HERMITE'S INEQUALITY AND THE LLL ALGORITHM PHONG NGUYEN

http://www.di.ens.fr/~pnguyen

November 2024

OVERVIEW: LATTICE ALGORITHMS

• The most classical problem is to prove the existence of short lattice vectors.

- The most classical problem is to prove the existence of short lattice vectors.
- All known upper bounds on Hermite's constant have an algorithmic analogue:

- The most classical problem is to prove the existence of short lattice vectors.
- All known upper bounds on Hermite's constant have an algorithmic analogue:
 - Hermite's inequality: **The LLL Algorithm**

- The most classical problem is to prove the existence of short lattice vectors.
- All known upper bounds on Hermite's constant have an algorithmic analogue:
 - Hermite's inequality: **The LLL Algorithm**
 - Mordell's inequality: Blockwise generalizations of LLL

- The most classical problem is to prove the existence of short lattice vectors.
- All known upper bounds on Hermite's constant have an algorithmic analogue:
 - Hermite's inequality: **The LLL Algorithm**
 - Mordell's inequality: Blockwise generalizations of LLL
 - Mordell's proof of Minkowski's inequality:

Worst-case to average-case reductions for SIS and Sieve algorithms [BJN14,ADRS15]

• Poly-time approximation algorithms

- Poly-time approximation algorithms
 - ➤ The LLL algorithm [1982]

Arjen Lenstra

Hendrik Lenstra

László Lovász

- Poly-time approximation algorithms
 - ➤ The LLL algorithm [1982]
 - Block generalizations by [Schnorr1987], [GHKN06], [GamaN08], [MiWa16]

Claus Peter Schnorr

• Poly-time approximation algorithms

Approximation

- ► The LLL algorithm [1982]
- Block generalizations by [Schnorr1987], [GHKN06], [GamaN08], [MiWa16]
- Exponential exact algorithms

Exact

• Poly-time approximation algorithms

Approximation

- ➤ The LLL algorithm [1982]
- Block generalizations by [Schnorr1987], [GHKN06], [GamaN08], [MiWa16]
- Exponential exact algorithms

Exact

Poly-space enumeration [Pohst1981,Kannan1983,ScEu1994]

• Poly-time approximation algorithms

Approximation

- ➤ The LLL algorithm [1982]
- Block generalizations by [Schnorr1987], [GHKN06], [GamaN08], [MiWa16]
- Exponential exact algorithms

Exact

- Poly-space enumeration [Pohst1981,Kannan1983,ScEu1994]
- ► Exp-space sieving [AKS01,MV10,ADRS15]

- Poly-time approximation algorithms
 - 0
 - ► The LLL algorithm [1982]
 - Block generalizations by [Schnorr1987], [GHKN06], [GamaN08], [MiWa16]
- Exponential exact algorithms

Exact

Approximation

- Poly-space enumeration [Pohst1981,Kannan1983,ScEu1994]
- ► Exp-space sieving [AKS01,MV10,ADRS15]

Both are complementary

TODAY: HERMITE'S INEQUALITY AND THE LLL ALGORITHM

- Proving Hermite's Inequality
- The LLL Algorithm

TODAY: HERMITE'S INEQUALITY AND THE LLL ALGORITHM

- Proving Hermite's Inequality
- The LLL Algorithm
 - Gram-Schmidt Orthogonalization
 - ► Size Reduction
 - ► Hermite Reduction
 - ➤ The LLL Algorithm
 - ► Analysis of LLL

PROVING HERMITE'S INEQUALITY

HERMITE'S INEQUALITY

• Hermite proved in 1850: in any d-rank lattice L, there exists a non-zero v in L s.t.

$$\|\vec{v}\| \le \left(\frac{4}{3}\right)^{(d-1)/4} \operatorname{vol}(L)^{1/d}$$

HERMITE'S INEQUALITY

• Hermite proved in 1850: in any d-rank lattice L, there exists a non-zero v in L s.t.

$$\|\vec{v}\| \le \left(\frac{4}{3}\right)^{(d-1)/4} \operatorname{vol}(L)^{1/d}$$

 [LLL82] finds in polynomial time a non-zero lattice vector of norm ≤ (4/3+ε)^{(d-1)/4}vol(L)^{1/d}. It is an algorithmic version of Hermite's inequality.

• Induction over d: obvious for d=1.

- Induction over d: obvious for d=1.
- Let b_1 be a shortest vector of L, and π the projection over b_1^{\perp} .
- Let $\pi(b_2)$ be a shortest vector of $\pi(L)$.

- Induction over d: obvious for d=1.
- Let b_1 be a shortest vector of L, and π the projection over b_1^{\perp} .
- Let $\pi(b_2)$ be a shortest vector of $\pi(L)$.
- We can make sure by lifting that: $||b_2||^2 \le ||\pi(b_2)||^2 + ||b_1||^2/4 \qquad (size-reduction)$

- Induction over d: obvious for d=1.
- Let b_1 be a shortest vector of L, and π the projection over b_1^{\perp} .
- Let $\pi(b_2)$ be a shortest vector of $\pi(L)$.
- We can make sure by lifting that: $||b_2||^2 \le ||\pi(b_2)||^2 + ||b_1||^2/4$ (size-reduction)
- On the other hand,

 $||b_1|| \le ||b_2||$ and $vol(\pi(L))=vol(L)/||b_1||$.

