
Enumeration: Finding Short
Lattice Vectors by Exhaustive Search

Phong Nguyễn

References

Joint work with:

Nicolas Gama and Oded Regev, published at EUROCRYPT
2010: « Lattice Enumeration with Extreme Pruning ».

Yoshinori Aono, published at EUROCRYPT 2017: « Random
Sampling Revisited: Lattice Enumeration with Discrete
Pruning ».

Aono, Seito and Shikata, published at CRYPTO 2018: «
Lower Bounds on Lattice Enumeration with Extreme
Pruning ».

Aono and Shen, published at ASIACRYPT 2018: « Quantum
Lattice Enumeration and Tweaking Discrete Pruning »

Summary

Enumeration

Enumeration with Pruning

Cylinder Pruning

Discrete Pruning

Solving SVP
by

Enumeration

Enumeration

The simplest method to solve hard lattice
problems, going back to the 70s.

Input: a lattice L and a small ball S⊆Rn s.t.
#(L∩S) is « small ».

Output: All points in L∩S.

Drawback: running-time typically
superexponential, much larger than #(L∩S).

Basis and Filtration

If (b1,…,bd) is a basis of L:

Li := L(b1,…,bi) is a sublattice of L for 1≤i≤d

(L1,…,Ld) is a flag of L.

If i≤j, the quotient Lj/Li is a lattice of
rank j-i s.t. vol(Lj/Li)=vol(Lj)/vol(Li)

Enumeration Insight

Key ideas:

Projections never increase norms:
if ||v||≤R, then ||v mod Li||≤R.

L/Lj is a lower-rank lattice, whose short
vectors can be lifted into short vectors of
L/Li if i<j.

Enumeration

A) Reduce a basis.

B) Exhaustive search all vectors ≤ R by
enumerating all short vectors in L/Ld-1,
then L/Ld-2 … until L

Usually, B) is much more expensive than A).

If the basis is LLL-reduced, B) costs .

[Kannan1983] showed that A) and B) can be done
in poly-time operations.

2O(d2)

2O(d lnd)

More precisely…

Consider a lower-triangular matrix:

b1,1

b2,1 b2,2

b3,1 b3,2 b3,3

b4,1 b4,2 b4,3 b4,4

b5,1 b5,2 b5,3 b5,4 b5,5

x1

x2

x3

x4

x5

If norm ≤ R, then

(x5b5,5)2 ≤ R2

(x4b4,4+x5b5,4)2+
(x5b5,5)2 ≤ R2

…

So enumerate x5,
then x4, etc.

Enumeration Tree

π1(x)=x mod Ln-1 π1(x)
xn-1

...

π2(x) π2(x) π2(x) π2(x) π2(x)

xn xn xn

π3(x) π3(x)
...

x

Root

Leaves

xn-1xn-1xn-1xn-1

xn-2xn-2

Enumeration tree

Depth k contains all projected lattice
points ||πk(y)|| (y∈L) of norm ≤ R.

The leaves are all y∈L of norm ≤ R.

Enumeration searches the whole tree
to compute all leaves, compare their
norm to output a shortest vector x∈L.

Complexity of Enumeration

The complexity of enumeration is, up to a
polynomial factor, the number of lattice
points in all projected lattices inside the
ball of radius R.

This number can be upper bounded, but
experimental numbers are close to the
Gaussian heuristic ∑1≤k≤d vk(R)/vol(πk(L)),
where vk(R) is the volume of the k-dim
ball of radius R.

Accuracy of Gaussian Heuristic

Depth k

Log(
Number
Lattice
Points)

Accuracy of Gaussian Heuristic

Distribution of Log(Number of nodes)

Shape
For typical reduced bases, the Gram-
Schmidt norms decrease geometrically
in practice: most of the nodes are in
middle depths k≈n/2. Their number is
super-exponential.

Optimizing the Basis

The basis should be chosen to
minimize ∑1≤k≤d vk(R)/vol(πk(L))
especially for k≈n/2, i.e. to minimize
vol(b1,…,bn/2).

