
HERMITE’S INEQUALITY
AND THE LLL ALGORITHM

PHONG NGUYEN
http://www.di.ens.fr/~pnguyen

November 2024

http://www.di.ens.fr/~pnguyen

OVERVIEW: LATTICE ALGORITHMS

INSIGHT

INSIGHT

• The most classical problem is to prove the existence of
short lattice vectors.

INSIGHT

• The most classical problem is to prove the existence of
short lattice vectors.

• All known upper bounds on Hermite’s constant have an
algorithmic analogue:

INSIGHT

• The most classical problem is to prove the existence of
short lattice vectors.

• All known upper bounds on Hermite’s constant have an
algorithmic analogue:

• Hermite’s inequality: The LLL Algorithm

INSIGHT

• The most classical problem is to prove the existence of
short lattice vectors.

• All known upper bounds on Hermite’s constant have an
algorithmic analogue:

• Hermite’s inequality:

• Mordell’s inequality:

The LLL Algorithm

Blockwise generalizations of LLL

INSIGHT

• The most classical problem is to prove the existence of
short lattice vectors.

• All known upper bounds on Hermite’s constant have an
algorithmic analogue:

• Hermite’s inequality:

• Mordell’s inequality:

• Mordell’s proof of Minkowski’s inequality:

The LLL Algorithm

Blockwise generalizations of LLL

Worst-case to average-case reductions for SIS
and Sieve algorithms [BJN14,ADRS15]

SVP ALGORITHMS

SVP ALGORITHMS

• Poly-time approximation algorithms

SVP ALGORITHMS

• Poly-time approximation algorithms

➤ The LLL algorithm [1982]

Hendrik Lenstra László LovászArjen Lenstra

SVP ALGORITHMS

• Poly-time approximation algorithms

➤ The LLL algorithm [1982]
➤ Block generalizations by [Schnorr1987], [GHKN06], [GamaN08],

[MiWa16]

Claus Peter Schnorr

SVP ALGORITHMS

• Poly-time approximation algorithms

• Exponential exact algorithms

➤ The LLL algorithm [1982]
➤ Block generalizations by [Schnorr1987], [GHKN06], [GamaN08],

[MiWa16]

Approximation

Exact

SVP ALGORITHMS

• Poly-time approximation algorithms

• Exponential exact algorithms

➤ The LLL algorithm [1982]
➤ Block generalizations by [Schnorr1987], [GHKN06], [GamaN08],

[MiWa16]

➤ Poly-space enumeration [Pohst1981,Kannan1983,ScEu1994]

Approximation

Exact

SVP ALGORITHMS

• Poly-time approximation algorithms

• Exponential exact algorithms

➤ The LLL algorithm [1982]
➤ Block generalizations by [Schnorr1987], [GHKN06], [GamaN08],

[MiWa16]

➤ Poly-space enumeration [Pohst1981,Kannan1983,ScEu1994]
➤ Exp-space sieving [AKS01,MV10,ADRS15]

Approximation

Exact

SVP ALGORITHMS

• Poly-time approximation algorithms

• Exponential exact algorithms

➤ The LLL algorithm [1982]
➤ Block generalizations by [Schnorr1987], [GHKN06], [GamaN08],

[MiWa16]

➤ Poly-space enumeration [Pohst1981,Kannan1983,ScEu1994]
➤ Exp-space sieving [AKS01,MV10,ADRS15]

Both are complementary

Approximation

Exact

• Proving Hermite's Inequality

TODAY: HERMITE’S INEQUALITY AND THE LLL ALGORITHM

• The LLL Algorithm

• Proving Hermite's Inequality

TODAY: HERMITE’S INEQUALITY AND THE LLL ALGORITHM

• The LLL Algorithm
➤ Gram-Schmidt Orthogonalization

➤ Size Reduction

➤ Hermite Reduction

➤ The LLL Algorithm

➤ Analysis of LLL

PROVING
HERMITE'S

INEQUALITY

HERMITE’S INEQUALITY

• Hermite proved in 1850: in any d-rank lattice L, there exists a
non-zero v in L s.t.

∥ ⃗v∥ ≤ (4
3)

(d−1)/4

vol(L)1/d

HERMITE’S INEQUALITY

• Hermite proved in 1850: in any d-rank lattice L, there exists a
non-zero v in L s.t.

