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LATTICE-BASED CRYPTANALYSIS

» Lattice algorithms have been used to break many cryptosystems,
including:

> Special settings of RSA: small roots of polynomial equations
[Cop96]

» ROCA [NSSKM17]: Factor N=pq when p is a power of
65537 modulo many small primes.

ROCA Attack

> Special settings of Discrete Log: small roots of linear
congruences

» Attacking DSA /ECDSA with hints on nonces, such as in
Bitcoin/TLS/SSH.



e Wiener’s Attack

e Small-Roots Attack
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REMEMBER RSA

* N=pq product of two large random primes.

* ed=1 (mod ¢(N)) where G(N)=(p-1)(g-1)
> e is the public exponent

> d is the secret exponent

e Then m—me is a trapdoor one-way permutation over Z/NZ,
whose inverse is c—cd.



SHORT-SECRET RSA

 To speed-up RSA secret operations, we want to select a short d.

» Assume d « N

» Can we recover d from (e,N)?

> ed = 1+kdp(N) where d(N)=(p-1)(g-1)=N+O('N)

> So, k=0O(d) and ed=kN, namely ed-kN=O(dvN).



LATTICES AND SHORT-SECRET RSA

* Consider the 2-dim lattice L spanned by:

* [t contains the vector t=dx(1st row)-kx(2nd row).



LATTICES AND SHORT-SECRET RSA

 How short is t=dx(1st row)-kx(2nd row)?

» [ts 1st coordinate is ed-kIN=O(dvN).
> [ts 2nd coordinate is dvVN.

* So | [t [=O(dvN).

 This is unusually short if | [t| | <vol(L)1/2=N3/4i.e. d<O(N1/4),
then t is “likely” to be a shortest vector of L.



LATTICE ATTACK ON SHORT-SECRET RSA

« Compute a shortest vector of the 2-dim lattice L:

> This only takes polynomial-time, less than 1s for 2048-bit RSA.

e Ifitis £t recover (k,d): how?

e Check that (k,d) is correct: how?



LATTICE ATTACK ON SHORT-SECRET RSA

o Ifitis+t, recover (k,d): how?

> Divide the 2nd coordinate by vIN.

e Check that (k,d) is correct: how?
> ed-kN=1-k(p+g-1).
> Derive p+q.

> Recover p and q by solving X2-(p+q)X+N=0.



WIENER'S ATTACK (1289)

» Using continued fractions instead of lattices,
Wiener showed:

Michael J. Wiener

* Theorem: If g<p<2q and 1<d<N1/4/3, one can recover p and q
in polynomial time from (N,e).

e [BonehDurfeel1999]: There is a heuristic (lattice) attack
recovering p and q in polynomial time from (N,e) if d<IN0-292...



SMALL-ROOTS
ATTACKS




BREAKING RSA WITHOUT FACTORING

* In 1996, Coppersmith showed how to solve two
problems in polynomial time using lattices:

Don Coppersmith

» Given a monic polynomial P in Z[X] and an integer N,
find all “small” integers x s.t. P(x)=0 (mod N).

» Given an irreducible polynomial P in Z[X,Y], find all
“small” integers x and y s.t. P(x,y) = 0.



APPLICATIONS TO RSA

 This and generalizations lead to breaking many special cases of
RSA

> When the secret exponent d is too small.
> When half of the bits of p are known.

> When the public exponent e is small, and only a fraction
of the plaintext is unknown.



STEREQTYPED ATTACK

» Assume that e=3, N is 2048-bit, and that we encrypt a 128-bit
AES key m by padding a known constant like « Today’s key
1S ».

» c=(m+b)e (mod N).

> What is the problem?



FACTORING WITH A HINT [COP96]

» N=pq where p=po+efor some small «.
* Let f(x)=po+x.
* Then gcd(f(e),N)=p is large.

» Can recover eand p if | el <N1/4



ANOTHER REAL-WORLD ATTACK

Raccvaring Private RSA Encryption Keys

e See ACM CCS’"17:

* The Return of Coppersmith’s Attack: Practical Factorization of

Widely Used RSA Moduli by Matus Nemec, Marek Sys,
Petr Svenda, Dusan Klinec, Vashek Matyas (Masaryk University).



IMPACT
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Secure browsing*
(TLS/HTTPS)

Trusted Platform Modules
(Data encryption,
Platform integrity)

Message protection

(S-MIME, PGP) Software signing

*only a small number of vulnerable keys found

e Ex: Estonia’s 750,000 ID cards.



IDENTIFYING RSA KEYS

» Svenda et al. analyzed 60 millions fresh keys produced by 22
libraries and 16 smartcards from 6 manufacturers.

* Most distributions of N=pq and /or p were different and could
be identified!



 If p and q are random primes, then (p-1)(g-1) may not be
coprime with e, and N=pq will not have a fixed bit-length.

» Each manufacturer/library typically has their own
distribution.

