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 Lattice Analogues of:

» Rabin signatures

» Schnorr signatures

* Identity-based Encryption with Lattices



» GGH/NTRU signatures
> Breaking GGH/NTRU signatures
> Rabin’s signature with Lattices

> Lattice Identity-based Encryption

« Signatures from Zero-Knowledge

» Schnorr's identification and signature

» Lyubashevsky's identification and signature



o Trapdoor Signatures

» GGH/NTRU signatures
> Breaking GGH/NTRU signatures
> Rabin’s signature with Lattices

> Lattice Identity-based Encryption

« Signatures from Zero-Knowledge

» Schnorr's identification and signature

» Lyubashevsky's identification and signature
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THE EARLY DAYS:
INSECURE LATTICE SIGNATURE




BE LIKE RSA

» We saw how to trapdoor lattice encryption like RSA: L-
reduction was the analogue of modular exponentiation.

> RSA encryption is transformed into a signature by swapping
encryption and decryption

» Can we do the same with lattices?

» Encryption was fpuplic key and decryption was fsecret key



REMEMBER L-REDUCTIONS

 Any basis provides two L-reductions, thanks to Babai’s nearest
plane algorithm and rounding-off algorithm.

* We call L-reduction any efficiently computable map f : Zr — Znr
s.t. f(x)-x€L and f(x)=f(y) iff x-yEL.

* Rounding-oft
Choose f(t) in the basis parallelepiped s.t. t-f(t)EL



APPROX-CVP FROM L-REDUCTIONS

» L-reductions allow to solve BDD when the noise is sufficiently
small.

» L-reductions also allow to approximate CVP: the size of the
image dictates the quality of the approximation.

> If tis the target, t-f(t) is a lattice point u close to t, because
t=f(t)+u where f(t) is "small".
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GGH SIGNATURE

* Message = m in Z»

» Sign m into f(m), using Babai’s approx-CVP.

» The signature s must be small and m-s must belong to the
lattice: here, the signature is the "error”, but it can instead be
the "lattice point".
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KEY GENERATION IN GGH

* Pick some high-dim lattice:
> Secret key = very good basis e.g. gl, + small coeffs

» Public key = very bad basis
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KEY GENERATION IN GGH

* Pick some high-dim lattice:
> Secret key = very good basis e.g. gl, + small coeffs

» Public key = very bad basis

[ ] [ ]
message
[

. @
signature

Secret key

 The Secret key allows to approximate CVP within a good factor.



WHAT IS NTRUSIGN?

NTRUSIign: Digital
Signatures in the

NTRU Lattice
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WHAT IS NTRUSIGN?

« NTRUSign [CT-RSA 2003] was an efficient signature scheme
considered by IEEE P1363 standards.

e Itis a compact instantiation of the GGH signature scheme.

» Former (very technical) NTRU signature schemes (2001) did
not really correspond to NTRU encryption, and were shown
to be totally insecure.



THE NTRUSIGN SECRET BASIS

 Pick some high-dim lattice
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SECURITY OF GGH/NTRU SIGNATURES

« GGH signatures leak information on the secret key
|GentrySzzydlo02]: potential attack in [Szydlo03].

* [NguyenRegev06]: an efficient key-recovery attack.

 The analogues of GGH-encryption challenges have been solved.

 Half of NTRUSign parameter sets have been attacked (400
signatures).



THE ATTACK:
HOW TO LEARN A PARALLELEPIPED




LEARNING A PARALLELEPIPED FROM (MESSAGES,SIGNATURES)

 Each difference message-signature lies in the parallelepiped
spanned by the secret basis. Likely to have uniform
distribution over the secret parallelepiped.
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LEARNING A PARALLELEPIPED FROM (MESSAGES,SIGNATURES)

 Each difference message-signature lies in the parallelepiped
spanned by the secret basis. Likely to have uniform
distribution over the secret parallelepiped.

* An attacker faces a learning problem.
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STAGE 1: MORPHING

e Itis not difficult to reduce the general case to the case where
the parallelepiped is an n-dim centered unit hypercube.
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STAGE 1: MORPHING

 Consider y=xB where xeg[-1,1]n
e Thenyty =Btxtx B
« Exp(yty)is a multiple of G = Bt B: why?

 Now compute a matrix L s.t. G1=L Lt

e Then C=BL satisfies C Ct = BG-1Bt = I,..

 So Cis orthogonal and yL = xC is uniformly distributed over
some hypercube.



TOWARDS STAGE 2

e Let D be the uniform distribution over an n-dim centered unit

hypercube.

é
e Let U be a unit vector in R".

* For any kin N, it is easy to compute:

EXPVGD (< % ‘7> k) Y

e Itis zero if k is odd. B AT A
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PLAYING WITH MOMENTS

e The second moment is:

Var((#i,)) = Exp; ((#,%)%) = ---=1/3 23

e The fourth moment is:
Kur(d,)) = Expy ((@7)%) == 5 -
where u; = (i, ¢;)

e In arandom direction: =1/3

e In direction of any ¢i: =1/3-2/15=1/5



STAGE 2: MINIMIZING A MULTIVARIATE FUNCTION

* Th: the 2n vectors +Cj are the only local minima of the fourth
moment.

