Sieving: Finding Short Lattice Vectors using Space

Phong Nguyễn

Provable vs Heuristic

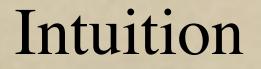
Sieving comes in two flavours:
 Provable algorithm with rigorous analysis

 Heuristic algorithm where not much is known. These have the best claimed running times.

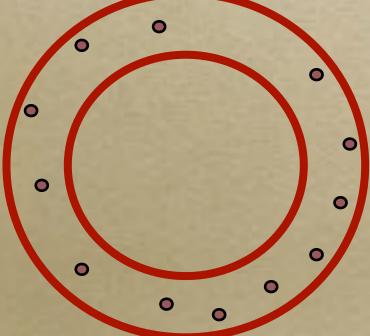
Practical Sieves

Practical Sieves

 Sieve algorithms were believed to be impractical until [NgVi08]: « Sieve algorithms for the shortest vector problem are practical ».



You have a huge number m of lattice vectors v₁,...,v_m inside the ball of radius R
Can you transform these vectors to decrease R?



Insight

For any R'<R, there exists a subset C of V={v_i} such that the sets Ball(c,R')∩V form a partition of V:
Each v_i belongs to some Ball(c,R') where c∈C.

 The balls Ball(c,R') do not overlap when c ranges over C.

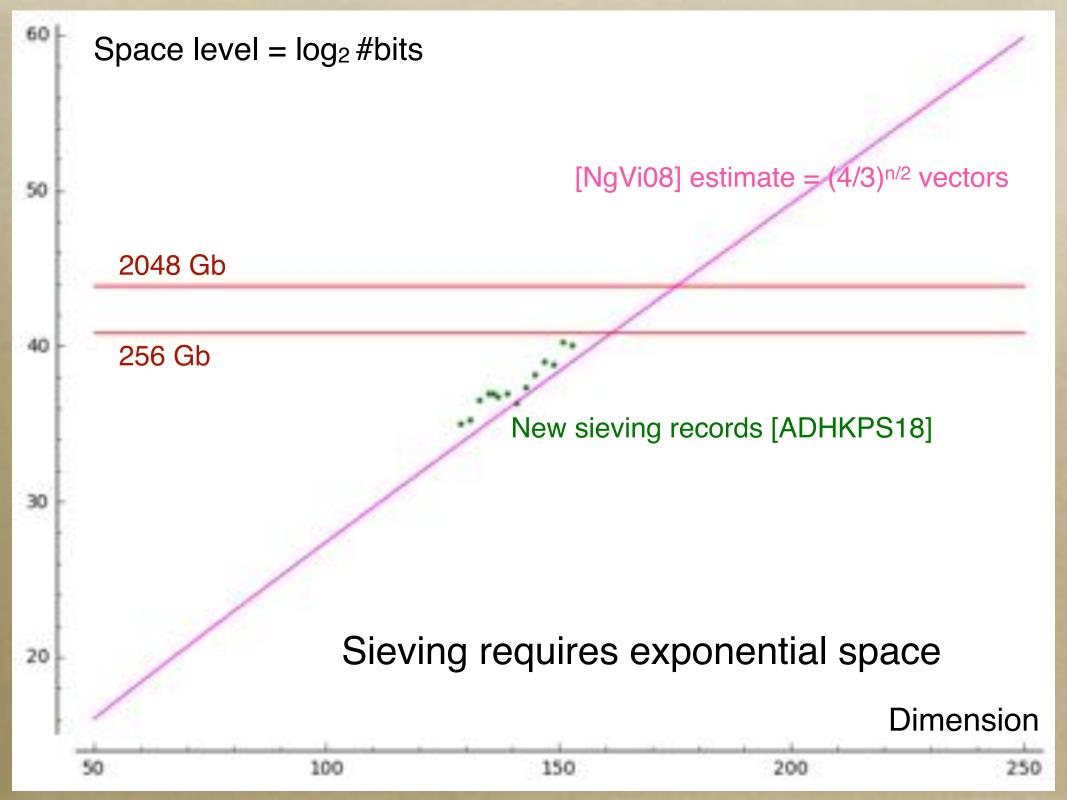
Generic Sieve

- Generate exponentially many lattice
 vectors v₁,...,v_m inside the ball of radius R.
 Choose ε >0.
- While no vi is short enough
 - Compute all the pairs $v_i v_j$ whose norm is $\leq (1 - \varepsilon)R$.
 - Replace the vis by these pairs, and update R

Optimizations

 [NgVi08] heuristically estimates that approximately m=(4/3)^{n/2} vectors are required in practice.

- A naive sieve [NgVi08] runs in time quadratic in m.
- In the past five years, several methods based on nearest neighbor search do it in subquadratic time.



Provable Sieves

Provable Sieves

- [AKS01]: One can solve SVP in randomized time and space 2^{O(n)}.
- \circ [ScO3] claimed that $O(n) \ge 30n$.
- [NgVi08]: [AKS01] can run in time 2^{5.9n} and space 2^{2.95n}
- [MiVo10]: SVP can be solved in deterministic time 4ⁿ and space 2ⁿ.
- [ADRS15]: 2ⁿ-Time/Space algorithm.

Gaussian Sampling [ADRS15]

 Th: One can output 2^{n/2} random lattice points from any discrete Gaussian distribution in time/space 2^{n+o(n)}.

 The algorithm is somewhat simpler than AKS, and can be viewed as a randomized version of Mordell's algorithm.

Structure

 It can be viewed is a sieve algorithm.
 Sample Gaussian lattice points where the s parameter gets smaller and smaller.

The Key Lemma

Lemma: Let L be a lattice. If u and v chosen from the discrete Gaussian distribution over (L/2,s), then u+v conditioned over u+v∈L has discrete Gaussian distribution over (L,s√2).
 Proof: Simple calculations.

Remark

- It is normal that it works for s beyond the smoothing parameter: for such s, discrete Gaussians behave like continuous Gaussians.
 - u+v has discrete Gaussian distribution
 over (L/2,s/2) [MP13].
 - Then conditioned over u+v∈L, it becomes the discrete Gaussian distribution over (L,s√2)

Remark

What is surprising is that it works for arbitrary s.

 If we restrict s to beyond the smoothing parameter, then it works for any overlattice, not just L/2.

 But without restriction, only L/2 seems to work!

Overview

• Let $\overline{L}=2^{-1}L$ and $G=(\mathbb{Z}/2\mathbb{Z})^n$ then $\overline{L}/L \simeq G$.

 Suppose you can generate Gaussian samples over (L,s). Then you can generate samples over (L̄,s/2).

 Keep generating samples u and v over (Ļ,s/2) until u+v∈L. Then this u+v has discrete Gaussian distribution over (L,s/√2).

○ Then s has been reduced by √2!
○ [ADRS15] makes this much more efficient.