• [LLL82] finds in polynomial time a non-zero lattice vector of
norm ≤ (4/3+ε)(d-1)/4vol(L)1/d. It is an algorithmic version of
Hermite’s inequality.

∥ ⃗v∥ ≤ (4
3)

(d−1)/4

vol(L)1/d

PROOF OF HERMITE’S INEQUALITY

• Induction over d: obvious for d=1.

PROOF OF HERMITE’S INEQUALITY

• Induction over d: obvious for d=1.

• Let b1 be a shortest vector of L, and π the projection over b1⟘.

• Let π(b2) be a shortest vector of π(L).

PROOF OF HERMITE’S INEQUALITY

• Induction over d: obvious for d=1.

• Let b1 be a shortest vector of L, and π the projection over b1⟘.

• Let π(b2) be a shortest vector of π(L).

• We can make sure by lifting that:

||b2||2≤ ||π(b2)||2+||b1||2/4 (size-reduction)

PROOF OF HERMITE’S INEQUALITY

• Induction over d: obvious for d=1.

• Let b1 be a shortest vector of L, and π the projection over b1⟘.

• Let π(b2) be a shortest vector of π(L).

• We can make sure by lifting that:

||b2||2≤ ||π(b2)||2+||b1||2/4 (size-reduction)

• On the other hand,

||b1||≤||b2|| and vol(π(L))=vol(L)/||b1||.

QUESTION

QUESTION

• Is the proof constructive?

QUESTION

• Is the proof constructive?

• Does it build a non-zero lattice vector satisfying Hermite’s
inequality:

k~b1k 
✓
4

3

◆(d�1)/4

vol(L)1/d

AN ALGORITHMIC PROOF

• Let b1 be a primitive vector of L, and π the projection over b1⟘.

• Find recursively π(b2)∈π(L) satisfying Hermite’s inequality.

AN ALGORITHMIC PROOF

• Let b1 be a primitive vector of L, and π the projection over b1⟘.

• Size-reduce so that ||b2||2≤ ||π(b2)||2+||b1||2/4

• Find recursively π(b2)∈π(L) satisfying Hermite’s inequality.

AN ALGORITHMIC PROOF

• Let b1 be a primitive vector of L, and π the projection over b1⟘.

• Size-reduce so that ||b2||2≤ ||π(b2)||2+||b1||2/4

• Find recursively π(b2)∈π(L) satisfying Hermite’s inequality.

• If ||b2|| < ||b1||, swap(b1, b2) and restart, otherwise stop.

AN ALGORITHMIC PROOF

• This algorithm will terminate and output a non-zero lattice vector
satisfying Hermite’s inequality:

k~b1k 
✓
4

3

◆(d�1)/4

vol(L)1/d

AN ALGORITHMIC PROOF

• This algorithm will terminate and output a non-zero lattice vector
satisfying Hermite’s inequality:

• But it may not be efficient: LLL does better by strengthening
the test ||b2|| < ||b1||.

k~b1k 
✓
4

3

◆(d�1)/4

vol(L)1/d

MORE DETAILS

• We need Gram-Schmidt again…

THE LLL
ALGORITHM

REMEMBER
GRAM-SCHMIDT ORTHOGONALIZATION

RECALL GRAM-SCHMIDT

• Let b1,…,bn∈Rm.

• Its Gram-Schmidt Orthogonalization is b1*,…,bn*∈Rm defined
as:

➤ b1* = b1

➤ For 2≤i≤n, bi* = projection of bi over span(b1,…,bi-1)⊥

FORMULA

• Let b1,…,bn∈Rm be linearly independent.

• Then all bj*≠0.

FORMULA

• Let b1,…,bn∈Rm be linearly independent.

• Then all bj*≠0.

• For 1≤j<i≤n, let µi,j =
h~bi,~b⇤j i
k~b⇤jk2

FORMULA

• Let b1,…,bn∈Rm be linearly independent.

• Then all bj*≠0.

