
APPLICATIONS OF LLL:
BREAKING

REAL-WORLD RSA
PHONG NGUYEN

http://www.di.ens.fr/~pnguyen

November 2024

http://www.di.ens.fr/~pnguyen

LATTICE-BASED CRYPTANALYSIS

➤ Lattice algorithms have been used to break many cryptosystems,
including:
➤ Special settings of RSA: small roots of polynomial equations

[Cop96]
➤ ROCA [NSSKM17]: Factor N=pq when p is a power of

65537 modulo many small primes.

➤ Special settings of Discrete Log: small roots of linear
congruences
➤ Attacking DSA/ECDSA with hints on nonces, such as in

Bitcoin/TLS/SSH.

TODAY

• Wiener’s Attack

• Small-Roots Attack

WIENER’S
ATTACK

• N=pq product of two large random primes.

REMEMBER RSA

• ed≡1 (mod φ(N)) where φ(N)=(p-1)(q-1)
➤ e is the public exponent

➤ d is the secret exponent

• Then m→me is a trapdoor one-way permutation over Z/NZ,
whose inverse is c→cd.

SHORT-SECRET RSA

• To speed-up RSA secret operations, we want to select a short d.

➤ Assume d ≪ N
➤ Can we recover d from (e,N)?

➤ ed = 1+kφ(N) where φ(N)=(p-1)(q-1)=N+O(√N)

➤ So, k=O(d) and ed≈kN, namely ed-kN=O(d√N).

LATTICES AND SHORT-SECRET RSA

• It contains the vector t=dx(1st row)-kx(2nd row).

• Consider the 2-dim lattice L spanned by:

e √N

N 0

LATTICES AND SHORT-SECRET RSA

• How short is t=dx(1st row)-kx(2nd row)?

• So ||t||=O(d√N).

• This is unusually short if ||t||≤vol(L)1/2=N3/4 i.e. d≤O(N1/4),
then t is ``likely’’ to be a shortest vector of L.

➤ Its 1st coordinate is ed-kN=O(d√N).
➤ Its 2nd coordinate is d√N.

LATTICE ATTACK ON SHORT-SECRET RSA

• Compute a shortest vector of the 2-dim lattice L:

• If it is ±t, recover (k,d): how?

• Check that (k,d) is correct: how?

➤ This only takes polynomial-time, less than 1s for 2048-bit RSA.

LATTICE ATTACK ON SHORT-SECRET RSA

• If it is ±t, recover (k,d): how?

➤ Divide the 2nd coordinate by √N.

• Check that (k,d) is correct: how?

➤ ed-kN=1-k(p+q-1).

➤ Derive p+q.

➤ Recover p and q by solving X2-(p+q)X+N=0.

WIENER’S ATTACK (1989)

• Theorem: If q<p<2q and 1≤d≤N1/4/3, one can recover p and q
in polynomial time from (N,e).

• Using continued fractions instead of lattices,
Wiener showed:

Michael J. Wiener

• [BonehDurfee1999]: There is a heuristic (lattice) attack
recovering p and q in polynomial time from (N,e) if d≤N0.292…

SMALL-ROOTS
ATTACKS

BREAKING RSA WITHOUT FACTORING

➤ Given a monic polynomial P in Z[X] and an integer N,
find all “small” integers x s.t. P(x)≡0 (mod N).

➤ Given an irreducible polynomial P in Z[X,Y], find all
“small” integers x and y s.t. P(x,y) = 0.

• In 1996, Coppersmith showed how to solve two
problems in polynomial time using lattices:

Don Coppersmith

APPLICATIONS TO RSA

• This and generalizations lead to breaking many special cases of
RSA

➤ When the secret exponent d is too small.

➤ When half of the bits of p are known.

➤ When the public exponent e is small, and only a fraction
of the plaintext is unknown.

STEREOTYPED ATTACK

• Assume that e=3, N is 2048-bit, and that we encrypt a 128-bit
AES key m by padding a known constant like « Today’s key
is ».

➤ c=(m+b)e (mod N).

➤ What is the problem?

FACTORING WITH A HINT [COP96]

• N=pq where p=p0+εfor some small ε.

• Let f(x)=p0+x.

• Then gcd(f(ε),N)=p is large.

• Can recover εand p if |ε|≤N1/4

ANOTHER REAL-WORLD ATTACK

• Attack on Infineon RSA keys.

• See ACM CCS ’17:

• The Return of Coppersmith’s Attack: Practical Factorization of
Widely Used RSA Moduli by Matus Nemec, Marek Sys,
Petr Svenda, Dusan Klinec, Vashek Matyas (Masaryk University).

IMPACT

• Ex: Estonia’s 750,000 ID cards.

IDENTIFYING RSA KEYS

• Svenda et al. analyzed 60 millions fresh keys produced by 22
libraries and 16 smartcards from 6 manufacturers.

• Most distributions of N=pq and/or p were different and could
be identified!

WHY?

• If p and q are random primes, then (p-1)(q-1) may not be
coprime with e, and N=pq will not have a fixed bit-length.

• Each manufacturer/library typically has their own
distribution.

EX: INFINEON

• Infineon primes are « not random »

WHAT IS GOING ON?

• If pi is a small prime then p mod pi is not uniform over {1,…,
pi-1}.

• It seems to be uniform over some small subgroup of (Z/piZ)*.

WHY?

• Typically, one generates primes as:

➤ Repeat

➤ Until p is prime

➤ Generate a large random number p

• In practice, primality testing is a few modular exponentiations.
One can increase the probability by making p not divisible by
all small pi.

 GENERATION

• The subgroup of (Z/piZ)* is the one generated by 65537.

➤ p=kM+(65537a mod M), where M is the product of the first n
primes: 2x3x5x…

➤ n depends on the size of N.

• p and q are of the form:

• Hence, N mod M is a power of 65537, which can easily be checked:
can we factor such N?

VALUES OF M

• M is the product of the first n primes.

Bit-length(N) Number of primes

512-960 39

992-1952 71

1984-3936 126

3968-4096 225

BREAKING INFINEON-RSA

• p=kM+(65537a mod M)

• If one can guess the exponent a, then p mod M is known.

• From Coppersmith’s 1996 work: if M≥N0.25, lattice attacks
recover p in poly-time from N.

N 512-bit 1024-bit 2048-bit 3072-bit 4096-bit

(log2 M)/(log2 N) 0.43 0.46 0.47 0.32 0.48

LATTICE ATTACKS

• If p mod M is known, one knows a linear polynomial
f(X)∈Z[X] s.t. gcd(f(x0),N)=p is large, where x0 is a small
integer: it is small if M is large.

• This can be solved by lattice techniques [Cop1996].

THE TRICK

• Guessing a depends on the order of 65537 in (Z/MZ)*, which
might be as big as M≥N0.4: exhaustive search too expensive!

• However, no need to take M: take any divisor M’ of M s.t.
M’≥N1/4 and the order of 65537 in (Z/M’Z)* is small.

• Ex: 20-bit order for 512-bit N, 30-bit order for 1024-bit.

EXPLANATION

• M is the product of the first n primes pi.

•
We search for a subset I of {1,…,n} s.t. M′ = ∏

i∈I

pi

➤ M’≥N1/4

➤ is minimizedordM′
(65537) = lcmi∈Iordpi

(65537)

➤ The underlying optimization problem is NP hard, but we
just need to find a solution.

IMPLEMENTATION

• Non-increasing

