Sieving:
Finding Short
Lattice Vectors using Space
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Provable vs Heuristic
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o Sieving comes in two flavours:

o Provable algorithm with rigorous
analysis

o Heuristic algorithm where not much
IS known. These have the best
claimed running times.
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Practical Sieves
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o Sieve algorithms were believed to be
impractical until [NgViO8]: « Sieve
algorithms for the shortest vector
problem are practical ».
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£ Intuition
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o You have a huge number m of lattice
vectors vi,...,.Vm inside the ball of radius R

o Can you transform these vectors to
decrease R?
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o For any R'<R, there exists a subset C
of V={vi} such that the sets
Ball(c,R)nV form a partition of V:

o Each vi belongs to some Ball(c,R")
where ceC.

o The balls Ball(c,R) do not overlap
when ¢ ranges over C.
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= Generic Sieve
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o Generate exponen’rlally many Ia’r’rlce
vectors vi,...,vm inside the ball of radius R.
Choose ¢ >O0.

o While no v; is short enough
o Compute all the pairs vi-vj whose norm
< (1- € )R.

o Replace the vis by these pairs, and
update R



Optimizations
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o [NgVi08] heuristically estimates that
approximately m=(4/3)"2 vectors are
required in practice.

o A naive sieve [NgViO8] runs in time
quadratic in m.

o In the past five years, several methods
based on nearest neighbor search do it in
subquadratic time.



| © Space level = logz #bits

5 [NgVi08] estimate =A4/3)"2 vectors
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20 Sieving requires exponential space
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Provable Sieves
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o [AKSO1]: One can solve SVP in randomnzed
time and space 29,

o [Sc03] claimed that O(n) > 30n.

o [NgViO8]: [AKSO1] can run in time 2°°" and
SPGCQ 22.95n

o [MiVol0]: SVP can be solved in deterministic
time 4" and space 2".

o [ADRSI5]: 2"-Time/Space algorithm.



Gaussian Samphng [ADRSIS]
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o Th: One can output 2"2 random
lattice points from any discrete

Gaussian distribution in time/space
2n+o(n).

o The algorithm is somewhat
simpler than AKS, and can be
viewed as a randomized version
of Mordells algorithm.
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£ Structure
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o It can be viewed is a sieve algorithm.

o Sample Gaussian lattice points where
the s parameter gets smaller and
smaller.



The Key Lemma
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oLemma: Let L be a lattice. If u and v
chosen from the discrete Gaussian
distribution over (L/2,s), then u+v
conditioned over u+vel has discrete

Gaussian distribution over (L,s+/2).

o Proof: Simple calculations.



Remark
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oIt is normal that |’r works for s beyond
the smoothing parameter: for such s,
discrete Gaussians behave like continuous
Gaussians.

o u+Vv has discrete Gaussian distribution
over (L/2,5+/2) [MP13].

o Then conditioned over u+veL, it

becomes the discrete Gaussian
distribution over (L,s+/2)



Remark
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o What is surprising is that it works for
arbitrary s.

o If we restrict s to beyond the
smoothing parameter, then it works for
any overlattice, not just L/2.

o But without restriction, only L/2 seems
to work!



Overview
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olLet L=2"'L and G=(Z/2Z)" then L/L = G.

o Suppose Yyou can generate Gaussian samples over
(L,s). Then you can generate samples over (L,s/2).

o Keep generating samples u and v over (L,s/2)
until u+vel. Then this u+v has discrete Gaussian

distribution over (L,s/+/2).
o Then s has been reduced by /2!
o [ADRSI15] makes this much more efficient.