QUESTION

QUESTION

• Is the proof constructive?

QUESTION

- Is the proof constructive?
- Does it build a non-zero lattice vector satisfying Hermite's inequality:

$$\|\vec{b}_1\| \le \left(\frac{4}{3}\right)^{(d-1)/4} \operatorname{vol}(L)^{1/d}$$

- Let b_1 be a primitive vector of L, and π the projection over b_1^{\perp} .
- Find recursively $\pi(b_2) \in \pi(L)$ satisfying Hermite's inequality.

- Let b_1 be a primitive vector of L, and π the projection over b_1^{\perp} .
- Find recursively $\pi(b_2) \in \pi(L)$ satisfying Hermite's inequality.
- Size-reduce so that $||b_2||^2 \le ||\pi(b_2)||^2 + ||b_1||^2/4$

- Let b_1 be a primitive vector of L, and π the projection over b_1^{\perp} .
- Find recursively $\pi(b_2) \in \pi(L)$ satisfying Hermite's inequality.
- Size-reduce so that $||b_2||^2 \le ||\pi(b_2)||^2 + ||b_1||^2/4$
- If $||b_2|| < ||b_1||$, swap(b₁, b₂) and restart, otherwise stop.

• This algorithm will terminate and output a non-zero lattice vector satisfying Hermite's inequality:

$$\|\vec{b}_1\| \le \left(\frac{4}{3}\right)^{(d-1)/4} \operatorname{vol}(L)^{1/d}$$

• This algorithm will terminate and output a non-zero lattice vector satisfying Hermite's inequality:

$$\|\vec{b}_1\| \le \left(\frac{4}{3}\right)^{(d-1)/4} \operatorname{vol}(L)^{1/d}$$

 But it may not be efficient: LLL does better by strengthening the test ||b₂|| < ||b₁||.

MORE DETAILS

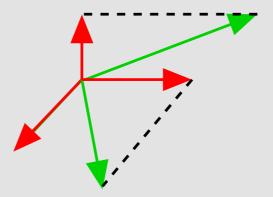
• We need Gram-Schmidt again...

THE LLL ALGORITHM

REMEMBER GRAM-SCHMIDT ORTHOGONALIZATION

RECALL GRAM-SCHMIDT

- Let $b_1, \ldots, b_n \in \mathbb{R}^m$.
- Its Gram-Schmidt Orthogonalization is b₁^{*},...,b_n^{*}∈**R**^m defined as:
 - ► $b_1^* = b_1$
 - ► For $2 \le i \le n$, $b_i^* = \text{projection of } b_i \text{ over } \text{span}(b_1, ..., b_{i-1})^{\perp}$



FORMULA

- Let $b_1, \ldots, b_n \in \mathbb{R}^m$ be linearly independent.
- Then all $b_j^* \neq 0$.

FORMULA

- Let $b_1, ..., b_n \in \mathbb{R}^m$ be linearly independent.
- Then all $b_j^* \neq 0$.

• For
$$1 \le j \le i \le n$$
, let $\mu_{i,j} = \frac{\langle \vec{b}_i, \vec{b}_j^* \rangle}{\|\vec{b}_j^*\|^2}$

FORMULA

- Let $b_1, ..., b_n \in \mathbb{R}^m$ be linearly independent.
- Then all $b_j^* \neq 0$.

• For
$$1 \le j \le i \le n$$
, let $\mu_{i,j} = \frac{\langle \vec{b}_i, \vec{b}_j^* \rangle}{\|\vec{b}_j^*\|^2}$

• Then:
$$\vec{b}_1^{\star} = \vec{b}_1$$
 $\vec{b}_i^{\star} = \vec{b}_i - \sum_{j=1}^{i-1} \mu_{i,j} \vec{b}_j^{\star}$

REMINDER

➤ If $b_1,...,b_n \in \mathbb{Z}^m$ are linearly independent, we can compute efficiently the rational $\mu_{i,j}$ and $\|\vec{b}_i^*\|^2 \in \mathbb{Q}$, $\vec{b}_i^* \in \mathbb{Q}^m$. More precisely, we can compute the integers

$$d_{i} = \operatorname{Gram}(\vec{b}_{1}, \dots, \vec{b}_{i}) = \prod_{j=1}^{i} \|\vec{b}_{j}^{*}\|^{2} \text{ and } \lambda_{i,j} = d_{j}\mu_{i,j}\langle \vec{b}_{i}, \vec{b}_{j}^{*} \rangle / \|\vec{b}_{j}^{*}\|^{2}$$

$$\vec{b}_{i}^{*} = \vec{b}_{i} - \sum_{j=1}^{i-1} \frac{\lambda_{i,j}}{d_{j}} \vec{b}_{j}^{*}$$
$$\vec{b}_{i}^{*} \|^{2} = \frac{d_{i}}{d_{i-1}}$$

