APPLICATIONS OF LLL: BREAKING REAL-WORLD RSA **PHONG NGUYEN**

http://www.di.ens.fr/~pnguyen

November 2024

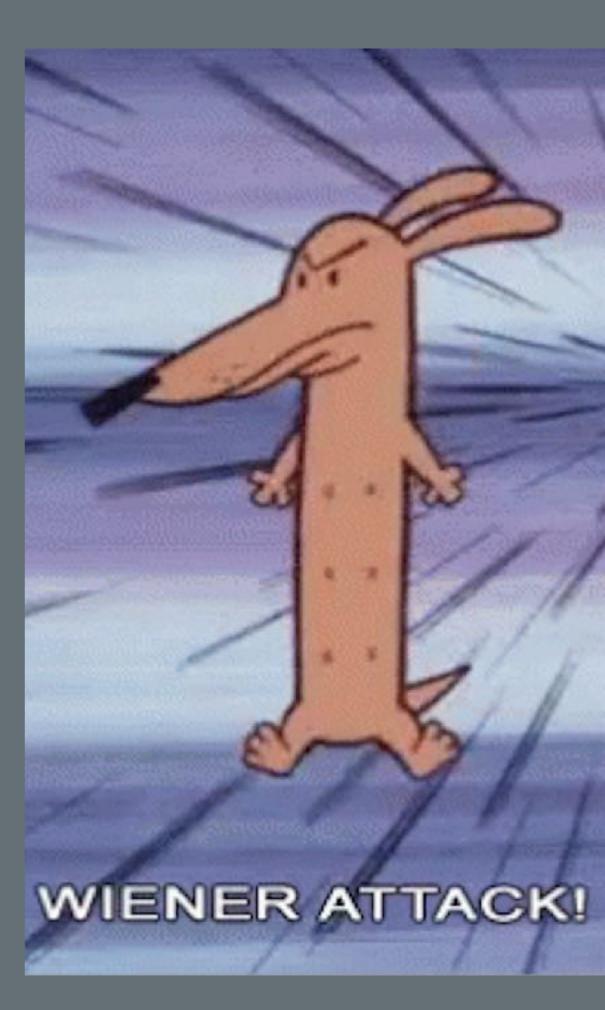
- Lattice algorithms have been used to break many cryptosystems, including:
 - Special settings of RSA: small roots of polynomial equations [Cop96]
 - ROCA [NSSKM17]: Factor N=pq when p is a power of 65537 modulo many small primes.
 ROCA Attack

- Special settings of Discrete Log: small roots of linear congruences
 - Attacking DSA/ECDSA with hints on nonces, such as in Bitcoin/TLS/SSH.

TODAY

- Wiener's Attack
- Small-Roots Attack

WENER'S ATACK



REMEMBER RSA

- N=pq product of two large random primes.
- $ed \equiv 1 \pmod{\phi(N)}$ where $\phi(N) = (p-1)(q-1)$
 - ► e is the public exponent
 - ► d is the secret exponent
- Then $m \rightarrow m^e$ is a trapdoor one-way permutation over Z/NZ, whose inverse is $c \rightarrow c^d$.

SHORT-SECRET RSA

- To speed-up RSA secret operations, we want to select a short **d**.
 - ► Assume $\mathbf{d} \ll \mathbf{N}$

➤ Can we recover **d** from (e,N)?

- ► $ed = 1 + k\varphi(N)$ where $\varphi(N) = (p-1)(q-1) = N + O(\sqrt{N})$
- ► So, k=O(d) and $ed \approx kN$, namely $ed-kN=O(d\sqrt{N})$.

LATTICES AND SHORT-SECRET RSA

• Consider the 2-dim lattice L spanned by:

e	√N		
N	0		

• It contains the vector t=dx(1st row)-kx(2nd row).

LATTICES AND SHORT-SECRET RSA

- How short is **t**=**d**x(1st row)-**k**x(2nd row)?
 - ► Its 1st coordinate is $ed-kN=O(d\sqrt{N})$.
 - ► Its 2nd coordinate is $d\sqrt{N}$.
- So $||t|| = O(d\sqrt{N}).$

• This is unusually short if $||t|| \le vol(L)^{1/2} = N^{3/4}$ i.e. $d \le O(N^{1/4})$, then t is ``likely'' to be a shortest vector of L.

LATTICE ATTACK ON SHORT-SECRET RSA

- Compute a shortest vector of the 2-dim lattice L:
- ► This only takes polynomial-time, less than 1s for 2048-bit RSA.

- If it is ±t, recover (k,d): how?
- Check that (**k**,**d**) is correct: how?

