
Blockwise Reduction
and Security Estimates

Phong Nguyễn
http://www.di.ens.fr/~pnguyen

http://www.di.ens.fr/~pnguyen

SVP Algorithms

Poly-time approximation algorithms.

The LLL algorithm [LLL82].

Block generalizations by
[Schnorr87,GHKN06,GamaN08,MiWa16,ALNS20].

Exponential exact algorithms.

Poly-space enumeration [Pohst81,Kannan83,ScEu94]

Exp-space sieving [AKS01,MV10].

Blockwise
Algorithms

Divide and Conquer

LLL is based on a local reduction in dim 2.

Blockwise algorithms find shorter vectors
than LLL by using an exact SVP-subroutine
in low dim k called the blocksize.

This subroutine can be done using 2O(k)
poly-time operations [AKS01,MV10,ADRS15],
which is poly in d if k=log d.

Mathematical Analogy

If we show the existence of very short
lattice vectors in dim k, can we prove
the existence of very short lattice
vectors in dim d > k?

[Mordell1944]’s inequality generalizes
Hermite’s inequality:

p
�d p

�k
(d�1)/(k�1)

�1(L)
p
�k

(d�1)/(k�1)
vol(L)1/d

Approximation Algorithms for SVP

Related to upper bounds on Hermite’s constant,
i.e. proving the existence of short lattice vectors.

[LLL82] corresponds to [Hermite1850]’s inequality.

Blockwise algorithms [Schnorr87, GHKN06,
GN08,MW16,ALNS20] are related to
[Mordell1944]’s inequality.

�1(L)
p
�2

d�1
vol(L)1/d =

✓
4

3

◆(d�1)/4

vol(L)1/d

�1(L)
p
�k

(d�1)/(k�1)
vol(L)1/d

Mordell’s Inequality (1944)

Hermite’s inequality is the k=2 particular
case of Mordell’s inequality:

All known proofs of Mordell’s inequality
are based on duality.

γd γ(d�1)/(k�1)
k if 2 k d

Mordell’s Proof

For Hermite’s inequality, the lattice rank
was decreased by considering the quotient
L mod b1.

Duality provides another way to reduce
dimensions:

If L is a d-rank lattice and v∈Lx is non-
zero, then L∩v⊤ is a (d-1)-rank sublattice.

More Details

See Aggarwal, Li, N, Stephens-
Davidowitz: Slide Reduction, Revisited
- Filling the Gaps in SVP
Approximation. In CRYPTO 2020.

https://arxiv.org/abs/1908.03724

https://arxiv.org/abs/1908.03724

Random
Lattices and

Average-Case
Behaviour

Average-Case Behaviour

Experimentally [MiWa16], not many
differences between blockwise
algorithms, despite different theoretical
bounds.

The old BKZ algorithm [ScEu94,CN11] is
widely used in lattice record
computations.

BKZ Issues:
Output Quality

Theoretical worst-case bounds >> Practice.

cd vs c’d with c > c’

 1.01

 1.02

 1.03

 1.04

 1.05

 1.06

 1.07

 1.08

 0 10 20 30 40 50 60

H
er

m
ite

 F
ac

to
r C

on
st

an
t

blocksize

Upper bound on c using gamman
Proved upper bound on c

Experimental c for BKZ in dim 220
Experimental c for Slide in dim 150

Same phenomenon

as LLLworst-case constants

experimental constants

Predicting BKZ [CN11,BSW18]

Predicts the approx behaviour of high-
blocksize BKZ (k≥50), using an efficient
simulation algorithm: the minimum of most k-
rank blocks seems to behave like random
lattices.

�
�k

(d�1)/(k�1)

becomes roughly

GaussHeurist(k)(d�1)/(k�1)

Blocks vs Random Lattices

Security
Estimates

Security Estimates

Somewhat independent of security
proofs

Identify the best attack based on the
state-of-the art

Find as many attacks as possible

Identify the ``best’’ one

Select keysizes/parameters
accordingly

Selecting Keysizes

[LenstraVerheul00] suggested to:

Model the performances of the best
algorithm known, based on record
benchmarks.

Add a security margin by speculating on:

Hardware improvements: Moore’s law, etc.

Algorithmic improvements

Not So

A hardness assumption typically asks
that no algorithm running in time ≤ T
can solve a random instance with
probability ≥ ε.

A complexity analysis typically says that
an algorithm runs in time ≤ T’ for all
instances (of given size).

What is Needed

A lower bound on the running time of the
algorithm.

Or more information on the distribution of
the running time: expectation and variance.

Typically not done in cryptanalysis.

NIST submissions

Lattice-based submissions to NIST rely on a
script to assess the security level: it does
not fully reflect various uncertainties.

The script says the best attack runs the SVP
subroutine in some blocksize:

Estimate the cost of the SVP subroutine.

Estimate the number of calls.

https://estimate-all-the-lwe-ntru-schemes.github.io/docs/

Security level = log2 #operations

Best sieve = 0.292*dim

New sieving records [ADHKPS18]

Predicted upper bounds for BKZ-Enumeration
[CN11, C13, AWHT16]

SVP Challenges Records
Before 2018

Old sieving

Dimension

[NgVi08] sieve =0.415*dim

Open problem

Efficient algorithms to approximate SVP
within a polynomial factor, possibly quantum
or subexponential.