 Finding a basis of the parallelepiped amounts to finding
sufficiently many local minima of the fourth moment.




STAGE 2: GRADIENT DESCENT

* We solve this minimization problem using a gradient descent.

 Here, the descent can be proved, because our function is very nice.




COUNTERMEASURES

* Signatures should not leak information on the secret key:.

 Practical countermeasures by IEEE-IT and NTRUSign were
also broken in [DuNg12].

e But there is a secure countermeasure...



RABINS SIGNATURE WITH LATTICES
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RABIN SIGNATURE

« Let N=pq. where p=q large primes.
 Then f(x)=x2 mod N is a one-way function over {0,...,N-1}.

e If one knows the trapdoor (p,q), one can invert f: each square

has 4 pre-images, and one can select one pre-image uniformly
at random.



proposed by Michael O.
digital signature schemes

RABIN SIGNATURE

« Let N=pq. where p=q large primes.
 Then f(x)=x2 mod N is a one-way function over {0,...,N-1}.

e If one knows the trapdoor (p,q), one can invert f: each square
has 4 pre-images, and one can select one pre-image uniformly
at random.

 Rabin uses this pre-image sampling to give a provably-secure
signature scheme based on factoring in the random-oracle
model: the distributions (x,f(x)) and (f1(H(m)),H(m)) are
statistically close.
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RABIN SIGNATURE

e Random collisions in f allow to factor.



RABIN SIGNATURE

e Random collisions in f allow to factor.

 This Rabin signature is randomized but it is essential if you
sign the same message twice, the signature remains the same:
to do that, one can use a PRF.
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LATTICE SIGNATURE USING TRAPDOOR

« [GPVO08] is a lattice analogue of Rabin signature.

» What will replace the Rabin squaring function?
» What will replace square root sampling?

 The security proof is essentially the same.



LATTICE SIGNATURE USING TRAPDOOR
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LATTICE SIGNATURE USING TRAPDOOR

« [GPVO08] is a lattice analogue of Rabin signature.

» What will replace the Rabin squaring function?
» What will replace square root sampling?

 The security proof is essentially the same.
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INVERTING ISIS/SIS

 Pick g=(gi,...,gm) uniformly at random from Gm.

e fo(X1,...,Xm)=2i X; g where Xi,...,Xm are small integers.

e f, is surjective with many preimages: inverting f, means finding a
preimage with suitable distribution, namely, some discrete Gaussian
distribution. Inverting can be done by Gaussian sampling.
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GAUSSIAN MEASURE

« Though lattices are infinite, there is a natural probability

distribution over lattice points, introduced by [Ba1993] for
transference.

 This Gaussian measure was implicitly used in [Klein00]’s

randomized variant of Babai’s nearest-plane algorithm to
solve BDD.

¢ [Regev2005] noted that the Gaussian measure could sometimes
be sampled.

« [GPV2008] rediscovered [Klein00] and showed that it samples
from the Gaussian measure.
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GAUSSIAN MEASURE

« Though lattices are infinite, there is a natural probability
distribution over lattice points, introduced by [Ba1993] for
transference.

Wojciech Banaszczyk



GAUSSIAN MEASURE

« Though lattices are infinite, there is a natural probability
distribution over lattice points, introduced by [Ba1993] for
transference.

 This Gaussian measure was implicitly used in [Klein00]’s

randomized variant of Babai’s nearest-plane algorithm to
solve BDD.
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GAUSSIAN MEASURE

« Though lattices are infinite, there is a natural probability
distribution over lattice points, introduced by [Ba1993] for
transference.

 This Gaussian measure was implicitly used in [Klein00]’s

randomized variant of Babai’s nearest-plane algorithm to
solve BDD.

 [Regev2005] noted that the Gaussian measure could sometimes
be sampled.
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GAUSSIAN MEASURE

« Though lattices are infinite, there is a natural probability

distribution over lattice points, introduced by [Ba1993] for
transference.

 This Gaussian measure was implicitly used in [Klein00]’s

randomized variant of Babai’s nearest-plane algorithm to
solve BDD.

¢ [Regev2005] noted that the Gaussian measure could sometimes
be sampled.

« [GPV2008] rediscovered [Klein00] and showed that it samples
from the Gaussian measure.
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GAUSSIAN MEASURE

* Center ¢, parameter s

* Mass of xEL proportional to

:E’—E’HZ

=7 || =5

P8,5(f) — €

* The distribution is independent of the basis.

* Introduced in [Ba93], then used in cryptography in
[Cai99,Regev03,MiRe(4,...]