• For 1≤j<i≤n, let µi,j =
h~bi,~b⇤j i
k~b⇤jk2

• Then: ~b?
1 =~b1 ~b?

i =~bi�
i�1

∑
j=1
µi, j~b?

j

REMINDER

➤ If b1,…,bn∈Zm are linearly independent, we can compute
efficiently the rational , . More
precisely, we can compute the integers

 and

μi,j and ∥b⃗*i ∥2 ∈ ℚ b⃗*i ∈ ℚm

di = Gram(b⃗1, …, b⃗i) =
i

∏
j=1

∥b⃗*j ∥2 λi,j = djμi,j⟨b⃗i, b⃗*j ⟩/∥b⃗*j ∥2

~b⇤i = ~bi �
i�1X

j=1

�i,j

dj
~b⇤j

k~b⇤i k2 =
di

di�1

REMEMBER
SIZE REDUCTION

REMINDER: SIZE-REDUCTION

• Let b1,…,bd∈Zm be linearly independent.

• B=(b1,…,bd) is size-reduced if all |µi, j|
1
2

REMINDER: SIZE-REDUCTION

• Let b1,…,bd∈Zm be linearly independent.

• Th: There is an efficient algorithm to size-reduce B, without
changing the Gram-Schmidt vectors.

• B=(b1,…,bd) is size-reduced if all |µi, j|
1
2

VISUALIZING SIZE-REDUCTION

• If we take an appropriate orthonormal basis, the matrix of the
lattice basis becomes triangular.

0

BBBBB@

k~b⇤1k 0 0 . . . 0
µ2,1k~b⇤1k k~b⇤2k 0 . . . 0
µ3,1k~b⇤1kµ3,2k~b⇤2kk~b⇤3k . . . 0

...
µd,1k~b⇤1kµd,2k~b⇤2k . . . µd,d�1k~b⇤d�1kk~b⇤dk

1

CCCCCA

SIZE-REDUCTION ALGORITHM

SIZE-REDUCTION ALGORITHM

• For i = 2 to d

•For j = i-1 downto 1
➤ Size-reduce bi with respect to bj: make |μi,j| ≤ 1/2 by

bi := bi-round(μi,j)bj

➤ Update all μi,j’ for j’≤j.

SIZE-REDUCTION ALGORITHM

• For i = 2 to d

•For j = i-1 downto 1
➤ Size-reduce bi with respect to bj: make |μi,j| ≤ 1/2 by

bi := bi-round(μi,j)bj

➤ Update all μi,j’ for j’≤j.

• The translation does not affect the previous μi’,j’ where i’ < i, or
i’=i and j’>j.

HERMITE REDUCTION

HERMITE’S REDUCTION

HERMITE’S REDUCTION

• Hermite proved the existence of bases such that:

|µi, j|
1
2

k~b?
i k2

k~b?
i+1k2

 4
3

and

HERMITE’S REDUCTION

• Hermite proved the existence of bases such that:

|µi, j|
1
2

k~b?
i k2

k~b?
i+1k2

 4
3

and

• Such bases approximate SVP to an exp factor:

k~b1k 
h
(4/3)1/4

id�1
vol(L)1/d

k~bik 
h
(4/3)1/2

id�1
λi(L)

γd  (4/3)(d�1)/2

0

BBBBB@

k~b⇤1k 0 0 . . . 0
µ2,1k~b⇤1k k~b⇤2k 0 . . . 0
µ3,1k~b⇤1kµ3,2k~b⇤2kk~b⇤3k . . . 0

...
µd,1k~b⇤1kµd,2k~b⇤2k . . . µd,d�1k~b⇤d�1kk~b⇤dk

1

CCCCCA

GRAPHICALLY

• Condition 1 is over off-diagonal coeffs: size-reduction.

• Condition 2 is over diagonal coeffs.

PROOFS

➤ Hermite factor: so

therefore

➤ Approximating SVP:

 so

. Generalize this to .

∥b⃗*i ∥ ≥
3
4

∥b⃗*i−1∥ ≥ . . . ≥
3
4

i−1

∥b⃗1∥

vol(L) =
d

∏
i=1

∥b⃗*i ∥ ≥
d

∏
i=1

3
4

i−1

∥b⃗1∥ = ∥b⃗1∥d 3
4

1+2+…+(d−1)

∥b⃗1∥ ≤ (4
3)

(d−1)/4

vol(L)1/d

λ1(L) ≥ min
i

∥b⃗*i ∥ ≥ min
i

3
4

i−1

∥b⃗1∥ =
3
4

d−1

∥b⃗1∥

∥b⃗1∥ ≤ (4
3)

(d−1)/2

λ1(L) ∥b⃗i∥ ≤ (4
3)

(d−1)/2

λi(L)

COMPUTING HERMITE REDUCTION

COMPUTING HERMITE REDUCTION

• Hermite proved the existence of bases s.t.:

|µi, j|
1
2

k~b?
i k2

k~b?
i+1k2

 4
3

and

• By relaxing the 4/3, [LLL1982] showed how to compute such a
basis in polynomial time.

