LATICE-BASED SIGNATURES PHONG NGUYEN

http://www.di.ens.fr/~pnguyen

October 2024

TODAY

- Lattice Analogues of:
 - ► Rabin signatures
 - Schnorr signatures
- Identity-based Encryption with Lattices

TODAY

- ► GGH/NTRU signatures
- Breaking GGH/NTRU signatures
- Rabin's signature with Lattices
- Lattice Identity-based Encryption

• Signatures from Zero-Knowledge

- Schnorr's identification and signature
- Lyubashevsky's identification and signature

TODAY

• Trapdoor Signatures

- ► GGH/NTRU signatures
- Breaking GGH/NTRU signatures
- Rabin's signature with Lattices
- Lattice Identity-based Encryption

• Signatures from Zero-Knowledge

- Schnorr's identification and signature
- Lyubashevsky's identification and signature

TRAPDOOR SIGNATURES

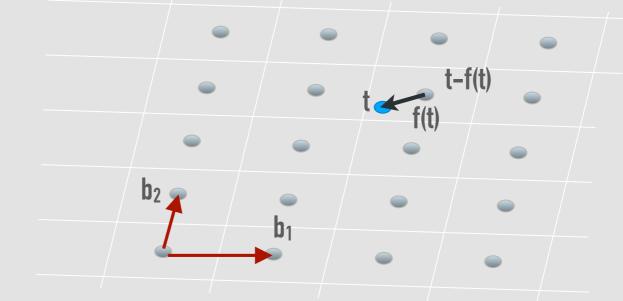
THE EARLY DAYS: INSECURE LATTICE SIGNATURE

BE LIKE RSA

- We saw how to trapdoor lattice encryption like RSA: Lreduction was the analogue of modular exponentiation.
- RSA encryption is transformed into a signature by swapping encryption and decryption
 - ➤ Can we do the same with lattices?
 - ► Encryption was f_{public key} and decryption was f_{secret key}

REMEMBER L-REDUCTIONS

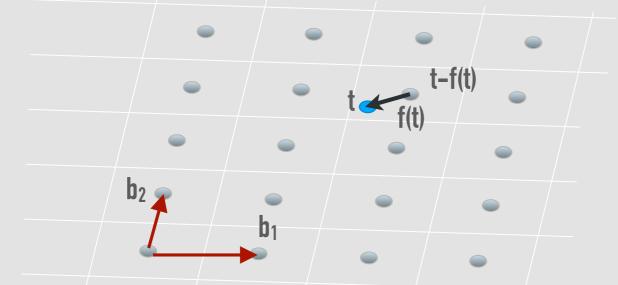
- Any basis provides two L-reductions, thanks to Babai's nearest plane algorithm and rounding-off algorithm.
- We call L-reduction any efficiently computable map $f : \mathbb{Z}^n \to \mathbb{Z}^n$ s.t. $f(x)-x \in L$ and f(x)=f(y) iff $x-y \in L$.



Rounding-off
 Choose f(t) in the basis parallelepiped s.t. t-f(t)∈L

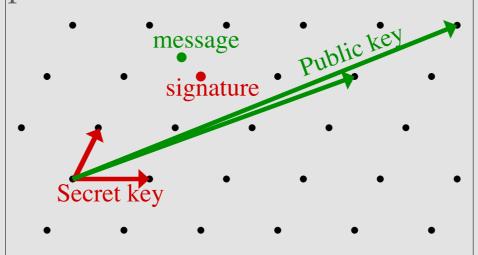
APPROX-CVP FROM L-REDUCTIONS

- L-reductions allow to solve BDD when the noise is sufficiently small.
- L-reductions also allow to approximate CVP: the size of the image dictates the quality of the approximation.
 - If t is the target, t-f(t) is a lattice point u close to t, because t=f(t)+u where f(t) is "small".



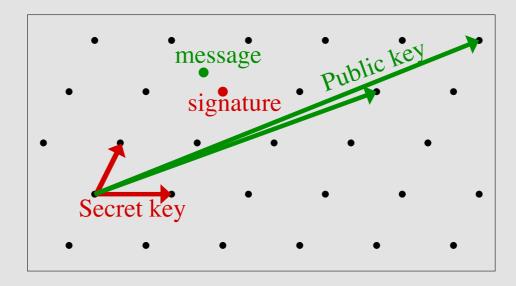
GGH SIGNATURE

- Message = $m in Z^n$
 - ➤ Sign m into f(m), using Babai's approx-CVP.
 - The signature s must be small and m-s must belong to the lattice: here, the signature is the "error", but it can instead be the "lattice point".



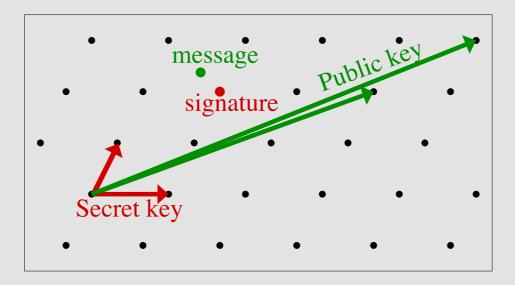
KEY GENERATION IN GGH

- Pick some high-dim lattice:
 - ► Secret key = very good basis e.g. qI_n + small coeffs
 - Public key = very bad basis



KEY GENERATION IN GGH

- Pick some high-dim lattice:
 - ► Secret key = very good basis e.g. qI_n + small coeffs
 - Public key = very bad basis



• The Secret key allows to approximate CVP within a good factor.