GAUSSIAN SAMPLING

« [GPVO08] rediscovered [KI00] but provided a more complete
analysis:

* Given a lattice basis, one can sample lattice points according
to the discrete Gaussian distribution in poly-time, as long as
the mean norm is somewhat larger than the basis norms.
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SAMPLING AND PUBLIC-KEY CRYPTO

e Security proofs require (rigorous) probability distributions
and efficient sampling.

* In classical PKC, a typical distribution is the uniform
distribution over a finite group.

» Example: The lack of nice probability distribution was
problematic for braid cryptography:.

* Gaussian lattice sampling is a crucial tool for lattice-based

cryptography.



LATTICE SIGNATURE [GPV08]

o Secret key = Good basis

o Public key = Bad basis

e Message = m in Zn/L

o Signature = a lattice point chosen with discrete Gaussian distribution close to m.

o Verification = check that the signature is a lattice point, close to m.




LATTICE SIGNATURE WITH SIS [GPV08]

Public key g=(g1,...,gm) uniformly distributed over Gm.

This generates a SIS lattice L.

Secret key = Short basis of L.

Hashed message = meG

Signature = (x3,...,xm)EZ™ produced by Gaussian sampling over L s.t. m=X; x; g

Verification = Check m=X; x; g with (xi,...,Xm) small.



SECURITY ARGUMENT IN THE ROM

« Same as Rabin:

> The distributions ((x1,...,Xm),fg(X1,...,Xm)) and (f;1(H(m)),H(m)) are
statistically close.

» Random collisions in fg(x1,...,xm) allow to solve SIS, like in the
lattice-based hash function.

> Again, if you sign the same message twice, you should output the
same signature.



FALCON (2017)

NFaicon

Fast-Fourier Lattice-based
Compact Signatures over NTRU
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FALCON (2017)

e More-or-less NTRUSign with the GPV08 provably-secure fix:

> Sign by discrete Gaussian sampling,
instead of Babai’s algorithms.

» ROM security proof similar to Rabin’s factoring signature.



FALCON SETTINGS

 Different from NTRU encryption

» Uses NTT rings Zq[X]/ (Xn+1) with g=12289=1 (mod 2n) and 2-
power n.

> Secret (f,g) has discrete Gaussian distribution with | | (f,g) | |

> The signature is not a lattice point: it is a short element in the
message coset m+L.



LATTICE IDENTITY-BASED ENCRYPTION




ID-BASED ENCRYPTION FROM LATTICES [GPV08]

e It turns out that the GPV signature is compatible with dual
GLWE encryption.

> Master key = Lattice trapdoor

> Parameters: g=(gi,...,gm) uniformly distributed over Gm

> Secret-key extraction=(xi, ..., xm)EZ™ produced by Gaussian sampling
s.t. ID = 2 x; g;



FROM ZERD- 7
RNOWLEDGE *




NON-TRAPDOOR SIGNATURES

 There is another design for lattice-based signatures based on
identification schemes from the Discrete Log world.

> This is related to Fiat-Shamir and proofs of knowledge.

> NIST’s finalist Dilithium is based on this philosophy.
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« G=(g) generated by g of order q.
* Proves knowledge of x&{0,...,q-1} s.t. y=g*
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SCHNORR'S SIGNATURE (1989)
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LYUBASHEVSKY'S IDENTIFICATION (2009-2012)

* Ais an arbitrary matrix over R=Z4[X]/ (X256+1)

* y=Axi+x2 with small x; and xo.

R=Ar1+rz
0 smallry and r; s———— - Sparse c 9
C
h

Prover Rejection(a;=ry+cxj and az=ry+cXy) Verifier

- R =? Aa;+a;-ct

small a; and a;
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LYUBASHEVSKY'S IDENTIFICATION (2009-2012)

 Finding the secret (x1,x2) is MLWE.

e If one can break the protocol, one can find | |.| | «-short vectors
in the MSIS lattice related to the matrix A over R=Z4[X]/ (X250+1)

» True in the ROM
> Not so much in the QROM

e MSIS attacks are presumed to be harder than MLWE attacks.
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DILITHIUM SETTINGS

* Ring Z4[X]/(X?56+1) with q=8380417=1 (mod 512) instead of
3329 allows full-NTT.

e 4x4, 6x5 and 8x7 matrices

 Small distribution = uniform narrow. Sparse challenges with
prescribed +1

* Approx 4 repetitions

e Many optimizations over [L09-L12]
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DILITHIUM VS FALCON

 Falcon

> 3.5-smaller signatures: 600-1200 bytes
> 30% smaller public keys: 900-1800 bytes

» Faster verification
e Dilithium

> Faster signing and much faster key generation

> Simpler signing: no Gaussian sampling, no floating-point arithmetic
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FOOD FOR THOUGHT

How hard are lattice problems, especially with structured lattices?
* How risky is Zq[X]/(Xn+1)?

* How powerful are quantum algorithms?

How should we measure security?