COMPUTING HERMITE REDUCTION

• Hermite proved the existence of bases s.t.:

|µi, j|
1
2

k~b?
i k2

k~b?
i+1k2

 4
3

and

THE LLL ALGORITHM

HOW LLL WORKS

• LLL is an elegant divide-and-conquer based on 2-dim reduction.

b2

b1

b3

LENSTRA-LENSTRA-LOVÁSZ (LLL) REDUCTION (1982)

LENSTRA-LENSTRA-LOVÁSZ (LLL) REDUCTION (1982)

~b?
i =~bi�

i�1

∑
j=1
µi, j~b?

j where µi, j =
h~bi,~b?

ji
k~b?

jk2

LENSTRA-LENSTRA-LOVÁSZ (LLL) REDUCTION (1982)

~b?
i =~bi�

i�1

∑
j=1
µi, j~b?

j where µi, j =
h~bi,~b?

ji
k~b?

jk2

• A basis is LLL-reduced forε>0 if and only if

LENSTRA-LENSTRA-LOVÁSZ (LLL) REDUCTION (1982)

~b?
i =~bi�

i�1

∑
j=1
µi, j~b?

j where µi, j =
h~bi,~b?

ji
k~b?

jk2

• A basis is LLL-reduced forε>0 if and only if

➤ it is size-reduced |µi, j|
1
2

LENSTRA-LENSTRA-LOVÁSZ (LLL) REDUCTION (1982)

~b?
i =~bi�

i�1

∑
j=1
µi, j~b?

j where µi, j =
h~bi,~b?

ji
k~b?

jk2

• A basis is LLL-reduced forε>0 if and only if

➤ it is size-reduced |µi, j|
1
2

➤ Lovász’ conditions are satisfied

) k~b?i�1k2 
✓
4

3
+ "0

◆
k~b?i k2

(1� ")k~b?i�1k2  k~b?i + µi,i�1
~b?i�1k2

DESCRIPTION OF THE LLL ALGORITHM

• While the basis is not LLL-reduced
➤ Size-reduce the basis
➤ If Lovász’ condition does not hold for some pair (i-1,i):

swap bi-1 and bi.

DESCRIPTION OF THE LLL ALGORITHM

DESCRIPTION OF THE LLL ALGORITHM

• Input: (b1,b2,…,bd) basis of L and ε>0.

DESCRIPTION OF THE LLL ALGORITHM

• Input: (b1,b2,…,bd) basis of L and ε>0.

• LLL-reduce (π(b2),…,π(bd)) where π is the projection over b1⟘.

• Size-reduce so that ||bi||2≤ ||π(bi)||2+||b1||2/4

DESCRIPTION OF THE LLL ALGORITHM

• Input: (b1,b2,…,bd) basis of L and ε>0.

• LLL-reduce (π(b2),…,π(bd)) where π is the projection over b1⟘.

• Size-reduce so that ||bi||2≤ ||π(bi)||2+||b1||2/4

• If ||b2|| ≤ (1-ε)||b1||, swap(b1, b2) and restart, otherwise stop.

ANALYSIS OF LLL

EVOLUTION OF GRAM-SCHMIDT

EVOLUTION OF GRAM-SCHMIDT

• During LLL reduction:

EVOLUTION OF GRAM-SCHMIDT

• During LLL reduction:

➤ Mini ||b*i|| never decreases.

EVOLUTION OF GRAM-SCHMIDT

• During LLL reduction:

➤ Mini ||b*i|| never decreases.

➤ Maxi ||b*i|| never increases.

EVOLUTION OF GRAM-SCHMIDT

• During LLL reduction:

➤ Mini ||b*i|| never decreases.

➤ Maxi ||b*i|| never increases.

➤ Each vol(b1,...,bi) never increases.

EVOLUTION OF GRAM-SCHMIDT

• During LLL reduction:

➤ Mini ||b*i|| never decreases.

➤ Maxi ||b*i|| never increases.