LATTICE ATTACK ON SHORT-SECRET RSA

- If it is ±t, recover (k,d): how?
 - > Divide the 2nd coordinate by \sqrt{N} .

- Check that (k,d) is correct: how?
 - ► ed-kN=1-k(p+q-1).
 - ► Derive p+q.
 - Recover **p** and **q** by solving $X^2-(p+q)X+N=0$.

WIENER'S ATTACK (1989)

• Using continued fractions instead of lattices, Wiener showed:

Michael J. Wiener

• Theorem: If $q and <math>1 \le d \le N^{1/4}/3$, one can recover p and q in polynomial time from (N,e).

• [BonehDurfee1999]: There is a heuristic (lattice) attack recovering p and q in polynomial time from (N,e) if $d \le N^{0.292...}$

SMALL-ROOTS ATTACKS

BREAKING RSA WITHOUT FACTORING

• In 1996, Coppersmith showed how to solve two problems in polynomial time using lattices:

Don Coppersmith

- ➤ Given a monic polynomial P in Z[X] and an integer N, find all "small" integers x s.t. P(x)=0 (mod N).
- Given an irreducible polynomial P in Z[X,Y], find all "small" integers x and y s.t. P(x,y) = 0.

APPLICATIONS TO RSA

- This and generalizations lead to breaking many special cases of RSA
 - ► When the secret exponent **d** is too small.
 - ► When half of the bits of **p** are known.
 - When the public exponent e is small, and only a fraction of the plaintext is unknown.

STEREOTYPED ATTACK

- Assume that e=3, N is 2048-bit, and that we encrypt a 128-bit AES key m by padding a known constant like « Today's key is ».
 - ► $c=(m+b)^e \pmod{N}$.
 - ► What is the problem?

FACTORING WITH A HINT [COP96]

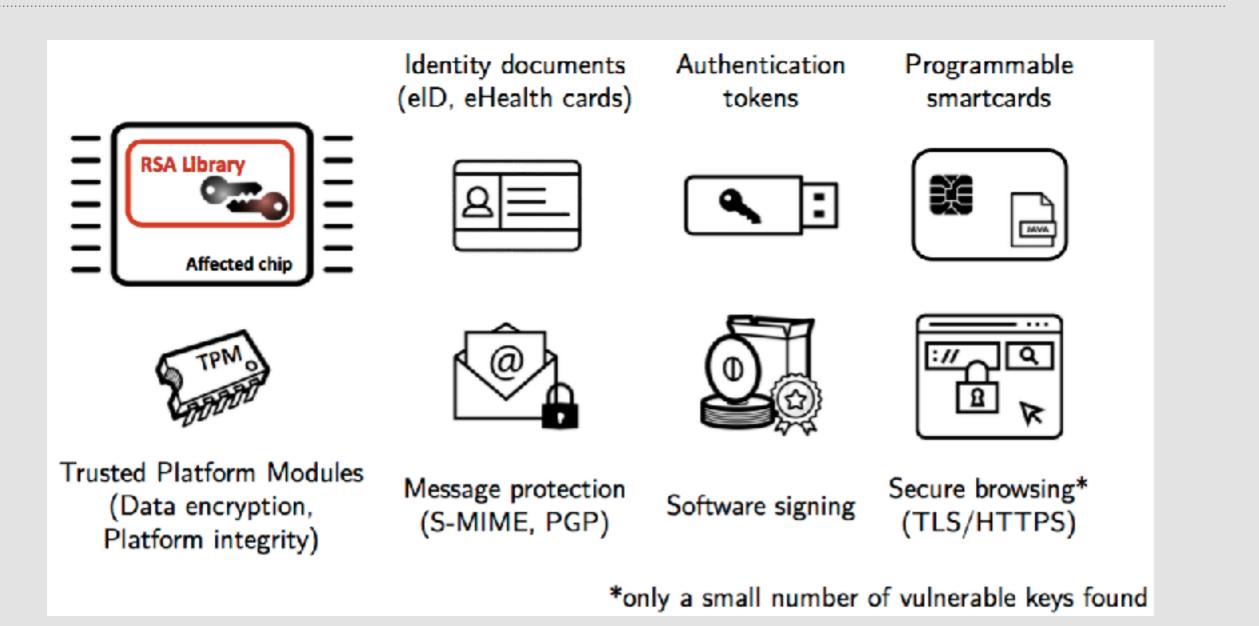
- N=pq where $p=p_0+\epsilon$ for some small ϵ .
- Let $f(x) = p_0 + x$.
- Then $gcd(f(\varepsilon),N)=p$ is large.
- Can recover ε and p if $|\varepsilon| \le N^{1/4}$

ANOTHER REAL-WORLD ATTACK

• Attack on Infineon RSA keys.