REMEMBER SIZE REDUCTION

REMINDER: SIZE-REDUCTION

- Let $b_1, \ldots, b_d \in \mathbb{Z}^m$ be linearly independent.
- B=(b₁,...,b_d) is size-reduced if all $|\mu_{i,j}| \le \frac{1}{2}$

REMINDER: SIZE-REDUCTION

- Let $b_1, \ldots, b_d \in \mathbb{Z}^m$ be linearly independent.
- B=(b₁,...,b_d) is size-reduced if all $|\mu_{i,j}| \leq \frac{1}{2}$

• Th: There is an efficient algorithm to size-reduce B, without changing the Gram-Schmidt vectors.

VISUALIZING SIZE-REDUCTION

• If we take an appropriate orthonormal basis, the matrix of the lattice basis becomes triangular.

$$\begin{pmatrix} \|\vec{b}_{1}^{*}\| & 0 & 0 & \dots & 0 \\ \mu_{2,1}\|\vec{b}_{1}^{*}\| & \|\vec{b}_{2}^{*}\| & 0 & \dots & 0 \\ \mu_{3,1}\|\vec{b}_{1}^{*}\| & \mu_{3,2}\|\vec{b}_{2}^{*}\| & \|\vec{b}_{3}^{*}\| & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \mu_{d,1}\|\vec{b}_{1}^{*}\| & \mu_{d,2}\|\vec{b}_{2}^{*}\| & \dots & \mu_{d,d-1}\|\vec{b}_{d-1}^{*}\| & \|\vec{b}_{d}^{*}\| \end{pmatrix}$$

SIZE-REDUCTION ALGORITHM

SIZE-REDUCTION ALGORITHM

- For i = 2 to d
 - For j = i-1 downto 1
 - ► Size-reduce b_i with respect to b_j : make $|\mu_{i,j}| \le 1/2$ by $b_i := b_i$ -round $(\mu_{i,j})b_j$
 - ► Update all $\mu_{i,j'}$ for $j' \leq j$.

SIZE-REDUCTION ALGORITHM

- For i = 2 to d
 - For j = i-1 downto 1
 - ► Size-reduce b_i with respect to b_j : make $|\mu_{i,j}| \le 1/2$ by $b_i := b_i$ -round $(\mu_{i,j})b_j$
 - ► Update all $\mu_{i,j'}$ for $j' \leq j$.
- The translation does not affect the previous $\mu_{i',j'}$ where i' < i, or i'=i and j'>j.

HERMITE REDUCTION

HERMITE'S REDUCTION

HERMITE'S REDUCTION

• Hermite proved the existence of bases such that:

$$|\mu_{i,j}| \le \frac{1}{2}$$
 and $\frac{\|ec{b}_i^\star\|^2}{\|ec{b}_{i+1}^\star\|^2} \le \frac{4}{3}$

HERMITE'S REDUCTION

• Hermite proved the existence of bases such that:

$$|\mu_{i,j}| \le \frac{1}{2}$$
 and $\frac{\|ec{b}_i^\star\|^2}{\|ec{b}_{i+1}^\star\|^2} \le \frac{4}{3}$

• Such bases approximate SVP to an exp factor:

$$\|\vec{b}_1\| \le \left[(4/3)^{1/4} \right]^{d-1} \operatorname{vol}(L)^{1/d} \qquad \gamma_d \le (4/3)^{(d-1)/2}$$
$$\|\vec{b}_i\| \le \left[(4/3)^{1/2} \right]^{d-1} \lambda_i(L)$$

GRAPHICALLY

- Condition 1 is over off-diagonal coeffs: size-reduction.
- Condition 2 is over diagonal coeffs.

$$\begin{pmatrix} \|\vec{b}_{1}^{*}\| & 0 & 0 & \dots & 0 \\ \mu_{2,1}\|\vec{b}_{1}^{*}\| & \|\vec{b}_{2}^{*}\| & 0 & \dots & 0 \\ \mu_{3,1}\|\vec{b}_{1}^{*}\| & \mu_{3,2}\|\vec{b}_{2}^{*}\| & \|\vec{b}_{3}^{*}\| & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \mu_{d,1}\|\vec{b}_{1}^{*}\| & \mu_{d,2}\|\vec{b}_{2}^{*}\| & \dots & \mu_{d,d-1}\|\vec{b}_{d-1}^{*}\| & \|\vec{b}_{d}^{*}\| \end{pmatrix}$$