➤ Each vol(b1,...,bi) never increases.

➤ The only LLL operations that modify the b*i’s are swaps.

THE IMPACT OF SWAP

THE IMPACT OF SWAP

• We swap bi-1 and bi whenever
which implies that

(1 − ε)∥b⃗*i−1∥
2 ≥ ∥b⃗*i + μi,i−1b⃗*i−1∥

2

∥b⃗*i−1∥ ≥ ∥b⃗*i ∥

THE IMPACT OF SWAP

• We swap bi-1 and bi whenever
which implies that

(1 − ε)∥b⃗*i−1∥
2 ≥ ∥b⃗*i + μi,i−1b⃗*i−1∥

2

∥b⃗*i−1∥ ≥ ∥b⃗*i ∥
• What happens to and ?b⃗*i−1 b⃗*i

THE IMPACT OF SWAP

• We swap bi-1 and bi whenever
which implies that

(1 − ε)∥b⃗*i−1∥
2 ≥ ∥b⃗*i + μi,i−1b⃗*i−1∥

2

∥b⃗*i−1∥ ≥ ∥b⃗*i ∥

➤ New()= has norm between and ,
hence ≥√(1-ε) shorter.

b⃗*i−1 b⃗*i + μi,i−1b⃗*i−1 ∥b⃗*i ∥ 1 − ε∥b⃗*i−1∥

• What happens to and ?b⃗*i−1 b⃗*i

THE IMPACT OF SWAP

• We swap bi-1 and bi whenever
which implies that

(1 − ε)∥b⃗*i−1∥
2 ≥ ∥b⃗*i + μi,i−1b⃗*i−1∥

2

∥b⃗*i−1∥ ≥ ∥b⃗*i ∥

➤ New()= has norm between and ,
hence ≥√(1-ε) shorter.

b⃗*i−1 b⃗*i + μi,i−1b⃗*i−1 ∥b⃗*i ∥ 1 − ε∥b⃗*i−1∥

➤ New() has norm between and

, hence ≥1/√(1-ε) longer.

b⃗*i ∥b⃗*i ∥/ 1 − ε

∥b⃗*i−1∥

• What happens to and ?b⃗*i−1 b⃗*i

THE IMPACT OF SWAP

• We swap bi-1 and bi whenever
which implies that

(1 − ε)∥b⃗*i−1∥
2 ≥ ∥b⃗*i + μi,i−1b⃗*i−1∥

2

∥b⃗*i−1∥ ≥ ∥b⃗*i ∥

➤ New()= has norm between and ,
hence ≥√(1-ε) shorter.

b⃗*i−1 b⃗*i + μi,i−1b⃗*i−1 ∥b⃗*i ∥ 1 − ε∥b⃗*i−1∥

➤ New() has norm between and

, hence ≥1/√(1-ε) longer.

b⃗*i ∥b⃗*i ∥/ 1 − ε

∥b⃗*i−1∥

• What happens to and ?b⃗*i−1 b⃗*i

➤ [new(),new()] ⊆ [,]∥b⃗*i ∥ ∥b⃗*i−1∥ ∥b⃗*i ∥ ∥b⃗*i−1∥

WHY LLL IS POLYNOMIAL

WHY LLL IS POLYNOMIAL

• Consider the quantity P=
d

∏
i=1

k~b⇤i k2(d�i+1)

WHY LLL IS POLYNOMIAL

• If the bi’s have integral coordinates, then P is a positive integer.

• Consider the quantity P=
d

∏
i=1

k~b⇤i k2(d�i+1)

WHY LLL IS POLYNOMIAL

➤ Size-reduction does not modify P.

• If the bi’s have integral coordinates, then P is a positive integer.

• Consider the quantity P=
d

∏
i=1

k~b⇤i k2(d�i+1)

WHY LLL IS POLYNOMIAL

➤ Size-reduction does not modify P.

• If the bi’s have integral coordinates, then P is a positive integer.

➤ But each swap of LLL makes P decrease by a factor <= 1-ε

• Consider the quantity P=
d

∏
i=1

k~b⇤i k2(d�i+1)

WHY LLL IS POLYNOMIAL

➤ Size-reduction does not modify P.

• If the bi’s have integral coordinates, then P is a positive integer.

