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INSIGHT

• The most classical problem is to prove the existence of 
short lattice vectors.

• All known upper bounds on Hermite’s constant have an 
algorithmic analogue:

• Hermite’s inequality:

• Mordell’s inequality:

• Mordell’s proof of Minkowski’s inequality:

The LLL Algorithm

Blockwise generalizations of LLL

Worst-case to average-case reductions for SIS 
and Sieve algorithms [BJN14,ADRS15]
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SVP ALGORITHMS

• Poly-time approximation algorithms

• Exponential exact algorithms

➤ The LLL algorithm [1982]
➤ Block generalizations by [Schnorr1987], [GHKN06], [GamaN08], 

[MiWa16]

➤ Poly-space enumeration [Pohst1981,Kannan1983,ScEu1994]
➤ Exp-space sieving [AKS01,MV10,ADRS15]

Both are complementary

Approximation

Exact



• Proving Hermite's Inequality

TODAY: HERMITE’S INEQUALITY AND THE LLL ALGORITHM

• The LLL Algorithm



• Proving Hermite's Inequality

TODAY: HERMITE’S INEQUALITY AND THE LLL ALGORITHM

• The LLL Algorithm
➤ Gram-Schmidt Orthogonalization

➤ Size Reduction

➤ Hermite Reduction

➤ The LLL Algorithm

➤ Analysis of LLL
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HERMITE’S INEQUALITY

• Hermite proved in 1850: in any d-rank lattice L, there exists a 
non-zero v in L s.t.

• [LLL82] finds in polynomial time a non-zero lattice vector of 
norm ≤ (4/3+ε)(d-1)/4vol(L)1/d. It is an algorithmic version of 
Hermite’s inequality.

∥ ⃗v∥ ≤ ( 4
3 )

(d−1)/4

vol(L)1/d
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PROOF OF HERMITE’S INEQUALITY

• Induction over d: obvious for d=1.

• Let b1 be a shortest vector of L, and π the projection over b1⟘.

• Let π(b2) be a shortest vector of π(L).

• We can make sure by lifting that: 

||b2||2≤ ||π(b2)||2+||b1||2/4         (size-reduction)

• On the other hand, 

||b1||≤||b2|| and vol(π(L))=vol(L)/||b1||.
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QUESTION

• Is the proof constructive?

• Does it build a non-zero lattice vector satisfying Hermite’s 
inequality:

k~b1k 
✓
4

3

◆(d�1)/4

vol(L)1/d
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AN ALGORITHMIC PROOF

• Let b1 be a primitive vector of L, and π the projection over b1⟘.

• Size-reduce so that ||b2||2≤ ||π(b2)||2+||b1||2/4

• Find recursively π(b2)∈π(L) satisfying Hermite’s inequality.

• If ||b2|| < ||b1||, swap(b1, b2) and restart, otherwise stop.



AN ALGORITHMIC PROOF

• This algorithm will terminate and output a non-zero lattice vector 
satisfying Hermite’s inequality:
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AN ALGORITHMIC PROOF

• This algorithm will terminate and output a non-zero lattice vector 
satisfying Hermite’s inequality:

• But it may not be efficient: LLL does better by strengthening 
the test ||b2|| < ||b1||. 

k~b1k 
✓
4

3

◆(d�1)/4

vol(L)1/d



MORE DETAILS

• We need Gram-Schmidt again…



THE LLL 
ALGORITHM
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RECALL GRAM-SCHMIDT

• Let b1,…,bn∈Rm.

• Its Gram-Schmidt Orthogonalization is  b1*,…,bn*∈Rm defined 
as:

➤ b1* = b1

➤ For 2≤i≤n, bi* = projection of bi over  span(b1,…,bi-1)⊥
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FORMULA

• Let b1,…,bn∈Rm be linearly independent.  

• Then all bj*≠0.