PROOFS

► Hermite factor:
$$\|\vec{b}_i^*\| \ge \sqrt{\frac{3}{4}} \|\vec{b}_{i-1}^*\| \ge \dots \ge \sqrt{\frac{3}{4}}^{i-1} \|\vec{b}_1\|$$
 so
 $\operatorname{vol}(L) = \prod_{i=1}^d \|\vec{b}_i^*\| \ge \prod_{i=1}^d \sqrt{\frac{3}{4}}^{i-1} \|\vec{b}_1\| = \|\vec{b}_1\|^d \sqrt{\frac{3}{4}}^{1+2+\dots+(d-1)}$
therefore $\|\vec{b}_1\| \le \left(\frac{4}{3}\right)^{(d-1)/4} \operatorname{vol}(L)^{1/d}$

► Approximating SVP:

$$\lambda_1(L) \ge \min_i \|\vec{b}_i^*\| \ge \min_i \sqrt{\frac{3}{4}}^{i-1} \|\vec{b}_1\| = \sqrt{\frac{3}{4}}^{d-1} \|\vec{b}_1\| \quad \text{so}$$

$$\|\vec{b}_1\| \le \left(\frac{4}{3}\right)^{(d-1)/2} \lambda_1(L). \text{ Generalize this to } \|\vec{b}_i\| \le \left(\frac{4}{3}\right)^{(d-1)/2} \lambda_i(L).$$

COMPUTING HERMITE REDUCTION

COMPUTING HERMITE REDUCTION

• Hermite proved the existence of bases s.t.:

$$|\mu_{i,j}| \le rac{1}{2}$$
 and $rac{\|ec{b}_i^{\star}\|^2}{\|ec{b}_{i+1}^{\star}\|^2} \le rac{4}{3}$

COMPUTING HERMITE REDUCTION

• Hermite proved the existence of bases s.t.:

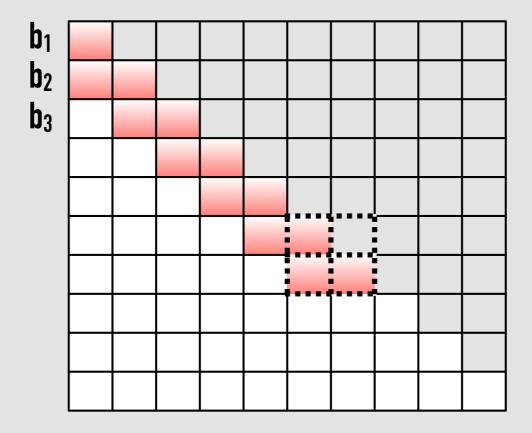
$$|\mu_{i,j}| \le \frac{1}{2}$$
 and $\frac{\|\vec{b}_i^{\star}\|^2}{\|\vec{b}_{i+1}^{\star}\|^2} \le \frac{4}{3}$

• By relaxing the 4/3, [LLL1982] showed how to compute such a basis in polynomial time.

THE LLL ALGORITHM

HOW LLL WORKS

• LLL is an elegant divide-and-conquer based on 2-dim reduction.



 $\vec{b}_i^{\star} = \vec{b}_i - \sum_{j=1}^{i-1} \mu_{i,j} \vec{b}_j^{\star} \qquad \text{where } \mu_{i,j} = \frac{\langle \vec{b}_i, \vec{b}_j^{\star} \rangle}{\|\vec{b}_j^{\star}\|^2}$

$$\vec{b}_i^{\star} = \vec{b}_i - \sum_{j=1}^{i-1} \mu_{i,j} \vec{b}_j^{\star} \qquad \text{where } \mu_{i,j} = \frac{\langle \vec{b}_i, \vec{b}_j^{\star} \rangle}{\|\vec{b}_j^{\star}\|^2}$$

• A basis is LLL-reduced forε>0 if and only if

$$\vec{b}_{i}^{\star} = \vec{b}_{i} - \sum_{j=1}^{i-1} \mu_{i,j} \vec{b}_{j}^{\star}$$
 wh

where
$$\mu_{i,j} = \frac{\langle \vec{b}_i, \vec{b}_j^* \rangle}{\|\vec{b}_j^*\|^2}$$

• A basis is LLL-reduced forε>0 if and only if

► it is size-reduced

 $|\mu_{i,j}| \le \frac{1}{2}$

$$\vec{b}_{i}^{\star} = \vec{b}_{i} - \sum_{j=1}^{i-1} \mu_{i,j} \vec{b}_{j}^{\star}$$
 where $\mu_{i,j} = \frac{\langle \vec{b}_{i}, \vec{b}_{j}^{\star} \rangle}{\|\vec{b}_{j}^{\star}\|^{2}}$

• A basis is LLL-reduced forε>0 if and only if

• it is size-reduced
$$|\mu_{i,j}| \leq \frac{1}{2}$$

Lovász' conditions are satisfied

$$(1 - \varepsilon) \|\vec{b}_{i-1}^{\star}\|^2 \le \|\vec{b}_i^{\star} + \mu_{i,i-1}\vec{b}_{i-1}^{\star}\|^2 \Rightarrow \|\vec{b}_{i-1}^{\star}\|^2 \le \left(\frac{4}{3} + \varepsilon'\right) \|\vec{b}_i^{\star}\|^2$$

- While the basis is not LLL-reduced
 - ► Size-reduce the basis
 - If Lovász' condition does not hold for some pair (i-1,i): swap b_{i-1} and b_i.