- See ACM CCS '17:
- The Return of Coppersmith's Attack: Practical Factorization of Widely Used RSA Moduli by Matus Nemec, Marek Sys, Petr Svenda, Dusan Klinec, Vashek Matyas (Masaryk University).

IMPACT



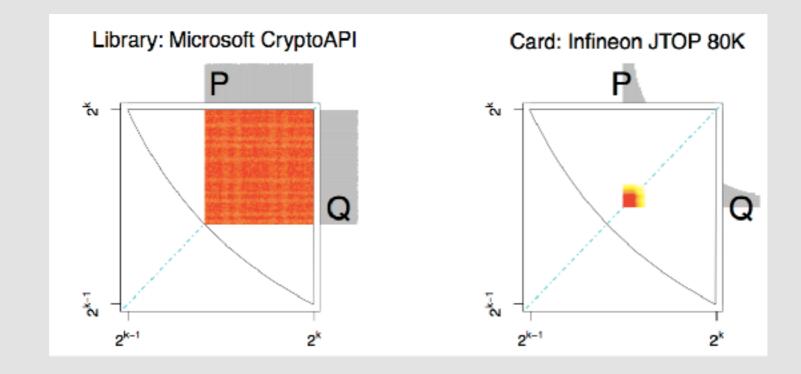
• Ex: Estonia's 750,000 ID cards.

IDENTIFYING RSA KEYS

• Svenda et al. analyzed 60 millions fresh keys produced by 22 libraries and 16 smartcards from 6 manufacturers.

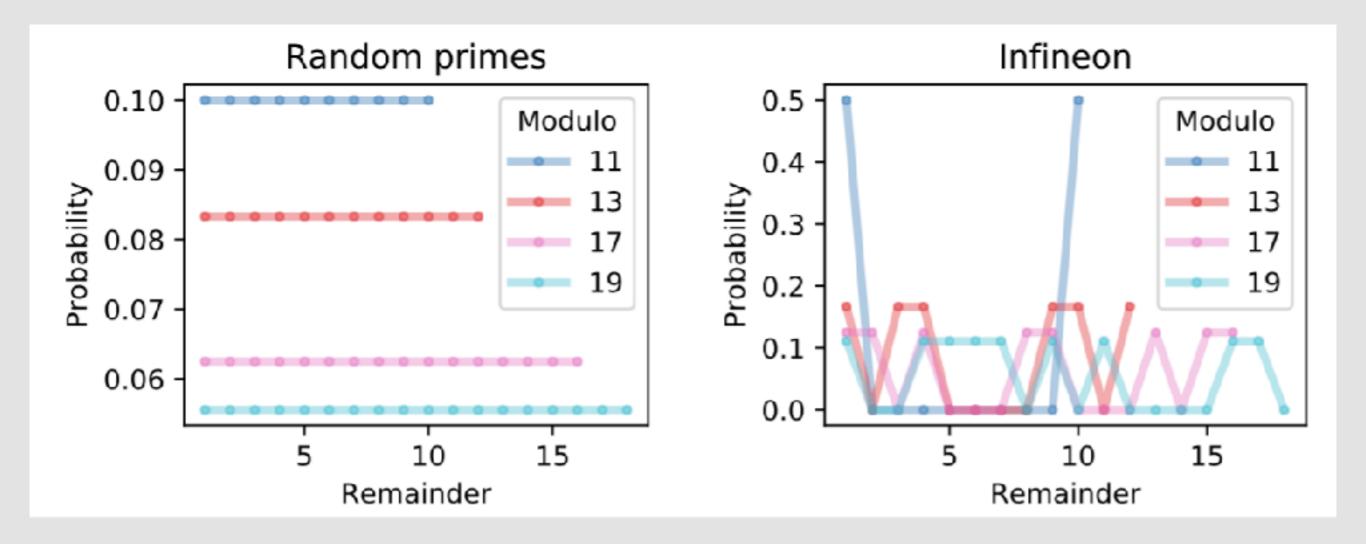
 Most distributions of N=pq and / or p were different and could be identified!

- If **p** and **q** are random primes, then (**p**-1)(**q**-1) may not be coprime with e, and N=**pq** will not have a fixed bit-length.
- Each manufacturer/library typically has their own distribution.



EX: INFINEON

• Infineon primes are « not random »



 If p_i is a small prime then p mod p_i is not uniform over {1,..., p_i-1}.

- It seems to be uniform over some small subgroup of $(\mathbf{Z}/p_i\mathbf{Z})^*$.