• For 1≤j<i≤n, let µi,j =
h~bi,~b⇤j i
k~b⇤jk2

• Then: ~b?
1 =~b1 ~b?

i =~bi�
i�1

∑
j=1
µi, j~b?

j



REMINDER

➤ If b1,…,bn∈Zm are linearly independent, we can compute 
efficiently the rational , .  More 
precisely, we can compute the integers 

 and  

μi,j and ∥b⃗*i ∥2 ∈ ℚ b⃗*i ∈ ℚm

di = Gram(b⃗1, …, b⃗i) =
i

∏
j=1

∥b⃗*j ∥2 λi,j = djμi,j⟨b⃗i, b⃗*j ⟩/∥b⃗*j ∥2

~b⇤i = ~bi �
i�1X

j=1

�i,j

dj
~b⇤j

k~b⇤i k2 =
di

di�1
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REMINDER: SIZE-REDUCTION

• Let b1,…,bd∈Zm be linearly independent.

• Th: There is an efficient algorithm to size-reduce B, without 
changing the Gram-Schmidt vectors. 

• B=(b1,…,bd) is size-reduced if all  |µi, j|
1
2



VISUALIZING SIZE-REDUCTION

• If we take an appropriate orthonormal basis, the matrix of the 
lattice basis becomes triangular.

0

BBBBB@

k~b⇤1k 0 0 . . . 0
µ2,1k~b⇤1k k~b⇤2k 0 . . . 0
µ3,1k~b⇤1kµ3,2k~b⇤2kk~b⇤3k . . . 0

... . . . . . . . . . ...
µd,1k~b⇤1kµd,2k~b⇤2k . . . µd,d�1k~b⇤d�1kk~b⇤dk

1

CCCCCA
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• For i = 2 to d

•For j = i-1 downto 1
➤ Size-reduce bi with respect to bj:    make |μi,j| ≤ 1/2 by 

bi := bi-round(μi,j)bj

➤ Update all μi,j’ for j’≤j.



SIZE-REDUCTION ALGORITHM

• For i = 2 to d

•For j = i-1 downto 1
➤ Size-reduce bi with respect to bj:    make |μi,j| ≤ 1/2 by 

bi := bi-round(μi,j)bj

➤ Update all μi,j’ for j’≤j.

• The translation does not affect the previous μi’,j’ where i’ < i, or 
i’=i and j’>j.
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HERMITE’S REDUCTION

• Hermite proved the existence of bases such that:

|µi, j|
1
2

k~b?
i k2

k~b?
i+1k2

 4
3

and

• Such bases approximate SVP to an exp factor:

k~b1k 
h
(4/3)1/4

id�1
vol(L)1/d

k~bik 
h
(4/3)1/2

id�1
λi(L)

γd  (4/3)(d�1)/2



0

BBBBB@

k~b⇤1k 0 0 . . . 0
µ2,1k~b⇤1k k~b⇤2k 0 . . . 0
µ3,1k~b⇤1kµ3,2k~b⇤2kk~b⇤3k . . . 0

... . . . . . . . . . ...
µd,1k~b⇤1kµd,2k~b⇤2k . . . µd,d�1k~b⇤d�1kk~b⇤dk

1

CCCCCA

GRAPHICALLY

• Condition 1 is over off-diagonal coeffs: size-reduction.

• Condition 2 is over diagonal coeffs.



PROOFS

➤ Hermite factor:  so 

therefore 

➤ Approximating SVP: 

     so 

. Generalize this to .

∥b⃗*i ∥ ≥
3
4

∥b⃗*i−1∥ ≥ . . . ≥
3
4

i−1

∥b⃗1∥

vol(L) =
d

∏
i=1

∥b⃗*i ∥ ≥
d

∏
i=1

3
4

i−1

∥b⃗1∥ = ∥b⃗1∥d 3
4

1+2+…+(d−1)

∥b⃗1∥ ≤ ( 4
3 )

(d−1)/4

vol(L)1/d

λ1(L) ≥ min
i

∥b⃗*i ∥ ≥ min
i

3
4

i−1

∥b⃗1∥ =
3
4

d−1

∥b⃗1∥

∥b⃗1∥ ≤ ( 4
3 )

(d−1)/2

λ1(L) ∥b⃗i∥ ≤ ( 4
3 )

(d−1)/2

λi(L)
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COMPUTING HERMITE REDUCTION

• Hermite proved the existence of bases s.t.:

|µi, j|
1
2

k~b?
i k2

k~b?
i+1k2

 4
3

and



• By relaxing the 4/3, [LLL1982] showed how to compute such a 
basis in polynomial time.

