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Enumeration

The simplest method to solve hard lattice 
problems, going back to the 70s.

Input: a lattice L and a small ball S⊆Rn s.t. 
#(L∩S) is « small ».

Output: All points in L∩S.

Drawback: running-time typically 
superexponential, much larger than #(L∩S).



Basis and Filtration

If (b1,…,bd) is a basis of L:

Li := L(b1,…,bi) is a sublattice of L for 1≤i≤d

(L1,…,Ld) is a flag of L.

If i≤j, the quotient Lj/Li is a lattice of 
rank j-i s.t. vol(Lj/Li)=vol(Lj)/vol(Li)



Enumeration Insight

Key ideas:

Projections never increase norms:            
if ||v||≤R, then ||v mod Li||≤R.

L/Lj is a lower-rank lattice, whose short 
vectors can be lifted into short vectors of 
L/Li if i<j.



Enumeration

A) Reduce a basis.

B) Exhaustive search all vectors ≤ R by 
enumerating all short vectors in L/Ld-1,             
then L/Ld-2 … until L

Usually, B) is much more expensive than A). 

If the basis is LLL-reduced, B) costs       .

[Kannan1983] showed that A) and B) can be done 
in               poly-time operations.

2O(d2)

2O(d lnd)



More precisely…

Consider a lower-triangular matrix:

b1,1

b2,1 b2,2

b3,1 b3,2 b3,3

b4,1 b4,2 b4,3 b4,4

b5,1 b5,2 b5,3 b5,4 b5,5

x1

x2

x3

x4

x5

If norm ≤ R, then

(x5b5,5)2 ≤ R2


(x4b4,4+x5b5,4)2+
(x5b5,5)2 ≤ R2

…

So enumerate x5, 
then x4, etc.




Enumeration Tree

π1(x)=x mod Ln-1 π1(x) 
xn-1

...

π2(x) π2(x) π2(x) π2(x) π2(x) 

xn xn xn

π3(x) π3(x) 
...

x 

Root

Leaves

xn-1xn-1xn-1xn-1

xn-2xn-2



Enumeration tree

Depth k contains all projected lattice 
points ||πk(y)|| (y∈L) of norm ≤ R.

The leaves are all y∈L of norm ≤ R. 

Enumeration searches the whole tree 
to compute all leaves, compare their 
norm to output a shortest vector x∈L.



Complexity of Enumeration

The complexity of enumeration is, up to a 
polynomial factor, the number of lattice 
points in all projected lattices inside the 
ball of radius R.

This number can be upper bounded, but 
experimental numbers are close to the 
Gaussian heuristic ∑1≤k≤d vk(R)/vol(πk(L)), 
where vk(R) is the volume of the k-dim 
ball of radius R.



Accuracy of Gaussian Heuristic

Depth k

Log(
Number
Lattice
Points)



Accuracy of Gaussian Heuristic

Distribution of Log(Number of nodes) 



Shape
For typical reduced bases, the Gram-
Schmidt norms decrease geometrically 
in practice: most of the nodes are in 
middle depths k≈n/2. Their number is 
super-exponential.



Optimizing the Basis

The basis should be chosen to 
minimize ∑1≤k≤d vk(R)/vol(πk(L)) 
especially for k≈n/2, i.e. to minimize 
vol(b1,…,bn/2).



Enumeration is based on one key idea

Filtration to decrease the lattice rank


Once parameters are fixed, it is possible 
to reasonably estimate the running time

Enumeration can be significantly sped up 
in practice using pruning, which slices a 
ball in a randomized manner.

Take Away



Speeding Up 
Enumeration 
by Pruning



Speeding Up Enumeration

Assume that we do not need all L∩S:

Can we make enumeration faster if 
we only need to find one vector?



Enumeration with Pruning 
[ScEu94,ScHo95,GNR10]

Input: a lattice L, a ball S⊆Rn and a 
pruning set P⊆Rn.

Output: All points in L∩S∩P=(L∩P)∩S.

Pros: Enumerating L∩S∩P can be much 
faster than L∩S.

Cons: Maybe L∩S∩P ⊆ {0}.



Analyzing Pruned Enumeration 
[GNR10] Framework

Enumerating L∩S∩P is deterministic, but:

The set P is randomized: it depends on a 
(random) reduced basis.

The success probability is Pr(L∩S∩P ⊈ {0}).


#(L∩S∩P) « should be » ≈vol(S∩P)/covol(L) 
(Gaussian heuristic).



Extreme Pruning [GNR10]

Repeat until success

Generate P by reducing a “random” basis.

Enumerate(L∩S∩P)


Can be much faster than enumeration, even 
if Pr(L∩S∩P ⊈ {0}) is tiny.



Two Kinds of Pruning

Cylinder Pruning ([GNR10] generalizing 
[ScEu94,ScHo95]): P is a cylinder 
intersection.


Discrete Pruning ([AoN17] generalizing 
[Sc03,FuKa15]): P is a union of boxes.



Pruned enumeration is based on one 
more key idea


Slicing the ball in a randomized 
manner


Once all parameters are fixed, it is 
possible to reasonably estimate the 
running time. But difficult to optimize.

Take Away



Cylinder 
Pruning



Cylinder Pruning

[ScEu94,ScHo95], revisited in [GNR10].

Idea: random projections are shorter.

We can prune the gigantic tree.

Pruned enumeration cuts 
off many branches, by 
bounding projections.



Intuition

Enumeration says:                             
If ||x||≤R, then ||πk(x)||≤R for all 1≤k≤n

But if x is random in the ball of radius R, 
its projection are shorter.

For instance, we would expect                   
||πn/2(x)||≈R/√2.