• Input: (b_1, b_2, \dots, b_d) basis of L and $\epsilon > 0$.

- Input: (b_1, b_2, \dots, b_d) basis of L and $\epsilon > 0$.
- LLL-reduce $(\pi(b_2), ..., \pi(b_d))$ where π is the projection over b_1^{\perp} .
- Size-reduce so that $||b_i||^2 \le ||\pi(b_i)||^2 + ||b_1||^2/4$

- Input: (b_1, b_2, \dots, b_d) basis of L and $\epsilon > 0$.
- LLL-reduce $(\pi(b_2), ..., \pi(b_d))$ where π is the projection over b_1^{\perp} .
- Size-reduce so that $||b_i||^2 \le ||\pi(b_i)||^2 + ||b_1||^2/4$
- If $||b_2|| \le (1-\varepsilon)||b_1||$, swap(b₁, b₂) and restart, otherwise stop.

ANALYSIS OF LLL

EVOLUTION OF GRAM-SCHMIDT

EVOLUTION OF GRAM-SCHMIDT

• During LLL reduction:

- During LLL reduction:
 - ► $Min_i | |b^*_i| |$ never decreases.

- During LLL reduction:
 - ► $Min_i | |b^*_i| |$ never decreases.
 - ► $Max_i | |b^*_i| |$ never increases.

- During LLL reduction:
 - ► $Min_i | |b^*_i| |$ never decreases.
 - ► $Max_i | |b^*_i| |$ never increases.
 - ► Each vol(b₁,...,b_i) never increases.

- During LLL reduction:
 - ► $Min_i | |b^*_i| |$ never decreases.
 - ► $Max_i | |b^*_i| |$ never increases.
 - ► Each vol(b₁,...,b_i) never increases.
 - > The only LLL operations that modify the b_{i}^{*} 's are swaps.

• We swap b_{i-1} and b_i whenever $(1 - \varepsilon) \|\vec{b}_{i-1}^*\|^2 \ge \|\vec{b}_i^* + \mu_{i,i-1}\vec{b}_{i-1}^*\|^2$ which implies that $\|\vec{b}_{i-1}^*\| \ge \|\vec{b}_i^*\|$

- We swap b_{i-1} and b_i whenever $(1 \varepsilon) \|\vec{b}_{i-1}^*\|^2 \ge \|\vec{b}_i^* + \mu_{i,i-1}\vec{b}_{i-1}^*\|^2$ which implies that $\|\vec{b}_{i-1}^*\| \ge \|\vec{b}_i^*\|$
- What happens to \vec{b}_{i-1}^* and \vec{b}_i^* ?

We swap b_{i-1} and b_i whenever (1 − ε) || *b*^{*}_{i-1} ||² ≥ || *b*^{*}_i + μ_{i,i-1} *b*^{*}_{i-1} ||² which implies that || *b*^{*}_{i-1} || ≥ || *b*^{*}_i ||
What happens to *b*^{*}_{i-1} and *b*^{*}_i?

► New $(\vec{b}_{i-1}^*) = \vec{b}_i^* + \mu_{i,i-1}\vec{b}_{i-1}^*$ has norm between $\|\vec{b}_i^*\|$ and $\sqrt{1-\varepsilon}\|\vec{b}_{i-1}^*\|$, hence $\geq \sqrt{(1-\varepsilon)}$ shorter.

• We swap b_{i-1} and b_i whenever $(1 - \varepsilon) \|\vec{b}_{i-1}^*\|^2 \ge \|\vec{b}_i^* + \mu_{i,i-1}\vec{b}_{i-1}^*\|^2$ which implies that $\|\vec{b}_{i-1}^*\| \ge \|\vec{b}_i^*\|$ • What happens to \vec{b}_{i-1}^* and \vec{b}_i^* ?

► New $(\vec{b}_{i-1}^*) = \vec{b}_i^* + \mu_{i,i-1}\vec{b}_{i-1}^*$ has norm between $\|\vec{b}_i^*\|$ and $\sqrt{1-\varepsilon}\|\vec{b}_{i-1}^*\|$, hence $\geq \sqrt{(1-\varepsilon)}$ shorter.

► New (\vec{b}_i^*) has norm between $\|\vec{b}_i^*\|/\sqrt{1-\varepsilon}$ and $\|\vec{b}_{i-1}^*\|$, hence $\ge 1/\sqrt{(1-\varepsilon)}$ longer.

• We swap b_{i-1} and b_i whenever $(1 - \varepsilon) \|\vec{b}_{i-1}^*\|^2 \ge \|\vec{b}_i^* + \mu_{i,i-1}\vec{b}_{i-1}^*\|^2$ which implies that $\|\vec{b}_{i-1}^*\| \ge \|\vec{b}_i^*\|$ • What happens to \vec{b}_{i-1}^* and \vec{b}_i^* ?

