵

David Pointcheval - CNRS-ENS

- and 2⁵⁵ hash queries and 2³⁰ signing queries
- Break the scheme within t, invert f within time

$$t' \le (q_H + q_S + 1) (t + (q_H + q_S) T_f) \le 2^{110} T_f$$

■ RSA: 1024 bits $\rightarrow 2^{130}$ (NFS: 2^{80}) **x** 2048 bits $\rightarrow 2^{132}$ (NFS: 2^{111}) **x**

4096 bits $\rightarrow 2^{134}$ (NFS: 2^{149})

Asymmetric Cryptography - Provable Security - 31

Asymmetric Cryptography - Provable Security - 32

Practical Security: FDH

Signature FDH (Coron 2000):

$$\operatorname{Succ}^{ef-cma}(t) \leq \frac{q_{\mathbf{s}}+1}{e} \times \operatorname{Succ}_{f}^{ow}(t+(q_{H}+q_{\mathbf{s}}+1)T_{f})$$

- Security bound: 2⁷⁵
 - and 2⁵⁵ hash queries and 2³⁰ signing queries
- Break the scheme within t, invert f within time

$$t' \le (q_s + 1) (t + (q_H + q_s + 1) T_f) / e \le 2^{30} t + 2^{85} T_f$$

• RSA: 1024 bits $\rightarrow 2^{105}$ (NFS: 2^{80})

2048 bits $\rightarrow 2^{107}$ (NFS: 2^{111})

4096 bits → 2^{109} (NFS: 2^{149})

David Pointcheval - CNRS-ENS

Asymmetric Cryptography - Provable Security - 33

Encryption: One-Wayness

David Pointcheval - CNRS-ENS

Asymmetric Cryptography - Provable Security - 34

Encryption: IND-CCA2

Practical Security: Encryption

- Security bound: 2⁷⁵
 - and 2⁵⁵ hash queries
- RSA-OAEP
 - 1024 bits $\rightarrow 2^{143}$ (NFS: 2^{80})
 - 2048 bits $\rightarrow 2^{146}$ (NFS: 2^{111})
 - 4096 bits $\rightarrow 2^{149}$ (NFS: 2^{149})
- RSA-REACT: $t' \approx 2t$
 - 1024 bits $\rightarrow 2^{76}$ (NFS: 2^{80})

David Pointcheval - CNRS-ENS

Asymmetric Cryptography - Provable Security - 35

David Pointcheval - CNRS-ENS

Asymmetric Cryptography - Provable Security - 36