- Typically, one generates primes as:
 - ► Repeat

Generate a large random number p

- ► Until **p** is prime
- In practice, primality testing is a few modular exponentiations.
 One can increase the probability by making p not divisible by all small p_i.

- The subgroup of $(\mathbf{Z}/p_i\mathbf{Z})^*$ is the one generated by 65537.
- **p** and **q** are of the form:
 - ▶ p=kM+(65537^a mod M), where M is the product of the first n primes: 2x3x5x...
 - ► n depends on the size of N.

• Hence, N mod M is a power of 65537, which can easily be checked: can we factor such N?

VALUES OF M

• M is the product of the first n primes.

Bit-length(N)	Number of primes		
512-960	39		
992-1952	71		
1984-3936	126		
3968-4096	225		

- $p=kM+(65537a \mod M)$
- If one can guess the exponent **a**, then **p** mod M is known.
- From Coppersmith's 1996 work: if M≥N^{0.25}, lattice attacks recover p in poly-time from N.

N	512-bit	1024-bit	2048-bit	3072-bit	4096-bit
(log ₂ M)/(log ₂ N)	0.43	0.46	0.47	0.32	0.48

LATTICE ATTACKS

- If p mod M is known, one knows a linear polynomial f(X)∈Z[X] s.t. gcd(f(x₀),N)=p is large, where x₀ is a small integer: it is small if M is large.
- This can be solved by lattice techniques [Cop1996].

• Guessing a depends on the order of 65537 in $(Z/MZ)^*$, which might be as big as M \ge N^{0.4}: exhaustive search too expensive!

• However, no need to take M: take any divisor M' of M s.t. $M' \ge N^{1/4}$ and the order of 65537 in $(Z/M'Z)^*$ is small.

• Ex: 20-bit order for 512-bit N, 30-bit order for 1024-bit.

EXPLANATION

• M is the product of the first n primes p_i.

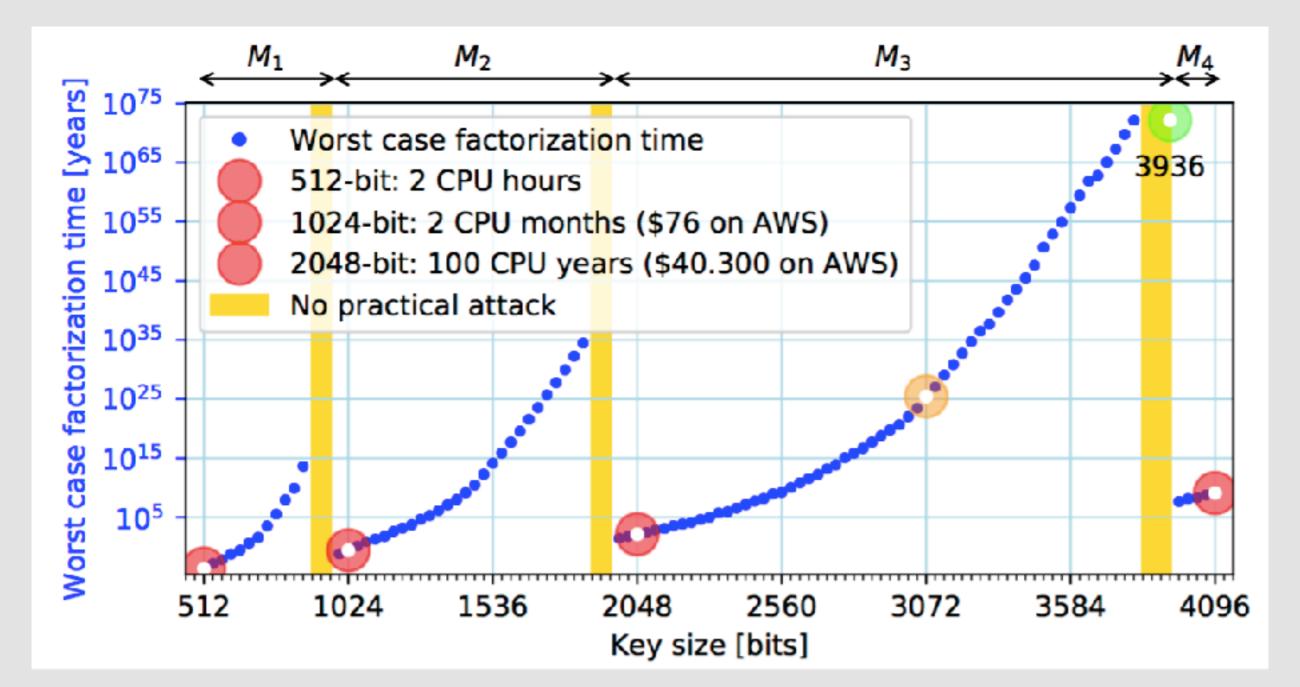
We search for a subset I of {1,...,n} s.t.
$$M' = \prod_{i \in I} p_i$$

\blacktriangleright M' \ge N^{1/4}

- ► $\operatorname{ord}_{M'}(65537) = \operatorname{lcm}_{i \in I} \operatorname{ord}_{p_i}(65537)$ is minimized
- The underlying optimization problem is NP hard, but we just need to find a solution.

