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Formal Model Our Construction Conclusion

Threshold Cryptography

When one cannot fully trust a unique person, but possibly a
pool of individuals, the secret operation is distributed, so that
authorized subsets only can perform it

signature
decryption

Threshold Cryptography
The access structure (authorized subsets) is defined by a
threshold:

any group of t players can perform the secret operation
below this threshold, no power is provided to them
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Threshold Public-Key Encryption

A ciphertext can be decrypted only if at least t users
cooperate. Below this threshold, no additional information
about the plaintext is leaked.

Many applications:
electronic voting (decryption of the final result only)
key-escrow
identity-based cryptography (secret key extraction)
etc
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Classical Technique: ElGamal

G = 〈g〉 is a group of prime order p

Lagrange Interpolation (Shamir’s Secret Sharing)
GM generates a polynomial P of degree t − 1 over Zp

each group member i ∈ {1, . . .n} receives ski = P(i)
the group public key is PK = gsk, where sk = P(0)

t users can recover sk, less than t users have no information.

Threshold ElGamal Encryption

one can encrypt a message m ∈ G: c1 = gr , c2 = PKr ×m
in order to decrypt, one has to compute a = PKr = csk

1 :
each user i computes ai = cski

1
with t values, a can be “interpolated”.
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Limitations

At the key generation phase:
the target group (or set) is fixed (the public key)
the threshold t , to define the authorized subsets, is fixed

Dynamic Threshold Encryption
any user can dynamically join the system as a future
receiver
the sender can dynamically choose the target set S
the sender can dynamically set the threshold t

Related to
Threshold broadcast encryption

[Daza, Herranz, Morillo, Ràfols – ProvSec ’07]

Ciphertext linear in O(S)
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A Dynamic TPKE Scheme: Encryption/Decryption

Setup(λ). It outputs a set of parameters
PARAM = (MK,EK,DK,VK,CK)
MK is the master secret key: for adding new users

Join(MK, ID). With MK and the identity ID of a new user,
it outputs the user’s keys (usk,upk,uvk)

Encrypt(EK,S, t ,M). With the target set S (the public keys
upk), and the threshold t , it outputs an encryption
of the message M

ShareDecrypt(DK, ID,usk,C). With his private key usk, user
ID gets his decryption share σ, or ⊥

Combine(CK,S, t ,C,T ,Σ). With an authorized subset T
(subset of t targeted users), and Σ = (σ1, . . . , σt ) a
list of t decryption shares, it outputs a cleartext M,
or ⊥
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A Dynamic TPKE Scheme (Cont’d)

Robustness is achieved by public verification tools:
ValidateCT(EK,S, t ,C). It checks whether C is a valid

ciphertext with respect to EK, S and t
ShareVerify(VK, ID,uvk,C, σ). It checks whether σ is a valid

decryption share with respect to uvk
KEM-DEM methodology:

an ephemeral secret key K is first generated (KEM)
a symmetric mechanism is used to encrypt the data (DEM)

Encrypt(EK,S, t). With the target set S (the public keys upk),
and a threshold t , it outputs an ephemeral key K ,
and the key encapsulation material HDR
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Security Model

Correctness. Valid encryptions should be correctly checked
and decrypted, legitimate decryptions should be
correctly verified, and should lead to the
plaintext/ephemeral key

Robustness. It t shares are correctly checked with
ShareVerify, then the Combine algorithm outputs
the correct key K

Privacy. For any header HDR encrypted for a target set S
of registered users with a threshold t , any
collusion that contains less than t users from this
target set cannot learn any information about the
ephemeral key K
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Security Model: Privacy

Setup: The challenger runs Setup(λ) and the public
parameters (EK,DK,VK,CK) are given to the
adversary.

Query phase 1: The adversary A adaptively issues queries:
Join queries (on a new user ID)
Corrupt queries (on an existing user ID) to learn private keys
ShareDecrypt queries (on an ID and a header HDR) to learn
the partial decryption

Challenge: A outputs a set of users S? and a threshold t?.
The challenger randomly selects b ← {0,1}, and gets
(K0,HDR?) = Encrypt(EK,S?, t?), and randomly chooses an
ephemeral key K1: it returns (Kb,HDR?) to A.

Query phase 2: as Query phase 1
Guess: The adversary A outputs its guess b′ for b
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Security Levels

With the natural restrictions on the oracle queries wrt. the
target set and the threshold, the advantage of A is defined as

AdvA(λ) =

∣∣∣∣Pr[b′ = b]− 1
2

∣∣∣∣ .
As usual, Adv(T ,n,m, t ,qC ,qD) denotes the maximal value
over the adversaries A such that

it runs within time T
it makes at most

n Join-queries
qC Corrupt-queries
qD ShareDecrypt-queries

the size of S? is upper-bounded by m
the value of t? is upper-bounded by t .
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Security Level: the Basic one

Non-Adaptive Adversary (NAA)
We restrict the adversary to decide before the setup
the set S? and the threshold t? to be sent to the challenger

Non-Adaptive Corruption (NAC)
We restrict the adversary to decide before the setup
the identities that will be corrupted

Chosen-Plaintext Adversary (CPA)
We prevent the adversary from issuing ShareDecrypt-queries

(n,m, t ,qC)-IND-NAA-NAC-CPA security

Non-adaptive adversary, non-adaptive corruption, and CPA
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Aggregate Tool

Our Combine algorithm makes use of the Aggregate tool
[Delerablée, Paillier, and Pointcheval – Pairing ’07]

It allows to compute

L = A
1

(γ+x1)...(γ+xt ) ∈ GT

given A and Σ = {(xj ,aj = A
1

γ+xj )}tj=1, but γ private,
where the xj ’s are pairwise distinct.
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Our Construction: Setup

