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INSIGHT

e The most classical problem is to prove the existence of
short lattice vectors.

* All known upper bounds on Hermite’s constant have an
algorithmic analogue:

Hermite’s inequality:  The LLL Algorithm

Mordell’s inequality: ~ Blockwise generalizations of LLL

Mordell’s proof of Minkowski’s inequality:

Worst-case to average-case reductions for SIS
and Sieve algorithms [BJN14,ADRS15]
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SVP ALGORITHMS

* Poly-time approximation algorithms

» The LLL algorithm [1982]

> Block generalizations by [Schnorr1987], [GHKNO06], [GamaNO08],
[MiWa16]

 Exponential exact algorithms

» Poly-space enumeration [Pohst1981,Kannan1983,ScEu1994]
> Exp-space sieving [AKS01,MV10,ADRS15]

Both are complementary
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TODAY: HERMITE'S INEQUALITY AND THE LLL ALGORITHM

e Proving Hermite's Inequality

e The LLL Algorithm

» Gram-Schmidt Orthogonalization
> Size Reduction

> Hermite Reduction

» The LLL Algorithm

> Analysis of LLL
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e Hermite proved in 1850: in any d-rank lattice L, there exists a
non-zero v in L s.t.

4\ @D
V]| < (5) vol(L)"

 [LLL82] finds in polynomial time a non-zero lattice vector of
norm < (4/3+¢)d-D/4vol(L)t/d. It is an algorithmic version of
Hermite’s inequality.



PROOF OF HERMITE'S INEQUALITY

e Induction over d: obvious for d=1.



PROOF OF HERMITE'S INEQUALITY

e Induction over d: obvious for d=1.

 Let bibe a shortest vector of L, and 7t the projection over b .

e Let mt(by) be a shortest vector of 7t(L).



PROOF OF HERMITE'S INEQUALITY

Induction over d: obvious for d=1.

Let b1 be a shortest vector of L, and m the projection over by..

Let 1t(by) be a shortest vector of 7t(L).

e We can make sure by lifting that:

| Ibol 12< | I7(bo) | [2+1 I by | 12/4 (size-reduction)



PROOF OF HERMITE'S INEQUALITY

e Induction over d: obvious for d=1.

 Let bibe a shortest vector of L, and 7t the projection over b .

e Let mt(by) be a shortest vector of 7t(L).

e We can make sure by lifting that:

| Ibol 12< | I7(bo) | [2+1 I by | 12/4 (size-reduction)

* On the other hand,
| Ibil I<l Ibal | and vol(mt(L))=vol(L)/ | Ib1! I.
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QUESTION

e Is the proof constructive?

* Does it build a non-zero lattice vector satistying Hermite’s
inequality:

) 4\ (d-1)/4 »
< (5)  voln)
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AN ALGORITHMIC PROOF

Let b1 be a primitive vector of L, and m the projection over by
* Find recursively m(b2)em(L) satisfying Hermite’s inequality.

e Size-reducesothat | Ibal [2< | [7t(bo) | [2+ 1| I b1l 12/4

If | Ib2l | < 1Ib1ll, swap(bi, b2) and restart, otherwise stop.
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AN ALGORITHMIC PROOF

e This algorithm will terminate and output a non-zero lattice vector
satisfying Hermite’s inequality:

. 4\ (@-1)/4 »
b1 < (5 vol(L)

 But it may not be efficient: LLL does better by strengthening
the test | b2l | < | Ib1lI.



MORE DETAILS

« We need Gram-Schmidt again...
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RECALL GRAM-SCHMIDT

¢ Let bl, 5 o .,bnERm.

o Its Gram-Schmidt Orthogonalization is b1’,...,by,"ERm defined
A1

> b1 =D

> For 2<i<n, bi"= projection of biover span(by,...,bi1)t
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FORMULA

* Letby,...,bn€ER™be linearly independent.
 Then all b;"=0.

(bi, b7)
16512

* For lgj<i<n, let Wi =

l

i—1
+ Then: bi=by  bi=bi— ) b
=1



REMINDER

> It by,...,bnEZ™ are linearly mdependent we can compute
efficiently the rational y; ; and ||b>‘<||2 € Q, b* € Q™. More

precisely, we can compute the integers
d; = Gram(b,, ..., b) = | | 16311 and 4 ; = dip; (b, )/ 1b*||?
j=1
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REMINDER: SIZE-REDUCTION

* Letby,...,bdEZ™ be linearly independent.

|

<
2

e B=(by,...,bq) is size-reduced if all ‘]/ti, j

 Th: There is an efficient algorithm to size-reduce B, without
changing the Gram-Schmidt vectors.



VISUALIZING SIZE-REDUCTION

* If we take an appropriate orthonormal basis, the matrix of the
lattice basis becomes triangular.

