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Provable vs Heuristic

Sieving comes in two flavours:

Provable algorithm with rigorous 
analysis

Heuristic algorithm where not much 
is known. These have the best 
claimed running times.



Practical Sieves



Practical Sieves

Sieve algorithms were believed to be 
impractical until [NgVi08]: « Sieve 
algorithms for the shortest vector 
problem are practical ».



Intuition

You have a huge number m of lattice 
vectors v1,…,vm inside the ball of radius R

Can you transform these vectors to 
decrease R?



Insight

For any R’<R, there exists a subset C 
of V={vi} such that the sets 
Ball(c,R’)∩V form a partition of V:


Each vi belongs to some Ball(c,R’) 
where c∈C.

The balls Ball(c,R’) do not overlap 
when c ranges over C.



Generic Sieve

Generate exponentially many lattice 
vectors v1,…,vm inside the ball of radius R. 
Choose ε>0.


While no vi is short enough

Compute all the pairs vi-vj whose norm 
is ≤ (1-ε)R.


Replace the vi’s by these pairs, and 
update R



Optimizations

[NgVi08] heuristically estimates that 
approximately m=(4/3)n/2 vectors are 
required in practice.

A naive sieve [NgVi08] runs in time 
quadratic in m.

In the past five years, several methods 
based on nearest neighbor search do it in 
subquadratic time.



Space level = log2 #bits

Dimension

256 Gb

2048 Gb

[NgVi08] estimate = (4/3)n/2 vectors

New sieving records [ADHKPS18]

Sieving requires exponential space
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Provable Sieves

[AKS01]: One can solve SVP in randomized 
time and space 2O(n).

[Sc03] claimed that O(n) ≥ 30n.

[NgVi08]: [AKS01] can run in time 25.9n and 
space 22.95n 

[MiVo10]: SVP can be solved in deterministic 
time 4n and space 2n.

[ADRS15]: 2n-Time/Space algorithm.



Gaussian Sampling [ADRS15]

Th: One can output 2n/2 random 
lattice points from any discrete 
Gaussian distribution in time/space 
2n+o(n).


The algorithm is somewhat 
simpler than AKS, and can be 
viewed as a randomized version 
of Mordell’s algorithm.



Structure

It can be viewed is a sieve algorithm. 

Sample Gaussian lattice points where 
the s parameter gets smaller and 
smaller.



The Key Lemma

Lemma: Let L be a lattice. If u and v 
chosen from the discrete Gaussian 
distribution over (L/2,s), then u+v 
conditioned over u+v∈L has discrete 
Gaussian distribution over (L,s√2).

Proof: Simple calculations.



Remark
It is normal that it works for s beyond 
the smoothing parameter: for such s, 
discrete Gaussians behave like continuous 
Gaussians.


u+v has discrete Gaussian distribution 
over (L/2,s√2) [MP13].

Then conditioned over u+v∈L, it 
becomes the discrete Gaussian 
distribution over (L,s√2)



Remark

What is surprising is that it works for 
arbitrary s.


If we restrict s to beyond the 
smoothing parameter, then it works for 
any overlattice, not just L/2.

But without restriction, only L/2 seems 
to work!



Overview

Let Ḹ=2-1L and G=(Z/2Z)n then Ḹ/L ≃ G.

Suppose you can generate Gaussian samples over 
(L,s). Then you can generate samples over (Ḹ,s/2).

Keep generating samples u and v over (Ḹ,s/2) 
until u+v∈L. Then this u+v has discrete Gaussian 
distribution over (L,s/√2).


Then s has been reduced by √2!

[ADRS15] makes this much more efficient.