Setup(λ). Given a bilinear setting, e : G1 ×G2 → GT , with
generators g ∈ G1 and h ∈ G2

γ, α
R← Z∗p

D = {di}m−1
i=1 of random values in Zp,

where m is the maximal size of a target set
(D corresponds to a set of public dummy users)
u = gα·γ

v = e (g,h)α

The master secret key: MK = (g, γ, α)

The encryption key: EK =
(

m,u, v ,hα, {hα·γ i}2m−1
i=1 ,D

)
The decryption key: DK = ∅
The combining key: CK =

(
m,h, {hγ i}m−2

i=1 ,D
)
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Our Construction: Join/Encrypt

Join(MK, ID). Given MK = (g, γ, α), and an identity ID, it
randomly chooses a new x ∈ Zp:

upk = x usk = g
1
γ+x

Encrypt(EK,S, t). Given a set S = {upk1 = x1, . . . ,upks = xs}
and a threshold t (with t ≤ s ≤ m), Encrypt picks
k R← Z∗p, and sets HDR = (C1,C2) and K = vk :
C1 = u−k C2 = hk ·α·∏xi∈S(γ+xi )·

∏
x∈Dm+t−s−1

(γ+x)

a set of m + t − s − 1 dummy users + a set of s authorized users
⇒ a polynomial of degree m + t − 1 in the exponent of h:
m + t − 1 ≤ 2m − 1: can be computed from EK
the cooperation of t authorized users will decrease the degree of
the polynomial in v to degree m − 1: too high degree for CK!
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Our Construction: Decryption

ShareDecrypt(ID,usk,HDR). Given HDR = (C1,C2) and
usk = g

1
γ+x

σ = e (usk,C2) = v
k·∏xi∈S∪Dm+t−s−1

(γ+xi )

γ+x .

Combine(CK,HDR,T ,Σ). Given a set Σ of t decryption
shares:

K =
(

e
(

C1,hp(γ)
)
· Aggregate(v ,Σ)

) 1
c

c =
∏

x∈S∪Dm+t−s−1\T x ∈ Zp

p(γ) = 1
γ ·
(∏

x∈S∪Dm+t−s−1\T (γ + x)− c
)

,
a polynomial of degree m − 2, computable from CK
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Our Construction: Decryption (Cont’d)

K ′ = e
(

C1,hp(γ)
)
· Aggregate(v ,Σ)

= e
(

g−k ·γ ,hp(γ)
)
· vk ·∏x∈S∪Dm+t−s−1\T (γ+x)

= v−k ·γ·p(γ) · vk ·(γ·p(γ)+c)

= vk ·c = K c .

ValidateCT(EK,S, t ,HDR). Given HDR = (C1,C2)

C′1 = u−1 C′2 = hα·
∏

x∈S∪Dm+t−s−1
(γ+x)

HDR = (C1,C2) is valid with respect to S
if and only if there exists a scalar k
such that C1 = C′1

k and C2 = C′2
k :

e
(
C1,C′2

) ?
= e

(
C′1,C2

)
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Our Construction: Security Result

Theorem

Adv(T ,n,m, t , `,0) ≤ 2 · Advmse−ddh(T ′, `,m, t).

(`,m, t)-Multi-Sequence of Exponents DDH

Let f and g be two random coprime polynomials, of respective
orders ` and m, with pairwise distinct roots x1, . . . , x` and
y1, . . . , ym respectively, as well as

x1, . . . , x`, y1, . . . , ym

g,gγ , . . . ,gγ
`+t−2

, gk ·γ·f (γ),
gα,gα·γ , . . . ,gα·γ`+t

,

h,hγ , . . . ,hγ
m−2

,

hα,hα·γ , . . . ,hα·γ2m−1
, hk ·g(γ), and T ∈ GT ,

decide whether T is equal to e (g,h)k ·f (γ) or not
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Our Construction: Security Result

Lemma (Generic Security [Boneh, Boyen, Goh – Eurocrypt ’05])
For any probabilistic algorithm A that makes at most q queries
to the group oracles, with d = 4(`+ t) + 6m + 2

Advmse−ddh(A, `,m, t) ≤ (q + 4(`+ t) + 6m + 4)2 · d
2p

Theorem (Generic Security)
Our construction is secure

against non-adaptive and generic adversaries
under non-adaptive corruption

and chosen-plaintext attacks
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Our Construction: Efficiency

Ciphertext Size

Ciphertext: C1 = u−k ,C2 = hk ·α·∏xi∈S(γ+xi )·
∏

x∈Dm+t−s−1
(γ+x)

The header has a constant size: two group elements

Decryption

Given HDR = (C1,C2) and usk = g
1
γ+x , σ = e (usk,C2).

The user decryption is quite efficient: one pairing

Non-Interactive Combination

K =
(

e
(

C1,hp(γ)
)
· Aggregate(v ,Σ)

) 1
c

The combination step does not need any interaction
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Extensions: Random Oracle Model

All the previous properties are achieved in the standard model
(under the MSE−DDH assumption)

Robustness
Easily achieved in the random oracle model, using Schnorr-like
proof of equality of discrete logarithms

Identity-Based
It is simple to get an ID-based version in the random oracle
model, by simply taking upk = x = H(ID)
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Conclusion

Security model for (dynamic) threshold public-key
encryption (a.k.a. threshold broadcast encryption)
Efficient and provably secure candidate

the first with constant-size header

But still a lot of work on this topic:
Use of a new non-standard assumption
Secure against restricted adversaries only:

Chosen-plaintext attacks
Non-adaptive adversaries