► New $(\vec{b}_{i-1}^*) = \vec{b}_i^* + \mu_{i,i-1}\vec{b}_{i-1}^*$ has norm between $\|\vec{b}_i^*\|$ and $\sqrt{1-\varepsilon}\|\vec{b}_{i-1}^*\|$, hence $\geq \sqrt{(1-\varepsilon)}$ shorter.

New(\$\vec{b}_i^*\$) has norm between \$\|\vec{b}_i^*\|/\sqrt{1-\varepsilon}\$ and \$\|\vec{b}_{i-1}^*\|\$, hence ≥1/√(1-\varepsilon)\$ longer.
[new(\$\|\vec{b}_i^*\|\$),new(\$\|\vec{b}_{i-1}^*\|\$)] ⊆ [\$\|\vec{b}_i^*\|\$, \$\|\vec{b}_{i-1}^*\|\$]\$

$$P = \prod_{i=1}^{d} \|\vec{b}_i^*\|^{2(d-i+1)}$$

• Consider the quantity

$$P = \prod_{i=1}^{d} \|\vec{b}_i^*\|^{2(d-i+1)}$$

• If the b_i's have integral coordinates, then P is a positive integer.

$$P = \prod_{i=1}^{d} \|\vec{b}_i^*\|^{2(d-i+1)}$$

- If the b_i's have integral coordinates, then P is a positive integer.
 - ► Size-reduction does not modify P.

$$P = \prod_{i=1}^{d} \|\vec{b}_i^*\|^{2(d-i+1)}$$

- If the b_i's have integral coordinates, then P is a positive integer.
 - ► Size-reduction does not modify P.
 - ► But each swap of LLL makes P decrease by a factor $\leq 1-\epsilon$

$$P = \prod_{i=1}^{d} \|\vec{b}_i^*\|^{2(d-i+1)}$$

- If the b_i's have integral coordinates, then P is a positive integer.
 - ➤ Size-reduction does not modify P.
 - ➤ But each swap of LLL makes P decrease by a factor <= 1-ε</p>
- This implies that the number of swaps is polynomially bounded.

REMARKS

REMARKS

• We described a simple version of LLL, which is not optimized for implementation.

REMARKS

- We described a simple version of LLL, which is not optimized for implementation.
- We did not fully prove that LLL is polynomial time, because we did not pay attention to the size of all temporary variables.

RECAP OF LLL

RECAP OF LLL

• The LLL algorithm finds in polynomial time a basis such that:

$$|\mu_{i,j}| \le \frac{1}{2}$$
 and $\frac{\|\vec{b}_i^{\star}\|^2}{\|\vec{b}_{i+1}^{\star}\|^2} \le \frac{4}{3} + \varepsilon$

RECAP OF LLL

• The LLL algorithm finds in polynomial time a basis such that:

$$|\mu_{i,j}| \le \frac{1}{2}$$
 and $\frac{\|\vec{b}_i^\star\|^2}{\|\vec{b}_{i+1}^\star\|^2} \le \frac{4}{3} + \varepsilon$

• Such bases approximate SVP to an exp factor:

$$\|\vec{b}_1\| \le \left[(4/3 + \varepsilon)^{1/4} \right]^{d-1} \operatorname{vol}(L)^{1/d} \quad \gamma_d \le (4/3)^{(d-1)/2} \\ \|\vec{b}_i\| \le \left[(4/3 + \varepsilon)^{1/2} \right]^{d-1} \lambda_i(L)$$

• Hermite's inequality and LLL are based on two key ideas:

• Hermite's inequality and LLL are based on two key ideas:

► Projection

• Hermite's inequality and LLL are based on two key ideas:

► Projection

► Lifting projected vectors aka size-reduction.

THE MAGIC OF LLL

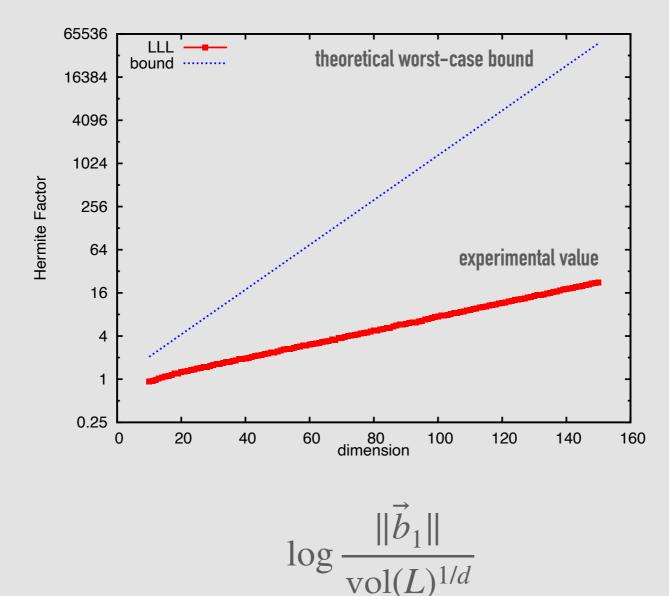
THE MAGIC OF LLL

• One of the main reasons behind the popularity of LLL is that it performs "much better" than what the worst-case bounds suggest, especially in low dimension.

