Blockwise Reduction and Security Estimates

Phong Nguyễn http://www.di.ens.fr/~pnguyen

SVP Algorithms

• Poly-time approximation algorithms.
 • The LLL algorithm [LLL82].

- Block generalizations by [Schnorr87,GHKN06,GamaN08,MiWa16,ALNS20].
- Exponential exact algorithms.
 - Poly-space enumeration [Pohst81,Kannan83,ScEu94]
 - Exp-space sieving [AKS01, MV10].

Blockwise Algorithms

Divide and Conquer

LLL is based on a local reduction in dim 2.
Blockwise algorithms find shorter vectors than LLL by using an exact SVP-subroutine in low dim k called the blocksize.

This subroutine can be done using 2^{O(k)}
 poly-time operations [AKS01,MV10,ADRS15],
 which is poly in d if k=log d.

Mathematical Analogy

 If we show the existence of very short lattice vectors in dim k, can we prove the existence of very short lattice vectors in dim d > k?

[Mordell1944]'s inequality generalizes
 Hermite's inequality:

$$\sqrt{\gamma_d} \le \sqrt{\gamma_k}^{(d-1)/(k-1)}$$
$$\lambda_1(L) \le \sqrt{\gamma_k}^{(d-1)/(k-1)} \operatorname{vol}(L)^{1/d}$$

Approximation Algorithms for SVP

Related to upper bounds on Hermite's constant, i.e. proving the existence of short lattice vectors.
 [LLL82] corresponds to [Hermite1850]'s inequality. λ₁(L) ≤ √γ2^{d-1}vol(L)^{1/d} = (4/3)^{(d-1)/4} vol(L)^{1/d}
 Blockwise algorithms [Schnorr87, GHKN06,

GN08,MW16,ALNS20] are related to [Mordell1944]'s inequality.

 $\lambda_1(L) \le \sqrt{\gamma_k}^{(d-1)/(k-1)} \operatorname{vol}(L)^{1/d}$

Mordell's Inequality (1944)

Hermite's inequality is the k=2 particular case of Mordell's inequality:

$$\gamma_d \leq \gamma_k^{(d-1)/(k-1)}$$
 if $2 \leq k \leq d$

 All known proofs of Mordell's inequality are based on duality.

Mordell's Proof

 For Hermite's inequality, the lattice rank was decreased by considering the quotient L mod b₁.

 Duality provides another way to reduce dimensions:

◦ If L is a d-rank lattice and v∈L[×] is nonzero, then $L \cap v^{\top}$ is a (d-1)-rank sublattice.

More Details

 See Aggarwal, Li, N, Stephens-Davidowitz: Slide Reduction, Revisited
 Filling the Gaps in SVP Approximation. In CRYPTO 2020.

o https://arxiv.org/abs/1908.03724

Random Lattices and Average-Case Behaviour

Average-Case Behaviour

 Experimentally [MiWa16], not many differences between blockwise algorithms, despite different theoretical bounds.

 The old BKZ algorithm [ScEu94,CN11] is widely used in lattice record computations.

Hermite Factor Constant

BKZ Issues: Output Quality

Theoretical worst-case bounds >> Practice.

c^d vs c^{'d} with c > c['] Same phenomenon as LLL

Predicting BKZ [CN11,BSW18]

 OPredicts the approx behaviour of highblocksize BKZ (k≥50), using an efficient simulation algorithm: the minimum of most krank blocks seems to behave like random lattices.

Blocks vs Random Lattices

Security Estimates

Security Estimates

- Somewhat independent of security proofs
- Identify the best attack based on the state-of-the art
 - Find as many attacks as possible
 Identify the ``best" one
 Select keysizes/parameters accordingly

Selecting Keysizes

 [LenstraVerheul00] suggested to:
 Model the performances of the best algorithm known, based on record benchmarks.

Add a security margin by speculating on:
 Hardware improvements: Moore's law, etc.
 Algorithmic improvements

• A hardness assumption typically asks that no algorithm running in time \leq T can solve a random instance with probability $\geq \varepsilon$.

 A complexity analysis typically says that an algorithm runs in time ≤ T' for all instances (of given size).

What is Needed

- A lower bound on the running time of the algorithm.
- Or more information on the distribution of the running time: expectation and variance.
 Typically not done in cryptanalysis.

NIST submissions

- Lattice-based submissions to NIST rely on a script to assess the security level: it does not fully reflect various uncertainties.
- https://estimate-all-the-lwe-ntru-schemes.github.io/docs/
- The script says the best attack runs the SVP subroutine in some blocksize:
 - Estimate the cost of the SVP subroutine.
 - Estimate the number of calls.

Open problem

 Efficient algorithms to approximate SVP within a polynomial factor, possibly quantum or subexponential.