Cylinder Pruning

Replace each inequality ||πk(x)||≤R             
by ||πk(x)||≤Rk R for each index k in 
{1,...,n}, where 0<Rk≤1.

The enumeration tree is pruned with P = 
{x∈Rn s.t. ||πk(x)||≤Rk R for 1≤k≤n}. Again, 
one searches the tree to find all leaves.

The algorithm is faster because there are 
less nodes.



Enumeration with cylinder pruning

The complexity is, again up to a 
polynomial factor, a number of lattice 
points in projected lattices, but instead of 
balls, we have to consider new sets, 
whose volume might be harder to 
compute.



Balls Replaced
by Cylinder Intersections



More Precisely

The k-dim ball of radius R is 
replaced by: {(y1,...,yk)∈Rk s.t. for all 
1≤i≤k, y12+...+yi2 ≤ Ri2 x R2}.

Its volume is Vk(R) times the 
probability Pk that for (y1,...,yk) 
chosen uniformly at random from 
the unit ball, y12+...+yi2 ≤ Ri2 for all 
1≤i≤k.



In other words

The heuristic complexity of enumeration 
∑1≤k≤d vk(R)/vol(πd-k+1(L)) is reduced to      
∑1≤k≤d vk(R)Pk/vol(πd-k+1(L)).

At depth k, the number of nodes is 
decreases by the multiplicative factor Pk.   



Technical Problem [GNR10]

To analyze and select good parameters for 
cylinder pruning, we need to estimate the 
volume of:


C(R1,…,Rn)={(y1,…,yn)∈Rn s.t. for all 1≤k≤n, 
y12+...+yk2 ≤ Rk2}.

This can be done efficiently thanks to 
the Dirichlet distribution and well-
chosen polytopes.



[ANSS18] 
Limits to Cylinder Pruning

Th: If C(R1,…,Rn) achieves a success 
probability ≥α, one can compute α1,…,αn 

>0 s.t. for all k, Rk≥αk and vol(C(R1,…,Rk)) 
≥ Vk(αk).


This is based on isoperimetric inequalities.



Isoperimetric Inequalities

Th: In Rn, among all Borel sets of given 
measure, the n-dim ball has the least 
surface.

Variant: Let A be a Borel set, and B the n-
dim centered ball s.t. vol(A)=vol(B).         
Let X∈Rn with Gaussian distribution (or any 
radial pdf which decays monotonically). 
Then Pr(X∈A)≤Pr(X∈B).



Discrete 
Pruning



Lattice Partitions

Any partition of Rn=∪t∈T C(t) into 
countably many cells s.t.:


cells are disjoint: C(i)∩C(j) = ∅

each cell can be « opened » : it 
contains one and only one lattice point, 
which can be found efficiently. Given a 
tag t∈T, one can compute L∩C(t). 



Intuitively

Enum(L∩C(t))                      
≃ Egg opening



Lattice Enumeration with 
Discrete Pruning [AoN17]

Repeat until success

Select P=∪t∈U C(t) for some finite U⊆T.

Enumerate(L∩S∩P) by enumerating                        
all C(t)∩L where t∈U.


Each iteration takes #U poly-time operations 
and succeeds with Pr(L∩S∩P⊈{0}).


We need to calculate vol(S∩P)=∑t∈Uvol(S∩C(t)).

Time(Enum(L∩P)) « linear » in #(L∩P).



Issues

Which lattice partition?

How to compute vol(S∩C(t))?                          
To deduce vol(S∩P)=∑t∈U vol(S∩C(t))

How to select the set U of tags?          
We’d like the ones maximizing 
vol(S∩C(t)).



Trivial Lattice Partitions

T=Zn. Cell opening: matrix/vector product.



The « Natural » Partition [FuKa15]

T=Nn and C((t1,…,tn)) is                               
{Σixib*i s.t. -(tj+1)/2<xj≤-tj/2 or tj/2<xj≤(tj+1)/2}


Cell opening: variant of Babai’s algorithm.



B) Intersection Volumes

This discrete pruning is very easy to 
implement.

But there is one technical issue: to 
estimate the success probability, we need 
to approximate vol(S∩C(t)) for many t’s 
where:


S is a ball

C(t) is a box, or a union of symmetric 
boxes.



Let B=unit-ball and H=∏i [ai,bi] be a box. 
Compute vol(B∩H).

There are exact formulas as infinite series, 
based on Fourier transforms and Fourier 
series.

In practice, the Fast Inverse Laplace 
Transform takes less than 1s in dim 100.

Intersection of a Ball with a Box



Heuristics For Selecting Cells

The exact computation of vol(S∩H) is 
« slow ». 

Heuristic: the M cells maximizing vol(S∩C((t1,
…,tn))) are the M cells minimizing Ex∈H(||x||2).

It suffices to find the M minimal values of 
f(t1,…,tn)=∑j(3tj2+3tj+1)||bj*||2/12 over Nn. This 
can be done in time essentially M poly-time 
operations [ANS18].



Correlation Between Expectation 
and Volume

The largest-volume cells



Success probability
by Statistical Inference 

The computation of vol(S∩C(t)) is too 
« slow » to approximate ∑t∈Uvol(S∩C(t)).

So we ``select’’ a few thousands cells and… 
extrapolate!


Errors ≤ 1% in practice.

Sound success probabilities                   
for discrete pruning.



Conclusion on Enumeration

Enumeration is very useful in practice to 
find extremely short vectors. It can also 
be used to approximate with small 
factors.

But it requires pruning, whose main 
technical issue is approximating volumes 
of certain bodies: cylinder intersections 
or box-ball intersections.