Library: Microsoft CryptoAPI Card: Infineon JTOP 80K
P ;




EX: INFINEON (infineon

* Infineon primes are « not random »

Random primes Infineon
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WHAT IS GOING ON?

o If p;is a small prime then p mod piis not uniform over {1,...,

pi-l}.

* It seems to be uniform over some small subgroup of (Z/piZ)*.



» Typically, one generates primes as:

> Repeat
> Generate a large random number p

» Until p is prime

* In practice, primality testing is a few modular exponentiations.
One can increase the probability by making p not divisible by
all small p;.



GENERATION (infineon

e The subgroup of (Z/piZ)* is the one generated by 65537.

* pand q are of the form:

> p=kM+(655372 mod M), where M is the product of the first n
primes: 2x3x9X...

> n depends on the size of N.

* Hence, N mod M is a power of 65537, which can easily be checked:
can we factor such N?



VALUES OF M

* M is the product of the first n primes.

Bit-length(N) Number of primes
512-960 39
992-1952 71

1984-3936 126

3968-4096 225



BREAKING INFINEON-RSA Cinfineon

+ p=kM+(655372 mod M)
* If one can guess the exponent a, then p mod M is known.

* From Coppersmith’s 1996 work: if M>N0.25, ]lattice attacks
recover p in poly-time from N.

N 912-bit  1024-bit  2048-bit  3072-bit  4096-hit

(log;M)/(logzN)  0.43 0.46 0.47 0.32 0.48



LATTICE ATTACKS

* If pmod M is known, one knows a linear polynomial
f(X)EZ[X] s.t. gcd(f(x0),N)=p is large, where Xo is a small
integer: it is small if M is large.

 This can be solved by lattice techniques [Cop1996].



THE TRICK

* Guessing a depends on the order of 65537 in (Z/MZ)*, which
might be as big as M>N04: exhaustive search too expensive!

* However, no need to take M: take any divisor M" of M s.t.
M’>=N1/4 and the order of 65537 in (Z/M’Z)* is small.

o Ex: 20-bit order for 512-bit N, 30-bit order for 1024-bit.



EXPLANATION

* M is the product of the first n primes pi.

We search for a subset I of {1,...,n} s.t. M’ = H 22

el

> M'>N1/4

» ord,(65537) = lcm, Iordpi(65537) is minimized

» The underlying optimization problem is NP hard, but we
just need to find a solution.



IMPLEMENTATION

* Non-increasing
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FINDING SMALL ROOTS OF POLYNOMIAL EQUATIONS USING LLL

Recall that using € = 1/4, given as input a basis of an integer lattice L of rank d, the LLL algorithm
outputs in polynomial time a non-zero vector # € L such that ||| < 2@=1D/4yol(L)1/4.

1. Coppersmith’s Theorem. (k)

Let P(x) € Z[z] be a monic polynomial of degree § : the coefficient of its z° monomial is 1. Let N

be a positive integer, whose factorization is unknown. We say that Q(x) € Q[z] is (N, P)-good if for
every integer xy € Z such that P(zy) = 0 (mod N), we have Q(z,) € Z. If Q(z) = Zf:o g;z' € Q[z],

we define ||Q| = (3_,_, ¢2)'"*. Let X > 0.

1. Assume that Q(z) € Q[x] is (N, P)-good and that ||Q(zX)| < 1/v/n+1
where n s the degree of (). Show that if P(xq) = 0 (mod N) and |zg| < X,
then Q(xzy) = 0.

2. For any integers u,v > 0, define Q,(x) = z“(P(x)/N)". Show that any
integral linear combinations of polynomials Q. (z) s (N, P)-good.



3. Given as input N and P(z), show that one can find in polynomial time a
non-zero (N, P)-good polynomial Q(z) € Q|z| such that Q(x) is an integral
linear combination of Qoo(x), Qro(z),...,Qs_10(z), Qo1(x) and

||Q(’I"X)|| < 25/4)(6/21,\.*—1/(5—!—1).

4. Deduce Hastad’s theorem : one can find in polynomial time all the integers
1o € Z such that |z < N¥OC+HV) and P(xy) = 0 (mod N).



Using the polynomials Q, ,(z) where 0 < u < §—1and 0 < v < h for
some well-chosen integer h, show Coppersmith’s theorem : one can find in

-
polynomial time all the integers o € Z such that |zo| < NY° and P(xz)

J.

0 (mod N).

6. What can we do if P(x) is not monic ¢
7. If we want to find all roots zo such that |zg| < C x N/ for some C > 1,

what can we do ?



2. The GCD generalization. (% * *)

We take the same notation. Let & € Q such that 0 < a < 1. We want to find all zy € Z such that
ged(P(xg), N) > N©.

1. Consider an integral linear combination Q(x) € Qx| of the hd polynomials
Qup(x) where 0 <u < d—1 and 0 < v < h for some well-chosen integer h.

Show that if zg € Z and ged(P(xy), N) > N© then the rational Q(xy) has a
denominator < N1—ah,

2. Deduce that one can find in polynomial time all the integers xq € Z such that
ged(P(zg), N) > N° and |xy| < N/,