THE MAGIC OF LLL

- One of the main reasons behind the popularity of LLL is that it performs "much better" than what the worst-case bounds suggest, especially in low dimension.
- This is another example of worst-case vs. "average-case" and the difficulty of security estimates.

ILLUSTRATION

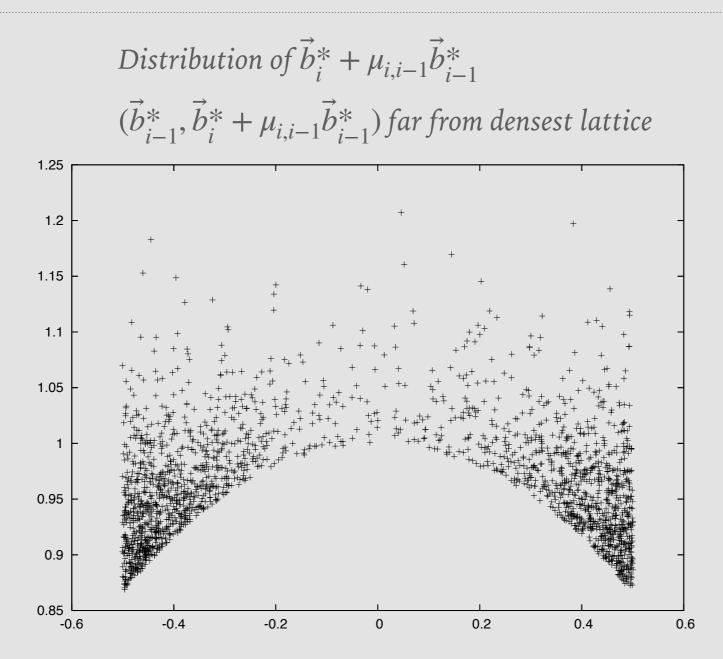


• The approx factors $(4/3+\epsilon)^{(d-1)/4}$ is tight in the worst case and for most LLL bases of a random lattice [KiVe16].

- The approx factors $(4/3+\epsilon)^{(d-1)/4}$ is tight in the worst case and for most LLL bases of a random lattice [KiVe16].
- Experimentally, 4/3+ε ≈ 1.33 can be replaced by a smaller constant ≈ 1.08, for any lattice, by randomizing the input basis. This means that LLL biases the output distribution.

- The approx factors $(4/3+\epsilon)^{(d-1)/4}$ is tight in the worst case and for most LLL bases of a random lattice [KiVe16].
- Experimentally, 4/3+ε ≈ 1.33 can be replaced by a smaller constant ≈ 1.08, for any lattice, by randomizing the input basis. This means that LLL biases the output distribution.
- No proof for this phenomenon, but...

LLL IN THE REAL WORLD



OPEN PROBLEMS

OPEN PROBLEMS

- Take a random integer lattice L.
- Let B be the Hermite normal form of L.

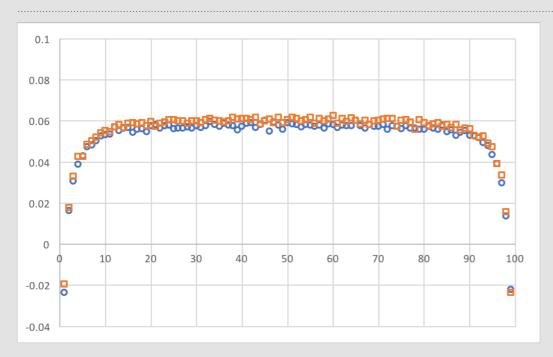
OPEN PROBLEMS

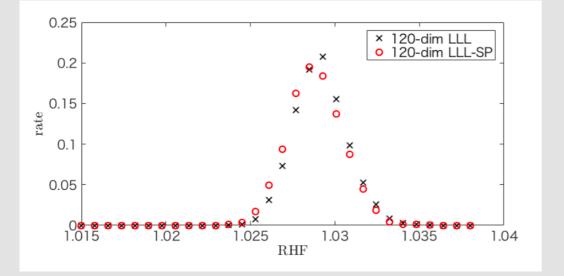
- Take a random integer lattice L.
- Let B be the Hermite normal form of L.
- ➤ Is is true that with overwhelming probability, after LLLreducing B, ||b₁||≤c^{d-1}vol(L)^{1/d} for some c<(4/3)^{1/4}?

OPEN PROBLEMS

- Take a random integer lattice L.
- Let B be the Hermite normal form of L.
- ➤ Is is true that with overwhelming probability, after LLLreducing B, ||b₁||≤c^{d-1}vol(L)^{1/d} for some c<(4/3)^{1/4}?
- ► Can we guess the distribution of $||b_1||$ and the running time?