COMPUTING HERMITE REDUCTION

• Hermite proved the existence of bases s.t.:

|µi, j|
1
2

k~b?
i k2

k~b?
i+1k2

 4
3

and
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HOW LLL WORKS

• LLL is an elegant divide-and-conquer based on 2-dim reduction.

b2

b1

b3
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LENSTRA-LENSTRA-LOVÁSZ (LLL) REDUCTION (1982)

~b?
i =~bi�

i�1

∑
j=1
µi, j~b?

j where µi, j =
h~bi,~b?

ji
k~b?

jk2

• A basis is LLL-reduced forε>0 if and only if

➤ it is size-reduced |µi, j|
1
2

➤ Lovász’ conditions are satisfied

) k~b?i�1k2 
✓
4

3
+ "0

◆
k~b?i k2

(1� ")k~b?i�1k2  k~b?i + µi,i�1
~b?i�1k2



DESCRIPTION OF THE LLL ALGORITHM

• While the basis is not LLL-reduced
➤ Size-reduce the basis
➤ If Lovász’ condition does not hold for some pair (i-1,i): 

swap bi-1 and bi.
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DESCRIPTION OF THE LLL ALGORITHM

• Input: (b1,b2,…,bd) basis of L and ε>0. 

• LLL-reduce (π(b2),…,π(bd)) where π is the projection over b1⟘.

• Size-reduce so that ||bi||2≤ ||π(bi)||2+||b1||2/4

• If ||b2|| ≤ (1-ε)||b1||, swap(b1, b2) and restart, otherwise stop.
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EVOLUTION OF GRAM-SCHMIDT

• During LLL reduction:

➤ Mini ||b*i|| never decreases.

➤ Maxi ||b*i|| never increases.

➤ Each vol(b1,...,bi) never increases.

➤ The only LLL operations that modify the b*i’s are swaps.
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THE IMPACT OF SWAP

• We swap bi-1 and bi whenever  
which implies that  

(1 − ε)∥b⃗*i−1∥
2 ≥ ∥b⃗*i + μi,i−1b⃗*i−1∥

2

∥b⃗*i−1∥ ≥ ∥b⃗*i ∥

➤ New( )=  has norm between   and , 
hence ≥√(1-ε) shorter.

b⃗*i−1 b⃗*i + μi,i−1b⃗*i−1 ∥b⃗*i ∥ 1 − ε∥b⃗*i−1∥

➤ New( ) has norm between   and

, hence ≥1/√(1-ε) longer.

b⃗*i ∥b⃗*i ∥/ 1 − ε

∥b⃗*i−1∥

• What happens to  and ?b⃗*i−1 b⃗*i

➤ [new( ),new( )] ⊆ [ , ]∥b⃗*i ∥ ∥b⃗*i−1∥ ∥b⃗*i ∥ ∥b⃗*i−1∥
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➤ Size-reduction does not modify P.
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➤ But each swap of LLL makes P decrease by a factor <= 1-ε
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WHY LLL IS POLYNOMIAL

➤ Size-reduction does not modify P.

• If the bi’s have integral coordinates, then P is a positive integer.

➤ But each swap of LLL makes P decrease by a factor <= 1-ε

• Consider the quantity P=
d

∏
i=1

k~b⇤i k2(d�i+1)

• This implies that the number of swaps is polynomially bounded. 
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REMARKS

• We did not fully prove that LLL is polynomial time, because 
we did not pay attention to the size of all temporary variables.