➤ But each swap of LLL makes P decrease by a factor <= 1-ε

• Consider the quantity P=
d

∏
i=1

k~b⇤i k2(d�i+1)

• This implies that the number of swaps is polynomially bounded.

REMARKS

REMARKS

• We described a simple version of LLL, which is not optimized
for implementation.

REMARKS

• We did not fully prove that LLL is polynomial time, because
we did not pay attention to the size of all temporary variables.

• We described a simple version of LLL, which is not optimized
for implementation.

RECAP OF LLL

RECAP OF LLL

• The LLL algorithm finds in polynomial time a basis such that:

|µi, j|
1
2

k~b?
i k2

k~b?
i+1k2

 4
3

and +ε

RECAP OF LLL

• The LLL algorithm finds in polynomial time a basis such that:

|µi, j|
1
2

k~b?
i k2

k~b?
i+1k2

 4
3

and +ε

• Such bases approximate SVP to an exp factor:

γd  (4/3)(d�1)/2k~b1k 
h
(4/3+ ε)1/4

id�1
vol(L)1/d

k~bik 
h
(4/3+ ε)1/2

id�1
λi(L)

TAKE AWAY

TAKE AWAY

• Hermite’s inequality and LLL are based on two key ideas:

TAKE AWAY

• Hermite’s inequality and LLL are based on two key ideas:

➤ Projection

TAKE AWAY

• Hermite’s inequality and LLL are based on two key ideas:

➤ Projection

➤ Lifting projected vectors aka size-reduction.

THE MAGIC OF LLL

THE MAGIC OF LLL

• One of the main reasons behind the popularity of LLL is that it
performs “much better” than what the worst-case bounds
suggest, especially in low dimension.

THE MAGIC OF LLL

• One of the main reasons behind the popularity of LLL is that it
performs “much better” than what the worst-case bounds
suggest, especially in low dimension.

• This is another example of worst-case vs. “average-case” and
the difficulty of security estimates.

ILLUSTRATION

log
∥b⃗1∥

vol(L)1/d

 0.25

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 0 20 40 60 80 100 120 140 160

H
er

m
ite

 F
ac

to
r

dimension

LLL
bound theoretical worst-case bound

experimental value

LLL: THEORY VS PRACTICE

LLL: THEORY VS PRACTICE

• The approx factors (4/3+ε)(d-1)/4 is tight in the worst case and
for most LLL bases of a random lattice [KiVe16].

LLL: THEORY VS PRACTICE

• The approx factors (4/3+ε)(d-1)/4 is tight in the worst case and
for most LLL bases of a random lattice [KiVe16].

• Experimentally, 4/3+ε ≈ 1.33 can be replaced by a smaller
constant ≈ 1.08, for any lattice, by randomizing the input basis.
This means that LLL biases the output distribution.

LLL: THEORY VS PRACTICE

• The approx factors (4/3+ε)(d-1)/4 is tight in the worst case and
for most LLL bases of a random lattice [KiVe16].

• Experimentally, 4/3+ε ≈ 1.33 can be replaced by a smaller
constant ≈ 1.08, for any lattice, by randomizing the input basis.
This means that LLL biases the output distribution.

• No proof for this phenomenon, but...

LLL IN THE REAL WORLD

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

Distribution of

 far from densest lattice

b⃗*i + μi,i−1b⃗*i−1

(b⃗*i−1, b⃗*i + μi,i−1b⃗*i−1)

OPEN PROBLEMS

OPEN PROBLEMS

• Take a random integer lattice L.

• Let B be the Hermite normal form of L.

OPEN PROBLEMS

• Take a random integer lattice L.

• Let B be the Hermite normal form of L.

➤ Is is true that with overwhelming probability, after LLL-
reducing B, ||b1||≤cd-1vol(L)1/d for some c<(4/3)1/4?

OPEN PROBLEMS

• Take a random integer lattice L.

• Let B be the Hermite normal form of L.

➤ Is is true that with overwhelming probability, after LLL-
reducing B, ||b1||≤cd-1vol(L)1/d for some c<(4/3)1/4?

➤ Can we guess the distribution of ||b1|| and the running time?

MODELLING LLL WITH SANDPILES [DKTWY22]

log
∥b⃗*i ∥

∥b⃗*i+1∥

(∥b⃗1∥
vol(L)1/d)

1/d

If there is a swap,

three consecutive values change:

the middle one decreases,

and the other two increase.