Hb H 0 0 0
M2 13* b3l O 0
w3107 pa 2”1? HHb || 0

ﬂdlﬂblHﬂdszzH . Md.d- IHbd 1|H|b |
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For j =1-1 downto 1

> Size-reduce b; with respect to by make | ;;l <1/2by
bi = bi—round(pi,j)bj

» Update all u;y forj'sj.



SIZE-REDUCTION ALGORITHM

 Fori=2tod
For j =1-1 downto 1

> Size-reduce b; with respect to by make | ;;l <1/2by
bi = bi—round(pi,j)bj

» Update all u;y forj'sj.

 The translation does not affect the previous uy; where i’ <i, or
i’=1 and j'>j.
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HERMITE'S REDUCTION

« Hermite proved the existence of bases such that:

o] |6]> _ 4
167

* Such bases approximate SVP to an exp factor:

Bull < [(4/3)]" Vol ya < (4/3) @102

B < [(4/3)"] aw



GRAPHICALLY

* Condition 1 is over off-diagonal coeffs: size-reduction.

* Condition 2 is over diagonal coetffs.

Hb H 0 0 0
joalBil 53] 0 0
i 311551 0

. Md d— 1||b 1|H|b ||




PROOFS

3 g
» Hermite factor: ||b*|| >\/7||b>X< | > . \/; |D4]| so

142+...4(d—1)
vol(L) = Hnb*u > H\[ Bl = By
4 (d 1)/4
therefore ||b1|| < < 3> vol(L)!

> Approximating SVP:

g 3d 1
(L) > mm ||b>‘< | > m1n\/7 |6 1|| = \/7 ||b | so

(d=1)/2 (d—1)/2
||b | < <3> A;(L). Generalize this to ||b | < (3) A(L).
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COMPUTING HERMITE REDUCTION

* Hermite proved the existence of bases s.t.:

o] |6]> _ 4
167

* By relaxing the 4/3, [LLL1982] showed how to compute such a
basis in polynomial time.
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LENSTRA-LENSTRA-LOVASZ (LLL) REDUCTION (1982)

b= b Sy where, = 20
= 155117

* Abasis is LLL-reduced fore>0 if and only if
> itis size-reduced |y ;| < >
> Lovasz’ conditions are satisfied

(1= Ib_1[I* < 1167 + pii—1b;_4 17

. 4 .
S Bl < (5 + <) 11



DESCRIPTION OF THE LLL ALGORITHM

e While the basis is not LLL-reduced
» Size-reduce the basis

> If Lovasz’ condition does not hold for some pair (i-1,i):
swap bi1 and b;.
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DESCRIPTION OF THE LLL ALGORITHM

 Input: (by,by,...,ba) basis of L and &>0.

* LLL-reduce (7t(b2),...,m(ba)) where 7t is the projection over b

» Size-reduce so that | Ibil I2< | I 7t(bi)| |2+1 Iby | 12/4

If | Ibal | <(1-g)! Ib1l |, swap(bi, b2) and restart, otherwise stop.
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EVOLUTION OF GRAM-SCHMIDT

* During LLL reduction:

» Min; | |b*| | never decreases.
» Max; | | b*| | never increases.

» Each vol(bs,...,b;) never increases.

» The only LLL operations that modify the b*’s are swaps.
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THE IMPACT OF SWAP

. We swap bi1 and bj whenever (1 — 8)||l;l?‘<_1||2 ||b>‘< + Wi 1b
which implies that ||b>X< | > IIb*ll
« What happens to b* and b*7

> New(b>X< )= b* + 4y 119 ", has norm between ||I;j<|| and /1 — 8||[3?<_1||,

hence >V ( ) shorter.

> New(l_;l?k) has norm between ||l;;k||/\/ ]l —eand
||Zl*_1 ||, hence >1/v(1-¢) longer.

> [new([|b¥ (1) new([|6%  ID] C [I16*]],116% I



WHY LLL IS POLYNOMIAL



WHY LLL IS POLYNOMIAL

 Consider the quantity P = HZ* Hz(d —i+1)



WHY LLL IS POLYNOMIAL

 Consider the quantity P = Hg;k Hz(d —i+1)

l—

* If the bi’s have integral coordinates, then P is a positive integer.



WHY LLL IS POLYNOMIAL

 Consider the quantity P = HET Hz(d —i+1)

l—
* If the bi’s have integral coordinates, then P is a positive integer.

> Size-reduction does not modity P.



WHY LLL IS POLYNOMIAL

 Consider the quantity P = HE? Hz(d —i+1)

l—
* If the bi’s have integral coordinates, then P is a positive integer.

> Size-reduction does not modity P.

> But each swap of LLL makes P decrease by a factor <= 1-¢



WHY LLL IS POLYNOMIAL

 Consider the quantity P = HE? Hz(d —i+1)

l—

* If the bi’s have integral coordinates, then P is a positive integer.

> Size-reduction does not modity P.