• We described a simple version of LLL, which is not optimized 
for implementation.
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RECAP OF LLL

• The LLL algorithm finds in polynomial time a basis such that:

|µi, j|
1
2

k~b?
i k2

k~b?
i+1k2

 4
3

and +ε

• Such bases approximate SVP to an exp factor:

γd  (4/3)(d�1)/2k~b1k 
h
(4/3+ ε)1/4

id�1
vol(L)1/d

k~bik 
h
(4/3+ ε)1/2

id�1
λi(L)
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TAKE AWAY

• Hermite’s inequality and LLL are based on two key ideas:

➤ Projection

➤ Lifting projected vectors aka size-reduction.
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THE MAGIC OF LLL

• One of the main reasons behind the popularity of LLL is that it 
performs “much better” than what the worst-case bounds 
suggest, especially in low dimension.

• This is another example of worst-case vs. “average-case” and 
the difficulty of security estimates.



ILLUSTRATION
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LLL: THEORY VS PRACTICE

• The approx factors (4/3+ε)(d-1)/4 is tight in the worst case and 
for most LLL bases of a random lattice [KiVe16].

• Experimentally, 4/3+ε ≈ 1.33 can be replaced by a smaller 
constant ≈ 1.08, for any lattice, by randomizing the input basis. 
This means that LLL biases the output distribution.

• No proof for this phenomenon, but...
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OPEN PROBLEMS

• Take a random integer lattice L.

• Let B be the Hermite normal form of L.

➤ Is is true that with overwhelming probability, after LLL-
reducing B, ||b1||≤cd-1vol(L)1/d for some c<(4/3)1/4?

➤ Can we guess the distribution of ||b1|| and the running time?



MODELLING LLL WITH SANDPILES [DKTWY22]

log
∥b⃗*i ∥

∥b⃗*i+1∥

( ∥b⃗1∥
vol(L)1/d )

1/d

If there is a swap, 

three consecutive values change: 

the middle one decreases, 

and the other two increase.



BABAI'S NEAREST PLANE ALGORITHM

• Input: a basis  of a lattice L and a target  in span(L).

•
Output: a lattice point  such that  where the 's are the 

Gram-Schmidt orthogonalization.

(b⃗1, …, b⃗n) ⃗t

⃗u ⃗t − ⃗u ∈ {
n

∑
i=1

xib⃗⋆
i , − 1/2 ≤ xi < 1/2} b⃗⋆

i

• For i=n downto 1

Compute μi =
⟨ ⃗t , ⃗bi

⋆
⟩

∥ ⃗bi
⋆
∥2

⃗t ← ⃗t − ⌊μi⌉b⃗i

⃗u =
n

∑
i=1

⌊μi⌉b⃗i

• Return
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• Using an LLL-reduced basis, Babai’s nearest plane algorithm 

approximates CVP to within an exponential factor .2 ( 2

3 )
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4

d
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(
4
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+ ε)d−i
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• Using an LLL-reduced basis, Babai’s nearest plane algorithm 

approximates CVP to within an exponential factor .2 ( 2

3 )
d

∥ ⃗t − ⃗u∥2 ≤
1
4

d

∑
i=1

∥b⃗*i ∥2 ≤
∥b⃗*d ∥2

4

d

∑
i=1

(
4
3

+ ε)d−i

• Thus, LLL approximates in poly-time both SVP and CVP to 
within an exponential factor.
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BEYOND LLL: SHORTER VECTORS

• One can improve upon the LLL approximation factor 

 or      in poly-time.( 4
3

+ ε)
(d−1)/4

vol(L)1/d ( 4
3 )

(d−1)/2

λ1(L)

• Blockwise algorithms achieve   2O(d log log d
log d )
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BEYOND LLL: FASTER

• LLL is polynomial in the bit-length of the entries.

• It is possible to:

➤ make LLL quasi-linear w.r.t. the basis coefficients.

➤ decrease the exponents of the time complexity.

➤ very fast heuristic variants are now available [RyHe23]. 
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BEYOND LLL: BEYOND Z

• LLL is defined for Z-bases.

• Generalizations of LLL are known if:

➤ Z is replaced by Z[i] or certain rings of integers: this is 
related to the security of NIST standards.

➤ The lattice has additional structure, e.g. symplectic lattices.

➤ But what does it change?