Enumeration is based on one key idea

Filtration to decrease the lattice rank

Once parameters are fixed, it is possible
to reasonably estimate the running time

Enumeration can be significantly sped up
in practice using pruning, which slices a
ball in a randomized manner.

Take Away

Speeding Up
Enumeration
by Pruning

Speeding Up Enumeration

Assume that we do not need all L∩S:

Can we make enumeration faster if
we only need to find one vector?

Enumeration with Pruning
[ScEu94,ScHo95,GNR10]

Input: a lattice L, a ball S⊆Rn and a
pruning set P⊆Rn.

Output: All points in L∩S∩P=(L∩P)∩S.

Pros: Enumerating L∩S∩P can be much
faster than L∩S.

Cons: Maybe L∩S∩P ⊆ {0}.

Analyzing Pruned Enumeration
[GNR10] Framework

Enumerating L∩S∩P is deterministic, but:

The set P is randomized: it depends on a
(random) reduced basis.

The success probability is Pr(L∩S∩P ⊈ {0}).

#(L∩S∩P) « should be » ≈vol(S∩P)/covol(L)
(Gaussian heuristic).

Extreme Pruning [GNR10]

Repeat until success

Generate P by reducing a “random” basis.

Enumerate(L∩S∩P)

Can be much faster than enumeration, even
if Pr(L∩S∩P ⊈ {0}) is tiny.

Two Kinds of Pruning

Cylinder Pruning ([GNR10] generalizing
[ScEu94,ScHo95]): P is a cylinder
intersection.

Discrete Pruning ([AoN17] generalizing
[Sc03,FuKa15]): P is a union of boxes.

Pruned enumeration is based on one
more key idea

Slicing the ball in a randomized
manner

Once all parameters are fixed, it is
possible to reasonably estimate the
running time. But difficult to optimize.

Take Away

Cylinder
Pruning

Cylinder Pruning

[ScEu94,ScHo95], revisited in [GNR10].

Idea: random projections are shorter.

We can prune the gigantic tree.

Pruned enumeration cuts
off many branches, by
bounding projections.

Intuition

Enumeration says:
If ||x||≤R, then ||πk(x)||≤R for all 1≤k≤n

But if x is random in the ball of radius R,
its projection are shorter.

For instance, we would expect
||πn/2(x)||≈R/√2.

Cylinder Pruning

Replace each inequality ||πk(x)||≤R
by ||πk(x)||≤Rk R for each index k in
{1,...,n}, where 0<Rk≤1.

The enumeration tree is pruned with P =
{x∈Rn s.t. ||πk(x)||≤Rk R for 1≤k≤n}. Again,
one searches the tree to find all leaves.

The algorithm is faster because there are
less nodes.

Enumeration with cylinder pruning

The complexity is, again up to a
polynomial factor, a number of lattice
points in projected lattices, but instead of
balls, we have to consider new sets,
whose volume might be harder to
compute.

Balls Replaced
by Cylinder Intersections

More Precisely

The k-dim ball of radius R is
replaced by: {(y1,...,yk)∈Rk s.t. for all
1≤i≤k, y12+...+yi2 ≤ Ri2 x R2}.

Its volume is Vk(R) times the
probability Pk that for (y1,...,yk)
chosen uniformly at random from
the unit ball, y12+...+yi2 ≤ Ri2 for all
1≤i≤k.

In other words

The heuristic complexity of enumeration
∑1≤k≤d vk(R)/vol(πd-k+1(L)) is reduced to
∑1≤k≤d vk(R)Pk/vol(πd-k+1(L)).

At depth k, the number of nodes is
decreases by the multiplicative factor Pk.

Technical Problem [GNR10]

To analyze and select good parameters for
cylinder pruning, we need to estimate the
volume of:

C(R1,…,Rn)={(y1,…,yn)∈Rn s.t. for all 1≤k≤n,
y12+...+yk2 ≤ Rk2}.