> But each swap of LLL makes P decrease by a factor <= 1-¢

* This implies that the number of swaps is polynomially bounded.
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for implementation.



REMARKS

» We described a simple version of LLL, which is not optimized
for implementation.

« We did not fully prove that LLL is polynomial time, because
we did not pay attention to the size of all temporary variables.






RECAP OF LLL

e The LLL algorithm finds in polynomial time a basis such that:

1 |br|]> 4
|]/tl,]‘ S 5 and =% 5 S 3
15711



RECAP OF LLL

‘ . <l Hb*”2 o
]/tla.]‘ — 2 and -+ < 3
||bz—|—1H

* Such bases approximate SVP to an exp factor:

— i d—1
1b1]] < (4/3+s)1/4} vol(L)/4  yq < (4/3)@-1)/2

Bl < [@/3+0)2] huiw)
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TAKE AWAY

* Hermite’s inequality and LLL are based on two key ideas:

> Projection

> Lifting projected vectors aka size-reduction.
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THE MAGIC OF LLL

* One of the main reasons behind the popularity of LLL is that it
performs “much better” than what the worst-case bounds
suggest, especially in low dimension.

e This is another example of worst-case vs. “average-case” and
the difficulty of security estimates.



ILLUSTRATION
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LLL: THEORY VS PRACTICE

* The approx factors (4/3+¢)d-1)/4 is tight in the worst case and
for most LLL bases of a random lattice [KiVe1l6].

« Experimentally, 4/3+¢ = 1.33 can be replaced by a smaller
constant = 1.08, for any lattice, by randomizing the input basis.
This means that LLL biases the output distribution.

* No proof for this phenomenon, but...



LLL IN THE REAL WORLD

Distribution of b¥ + p; ;b |

(bF |, DF + p;;_1bF ) far from densest lattice

1.25 : : . : .
12 b * . -
.

115 | -

140 |- -

1.05 | -
L i

0.95 -

09 F i

0.85 ' ' | ' '
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OPEN PROBLEMS

» Take a random integer lattice L.

e Let B be the Hermite normal form of L.

> [s is true that with overwhelming probability, after LLL-
reducing B, | | b1 | | <cdlvol(L)!/d for some c<(4/3)1/4?

» Can we guess the distribution of | |b;| | and the running time?



MODELLING LLL WITH SANDPILES [DKTWY22]

167
log

0.08 _)*
0.06 | | bl-|—1 | |
0.04 5“ n I h N
: : f there is a swap,
0.02 8 .
’ three consecutive values change:
’ 0 10 20 30 40 50 60 70 80 90 100 N
002 g . the middle one decreases,
oot and the other two increase.
0.25 .
x 120-dim LLL
X 120-dim LLL-SP
02} 2 :
, 015] . X - 1/d
F ol . 124
» (o]
0.05 : vol(L)!/
0 o - S5e8eee —
1.015 1.02 1.025 1.03 1.035 1.04




BABAI'S NEAREST PLANE ALGORITHM

o Input: a basis (I;I, - I;n) of a lattice L and a target 7 in span(L).

Output: a lattice point i such that 7 — i € { Z xizf, —1/2<x,<1/ 2} where the El*'s are the
i=1
Gram-Schmidt orthogonalization.

i
e For i=n downto 1 !
o, —Xk -//
) < t, bl >
Compute y; = —x e Return

> U= i L4;] Ei
i=1
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« Using an LLL-reduced basis, Babai’s nearest plane algorithm

d
2
approximates CVP to within an exponential factor 2 <7> :
3
>x< d

1 & - .
r—ull* < — b¥||? < bill + g)!
| |1© < 1 ;:1' 167 < Z, + €)




PAIRING LLL WITH BABAI'S NEAREST PLANE

« Using an LLL-reduced basis, Babai’s nearest plane algorithm

d

2
approximates CVP to within an exponential factor 2 (7) :
3

17— dll> < 5 2 IBFIP < Z + &)
i=1 i=1

e Thus, LLL approximates in poly-time both SVP and CVP to
within an exponential factor.
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BEYOND LLL: SHORTER VECTORS

* One can improve upon the LLL approximation factor

4 (d—1)/4 4\ @12
(E + g> vol(L)V? or <§> A{(L) in poly-time.

loglogd
0(agest)

« Blockwise algorithms achieve 2
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BEYOND LLL: FASTER

e LLL is polynomial in the bit-length of the entries.

e Itis possible to:

» make LLL quasi-linear w.r.t. the basis coefficients.

> decrease the exponents of the time complexity.

> very fast heuristic variants are now available [RyHe23].
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BEYOND LLL: BEYOND Z

e LLL is defined for Z-bases.

e Generalizations of LLL are known if:

> Z is replaced by Z[i] or certain rings of integers: this is
related to the security of NIST standards.

» The lattice has additional structure, e.g. symplectic lattices.

> But what does it change?