MODELLING LLL WITH SANDPILES [DKTWY22]





$$\log \frac{\|\vec{b}_i^*\|}{\|\vec{b}_{i+1}^*\|}$$

If there is a swap,

three consecutive values change:

the middle one decreases,

and the other two increase.

1/d $\left(\frac{\|\vec{b}_1\|}{\operatorname{vol}(L)^{1/d}}\right)$

BABAI'S NEAREST PLANE ALGORITHM

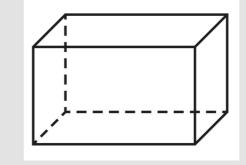
- Input: a basis $(\vec{b}_1, ..., \vec{b}_n)$ of a lattice L and a target \vec{t} in span(L).
- Output: a lattice point \vec{u} such that $\vec{t} \vec{u} \in \left\{ \sum_{i=1}^{n} x_i \vec{b}_i^{\star}, -1/2 \le x_i < 1/2 \right\}$ where the \vec{b}_i^{\star} 's are the

Gram-Schmidt orthogonalization.

• Compute $\mu_i = \frac{\langle \vec{t}, \vec{b_i} \rangle}{\|\vec{b_i}^{\star}\|^2}$

• For i=n downto 1

• $\vec{t} \leftarrow \vec{t} - |\mu_i| \vec{b}_i$



$$\vec{u} = \sum_{i=1}^{n} \lfloor \mu_i \rceil \vec{b}_i$$

PAIRING LLL WITH BABAI'S NEAREST PLANE

PAIRING LLL WITH BABAI'S NEAREST PLANE

• Using an LLL-reduced basis, Babai's nearest plane algorithm approximates CVP to within an exponential factor $2\left(\frac{2}{\sqrt{3}}\right)^d$.

$$\|\vec{t} - \vec{u}\|^2 \le \frac{1}{4} \sum_{i=1}^d \|\vec{b}_i^*\|^2 \le \frac{\|\vec{b}_d^*\|^2}{4} \sum_{i=1}^d (\frac{4}{3} + \varepsilon)^{d-i}$$

PAIRING LLL WITH BABAI'S NEAREST PLANE

• Using an LLL-reduced basis, Babai's nearest plane algorithm

approximates CVP to within an exponential factor $2\left(\frac{2}{\sqrt{2}}\right)^d$.

$$\|\vec{t} - \vec{u}\|^2 \le \frac{1}{4} \sum_{i=1}^d \|\vec{b}_i^*\|^2 \le \frac{\|\vec{b}_d^*\|^2}{4} \sum_{i=1}^d (\frac{4}{3} + \varepsilon)^{d-i}$$

• Thus, LLL approximates in poly-time both SVP and CVP to within an exponential factor.

BEYOND LLL: SHORTER VECTORS

BEYOND LLL: SHORTER VECTORS

• One can improve upon the LLL approximation factor

$$\left(\frac{4}{3}+\varepsilon\right)^{(d-1)/4}$$
 vol $(L)^{1/d}$ or $\left(\frac{4}{3}\right)^{(d-1)/2}\lambda_1(L)$ in poly-time.

BEYOND LLL: SHORTER VECTORS

 \mathbf{O}

• One can improve upon the LLL approximation factor

$$\left(\frac{4}{3} + \varepsilon\right)^{(d-1)/4} \operatorname{vol}(L)^{1/d} \operatorname{or} \left(\frac{4}{3}\right)^{(d-1)/2} \lambda_1(L) \text{ in poly-time.}$$

Blockwise algorithms achieve $2^{O\left(d\frac{\log\log d}{\log d}\right)}$

• LLL is polynomial in the bit-length of the entries.

- LLL is polynomial in the bit-length of the entries.
- It is possible to:

- LLL is polynomial in the bit-length of the entries.
- It is possible to:
 - ➤ make LLL quasi-linear w.r.t. the basis coefficients.

- LLL is polynomial in the bit-length of the entries.
- It is possible to:
 - ➤ make LLL quasi-linear w.r.t. the basis coefficients.
 - ► decrease the exponents of the time complexity.
 - ► very fast heuristic variants are now available [RyHe23].

• LLL is defined for **Z**-bases.

- LLL is defined for **Z**-bases.
- Generalizations of LLL are known if:

- LLL is defined for **Z**-bases.
- Generalizations of LLL are known if:
 - Z is replaced by Z[i] or certain rings of integers: this is related to the security of NIST standards.

- LLL is defined for **Z**-bases.
- Generalizations of LLL are known if:
 - Z is replaced by Z[i] or certain rings of integers: this is related to the security of NIST standards.
 - ➤ The lattice has additional structure, e.g. symplectic lattices.

- LLL is defined for **Z**-bases.
- Generalizations of LLL are known if:
 - Z is replaced by Z[i] or certain rings of integers: this is related to the security of NIST standards.
 - ➤ The lattice has additional structure, e.g. symplectic lattices.

► But what does it change?