This can be done efficiently thanks to
the Dirichlet distribution and well-
chosen polytopes.

[ANSS18]
Limits to Cylinder Pruning

Th: If C(R1,…,Rn) achieves a success
probability ≥α, one can compute α1,…,αn

>0 s.t. for all k, Rk≥αk and vol(C(R1,…,Rk))
≥ Vk(αk).

This is based on isoperimetric inequalities.

Isoperimetric Inequalities

Th: In Rn, among all Borel sets of given
measure, the n-dim ball has the least
surface.

Variant: Let A be a Borel set, and B the n-
dim centered ball s.t. vol(A)=vol(B).
Let X∈Rn with Gaussian distribution (or any
radial pdf which decays monotonically).
Then Pr(X∈A)≤Pr(X∈B).

Discrete
Pruning

Lattice Partitions

Any partition of Rn=∪t∈T C(t) into
countably many cells s.t.:

cells are disjoint: C(i)∩C(j) = ∅

each cell can be « opened » : it
contains one and only one lattice point,
which can be found efficiently. Given a
tag t∈T, one can compute L∩C(t).

Intuitively

Enum(L∩C(t))
≃ Egg opening

Lattice Enumeration with
Discrete Pruning [AoN17]

Repeat until success

Select P=∪t∈U C(t) for some finite U⊆T.

Enumerate(L∩S∩P) by enumerating
all C(t)∩L where t∈U.

Each iteration takes #U poly-time operations
and succeeds with Pr(L∩S∩P⊈{0}).

We need to calculate vol(S∩P)=∑t∈Uvol(S∩C(t)).

Time(Enum(L∩P)) « linear » in #(L∩P).

Issues

Which lattice partition?

How to compute vol(S∩C(t))?
To deduce vol(S∩P)=∑t∈U vol(S∩C(t))

How to select the set U of tags?
We’d like the ones maximizing
vol(S∩C(t)).

Trivial Lattice Partitions

T=Zn. Cell opening: matrix/vector product.

The « Natural » Partition [FuKa15]

T=Nn and C((t1,…,tn)) is
{Σixib*i s.t. -(tj+1)/2<xj≤-tj/2 or tj/2<xj≤(tj+1)/2}

Cell opening: variant of Babai’s algorithm.

B) Intersection Volumes

This discrete pruning is very easy to
implement.

But there is one technical issue: to
estimate the success probability, we need
to approximate vol(S∩C(t)) for many t’s
where:

S is a ball

C(t) is a box, or a union of symmetric
boxes.

Let B=unit-ball and H=∏i [ai,bi] be a box.
Compute vol(B∩H).

There are exact formulas as infinite series,
based on Fourier transforms and Fourier
series.

In practice, the Fast Inverse Laplace
Transform takes less than 1s in dim 100.

Intersection of a Ball with a Box

Heuristics For Selecting Cells

The exact computation of vol(S∩H) is
« slow ».

Heuristic: the M cells maximizing vol(S∩C((t1,
…,tn))) are the M cells minimizing Ex∈H(||x||2).

It suffices to find the M minimal values of
f(t1,…,tn)=∑j(3tj2+3tj+1)||bj*||2/12 over Nn. This
can be done in time essentially M poly-time
operations [ANS18].

Correlation Between Expectation
and Volume

The largest-volume cells

Success probability
by Statistical Inference

The computation of vol(S∩C(t)) is too
« slow » to approximate ∑t∈Uvol(S∩C(t)).

So we ``select’’ a few thousands cells and…
extrapolate!

Errors ≤ 1% in practice.

Sound success probabilities
for discrete pruning.

Conclusion on Enumeration

Enumeration is very useful in practice to
find extremely short vectors. It can also
be used to approximate with small
factors.

But it requires pruning, whose main
technical issue is approximating volumes
of certain bodies: cylinder intersections
or box-ball intersections.