IMPLEMENTATION

Non-increasing



FINDING SMALL ROOTS OF POLYNOMIAL EQUATIONS USING LLL

Recall that using $\varepsilon = 1/4$, given as input a basis of an integer lattice L of rank d, the LLL algorithm outputs in polynomial time a non-zero vector $\vec{u} \in L$ such that $\|\vec{u}\| \leq 2^{(d-1)/4} \operatorname{vol}(L)^{1/d}$.

1. Coppersmith's Theorem.

Let $P(x) \in \mathbb{Z}[x]$ be a monic polynomial of degree δ : the coefficient of its x^{δ} monomial is 1. Let N be a positive integer, whose factorization is unknown. We say that $Q(x) \in \mathbb{Q}[x]$ is (N, P)-good if for every integer $x_0 \in \mathbb{Z}$ such that $P(x_0) \equiv 0 \pmod{N}$, we have $Q(x_0) \in \mathbb{Z}$. If $Q(x) = \sum_{i=0}^{d} q_i x^i \in \mathbb{Q}[x]$, we define $||Q|| = (\sum_{i=0}^{d} q_i^2)^{1/2}$. Let X > 0.

- 1. Assume that $Q(x) \in \mathbb{Q}[x]$ is (N, P)-good and that $||Q(xX)|| < 1/\sqrt{n+1}$ where n is the degree of Q. Show that if $P(x_0) \equiv 0 \pmod{N}$ and $|x_0| \leq X$, then $Q(x_0) = 0$.
- 2. For any integers $u, v \ge 0$, define $Q_{u,v}(x) = x^u (P(x)/N)^v$. Show that any integral linear combinations of polynomials $Q_{u,v}(x)$ is (N, P)-good.

3. Given as input N and P(x), show that one can find in polynomial time a non-zero (N, P)-good polynomial $Q(x) \in \mathbb{Q}[x]$ such that Q(x) is an integral linear combination of $Q_{0,0}(x), Q_{1,0}(x), \ldots, Q_{\delta-1,0}(x), Q_{0,1}(x)$ and

 $||Q(xX)|| \le 2^{\delta/4} X^{\delta/2} N^{-1/(\delta+1)}.$

4. Deduce Håstad's theorem : one can find in polynomial time all the integers $x_0 \in \mathbb{Z}$ such that $|x_0| \leq N^{2/(\delta(\delta+1))}$ and $P(x_0) \equiv 0 \pmod{N}$.

- Using the polynomials Q_{u,v}(x) where 0 ≤ u ≤ δ − 1 and 0 ≤ v ≤ h for some well-chosen integer h, show Coppersmith's theorem : one can find in polynomial time all the integers x₀ ∈ Z such that |x₀| ≤ N^{1/δ} and P(x₀) ≡ 0 (mod N).
- 6. What can we do if P(x) is not monic?
- 7. If we want to find all roots x_0 such that $|x_0| \leq C \times N^{1/\delta}$ for some C > 1, what can we do?

2. The GCD generalization.

(* * *)

We take the same notation. Let $\alpha \in \mathbb{Q}$ such that $0 < \alpha \leq 1$. We want to find all $x_0 \in \mathbb{Z}$ such that $gcd(P(x_0), N) \geq N^{\alpha}$.

- 1. Consider an integral linear combination $Q(x) \in \mathbb{Q}[x]$ of the h δ polynomials $Q_{u,v}(x)$ where $0 \leq u \leq \delta 1$ and $0 \leq v \leq h$ for some well-chosen integer h. Show that if $x_0 \in \mathbb{Z}$ and $gcd(P(x_0), N) \geq N^{\alpha}$ then the rational $Q(x_0)$ has a denominator $\leq N^{(1-\alpha)h}$.
- 2. Deduce that one can find in polynomial time all the integers $x_0 \in \mathbb{Z}$ such that $gcd(P(x_0), N) \geq N^{\alpha}$ and $|x_0| \leq N^{\alpha^2/\delta}$.