BABAI'S NEAREST PLANE ALGORITHM

• Input: a basis of a lattice L and a target in span(L).

•
Output: a lattice point such that where the 's are the

Gram-Schmidt orthogonalization.

(b⃗1, …, b⃗n) ⃗t

⃗u ⃗t − ⃗u ∈ {
n

∑
i=1

xib⃗⋆
i , − 1/2 ≤ xi < 1/2} b⃗⋆

i

• For i=n downto 1

Compute μi =
⟨ ⃗t , ⃗bi

⋆
⟩

∥ ⃗bi
⋆
∥2

⃗t ← ⃗t − ⌊μi⌉b⃗i

⃗u =
n

∑
i=1

⌊μi⌉b⃗i

• Return

PAIRING LLL WITH BABAI’S NEAREST PLANE

PAIRING LLL WITH BABAI’S NEAREST PLANE

• Using an LLL-reduced basis, Babai’s nearest plane algorithm

approximates CVP to within an exponential factor .2 (2

3)
d

∥ ⃗t − ⃗u∥2 ≤
1
4

d

∑
i=1

∥b⃗*i ∥2 ≤
∥b⃗*d ∥2

4

d

∑
i=1

(
4
3

+ ε)d−i

PAIRING LLL WITH BABAI’S NEAREST PLANE

• Using an LLL-reduced basis, Babai’s nearest plane algorithm

approximates CVP to within an exponential factor .2 (2

3)
d

∥ ⃗t − ⃗u∥2 ≤
1
4

d

∑
i=1

∥b⃗*i ∥2 ≤
∥b⃗*d ∥2

4

d

∑
i=1

(
4
3

+ ε)d−i

• Thus, LLL approximates in poly-time both SVP and CVP to
within an exponential factor.

BEYOND LLL: SHORTER VECTORS

BEYOND LLL: SHORTER VECTORS

• One can improve upon the LLL approximation factor

 or in poly-time.(4
3

+ ε)
(d−1)/4

vol(L)1/d (4
3)

(d−1)/2

λ1(L)

BEYOND LLL: SHORTER VECTORS

• One can improve upon the LLL approximation factor

 or in poly-time.(4
3

+ ε)
(d−1)/4

vol(L)1/d (4
3)

(d−1)/2

λ1(L)

• Blockwise algorithms achieve 2O(d log log d
log d)

BEYOND LLL: FASTER

➤ very fast heuristic variants are now available [RyHe23].

BEYOND LLL: FASTER

• LLL is polynomial in the bit-length of the entries.

➤ very fast heuristic variants are now available [RyHe23].

BEYOND LLL: FASTER

• LLL is polynomial in the bit-length of the entries.

• It is possible to:

➤ very fast heuristic variants are now available [RyHe23].

BEYOND LLL: FASTER

• LLL is polynomial in the bit-length of the entries.

• It is possible to:

➤ make LLL quasi-linear w.r.t. the basis coefficients.

➤ very fast heuristic variants are now available [RyHe23].

BEYOND LLL: FASTER

• LLL is polynomial in the bit-length of the entries.

• It is possible to:

➤ make LLL quasi-linear w.r.t. the basis coefficients.

➤ decrease the exponents of the time complexity.

➤ very fast heuristic variants are now available [RyHe23].

BEYOND LLL: BEYOND Z

BEYOND LLL: BEYOND Z

• LLL is defined for Z-bases.

BEYOND LLL: BEYOND Z

• LLL is defined for Z-bases.

• Generalizations of LLL are known if:

BEYOND LLL: BEYOND Z

• LLL is defined for Z-bases.

• Generalizations of LLL are known if:

➤ Z is replaced by Z[i] or certain rings of integers: this is
related to the security of NIST standards.

BEYOND LLL: BEYOND Z

• LLL is defined for Z-bases.

• Generalizations of LLL are known if:

➤ Z is replaced by Z[i] or certain rings of integers: this is
related to the security of NIST standards.

➤ The lattice has additional structure, e.g. symplectic lattices.

BEYOND LLL: BEYOND Z

• LLL is defined for Z-bases.

• Generalizations of LLL are known if:

➤ Z is replaced by Z[i] or certain rings of integers: this is
related to the security of NIST standards.

➤ The lattice has additional structure, e.g. symplectic lattices.

➤ But what does it change?

