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SVP Al gorlthms
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o Poly-time approximation algorithms. “
o The LLL algorithm [LLL82].
o Block generalizations by
[Schnorr87,GHKNO6,GamaN0O8,MiWalé,ALNS20].

o Exponential exact algorithms.

o Poly-space enumeration [Pohst81,Kannan83,ScEu94]
o Exp-space sieving [AKSO1,MV10]. -
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Divide and Conquer
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oLLL is based on a local reduction in dim 2.

o Blockwise algorithms find shorter vectors
than LLL by using an exact SVP-subroutine
in low dim K called the blocksize.

o This subroutine can be done using 2°®
poly-time operations [AKSO1,MV10,ADRSI15],
which is poly in d if k=log d.



Mathematical Analo gy

mw&%m&mm“}mm A Pty oA Lt g ¥ vy \-S.:.Nb.#*“.‘d“'u\.%

o If we show the existence of very short
lattice vectors in dim k, can we prove
the existence of very short lattice
vectors in dim d > k?

o [Mordelll944]s inequality generalizes
Hermites inequality:

Va < \/,Tk(d—l)/(k‘—l)
)\1([4) < \/’%(d_l)/(k_l)VOl(L)l/d



Approximation Algorlthms for SVP
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o Related to upper bounds on Hermites constant,
l.e. proving the existence of short lattice vectors.

o [LLL82] corresponds to [Hermitel850]s inequality.

: 4 (d—1)/4
M) < VR = (5) vl

o Blockwise algorithms [Schnorr87, GHKNOS,
GNO8,MW16,ALNS20] are related to
[Mordelll944]s inequality.

)\1(L) < \/%(d_l)/(k_l)vol([/)l/d



Mordell’s Inequahty (1944)
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o Hermites inequality is the k=2 particular
case of Mordells inequality:

<y VED iro<p<d

o All known proofs of Mordells inequality
are based on duality.



Mordell’s Proof
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o For Hermites inequality, the lattice rank
was decreased by considering the quotient
L mod b;.

o Duality provides another way to reduce
dimensions:

oIf L is a d-rank lattice and velL* is non-
zero, then Lnv' is a (d-1)-rank sublattice.



More Details
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o See Aggarwal, Li, N, Stephens-
Davidowitz: Slide Reduction, Revisited
- Filling the Gaps in SVP
Approximation. In CRYPTO 2020.

o https://arxiv.org/abs/1908.037 24



https://arxiv.org/abs/1908.03724

Random
Lattices and
Average-Case
Behaviour




Average-Case Behaviour
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o Experimentally [MiWalé], not many
differences between blockwise
algorithms, despite different theoretical
bounds.

o The old BKZ algorithm [ScEu94,CN11] is
widely used in lattice record
computations.



Hermite Factor Constant

BKZ Issues:
Output Quality
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o Theoretical worst-case bounds >> Practice.
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Predlctmg BKZ [CN11.BSW138]
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o Predicts the approx behaviour of high-
blocksize BKZ (k2>50), using an efficient
simulation algorithm: the minimum of most k-
rank blocks seems to behave like random

lattices.

\/%(d—l)/(k—l) o UL

: “wBKZ30
becomes roughly iy

: e R =
GaussHeurlst(k)( L e . ._ K22
222 2% 25 21
Enumeration Time (clock cycles)









Security Estimates
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o Somewhat independent of security
proofs

o Identify the best attack based on the
state-of-the art

o Find as many attacks as possible
o Identify the “best” one

o Select keysizes/parameters
accordingly
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o [LenstraVerheulO0] suggested to:

o Model the performances of the best
algorithm known, based on record
benchmarks.

o Add a security margin by speculating on:
o Hardware improvements: Moores law, etc.

o Algorithmic improvements
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o A hardness assumption typically asks
that no algorithm running in time < T
can solve a random instance with
probability > €.

o A complexity analysis typically says that
an algorithm runs in time < T* for all
instances (of given size).



What 1s Needed
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o A lower bound on the running time of the
algorithm.

o Or more information on the distribution of
the running time: expectation and variance.

o Typically not done in cryptanalysis.



NIST submissions
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o Lattice-based submissions to NIST rely on a
script to assess the security level: it does
not fully reflect various uncertainties.

https://estimate-all-the-lwe-ntru-schemes.github.io/docs/

o The script says the best attack runs the SVP
subroutine in some blocksize:

o Estimate the cost of the SVP subroutine.

o Estimate the number of calls.



| Security level = logz #operations
120 | Predicted upper bounds for BKZ-Enumération
[CN11, C13, AWHT16]
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Open problem
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o Efficient algorithms to approximate SVP
within a polynomial factor, possibly quantum
or subexponential.