NTRUSign: Digital Signatures in the NTRU Lattice

STRONG security that fits everywhere.

• NTRUSign [CT-RSA 2003] was an efficient signature scheme considered by IEEE P1363 standards.

- NTRUSign [CT-RSA 2003] was an efficient signature scheme considered by IEEE P1363 standards.
- It is a <u>compact instantiation</u> of the GGH signature scheme.

- NTRUSign [CT-RSA 2003] was an efficient signature scheme considered by IEEE P1363 standards.
- It is a <u>compact instantiation</u> of the GGH signature scheme.
- Former (very technical) NTRU signature schemes (2001) did not really correspond to NTRU encryption, and were shown to be totally insecure.

THE NTRUSIGN SECRET BASIS

• Pick some high-dim lattice

$$\begin{bmatrix} f_0 & f_1 & \cdots & f_{n-1} & g_0 & g_1 & \cdots & g_{n-1} \\ f_{n-1} & f_0 & \cdots & f_{n-2} & g_{n-1} & g_0 & \cdots & g_{n-2} \\ \vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\ f_1 & \cdots & f_{n-1} & f_0 & g_1 & \cdots & g_{n-1} & g_0 \\ F_0 & F_1 & \cdots & F_{n-1} & G_0 & G_1 & \cdots & G_{n-1} \\ F_{n-1} & F_0 & \cdots & F_{n-2} & G_{n-1} & G_0 & \cdots & G_{n-2} \\ \vdots & \cdots & \cdots & \vdots & \vdots & \cdots & \cdots & \vdots \\ F_1 & \cdots & F_{n-1} & F_0 & G_1 & \cdots & G_{n-1} & G_0 \end{bmatrix} \quad n = 251$$

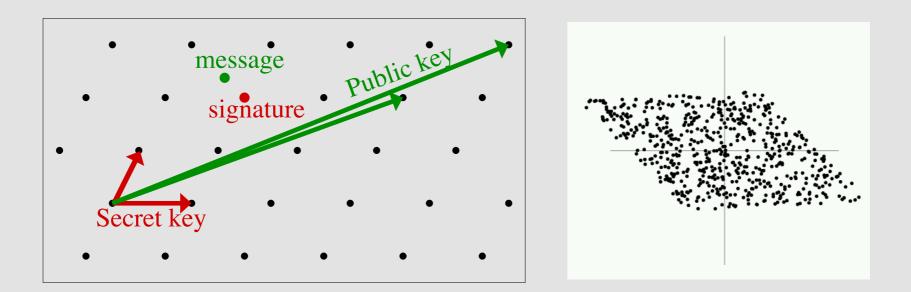
SECURITY OF GGH/NTRU SIGNATURES

- GGH signatures leak information on the secret key [GentrySzzydlo02]: potential attack in [Szydlo03].
- [NguyenRegev06]: an efficient key-recovery attack.
- The analogues of GGH-encryption challenges have been solved.
- Half of NTRUSign parameter sets have been attacked (400 signatures).

THE ATTACK: How to learn a parallelepiped

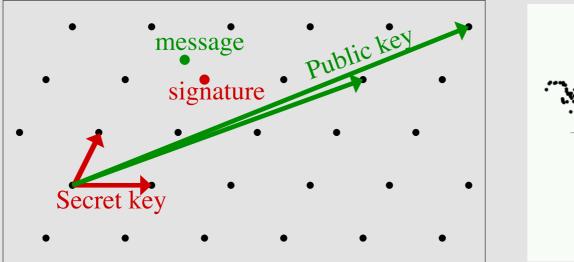
LEARNING A PARALLELEPIPED FROM (MESSAGES, SIGNATURES)

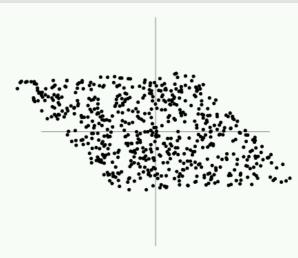
• Each difference message-signature lies in the parallelepiped spanned by the secret basis. Likely to have uniform distribution over the secret parallelepiped.



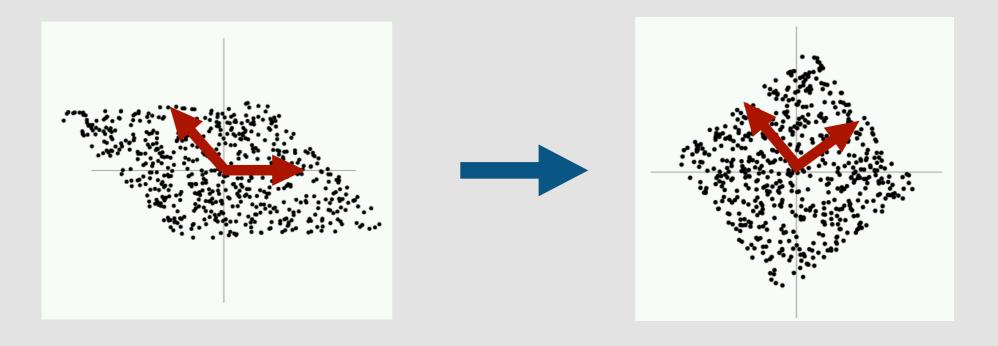
LEARNING A PARALLELEPIPED FROM (MESSAGES, SIGNATURES)

- Each difference message-signature lies in the parallelepiped spanned by the secret basis. Likely to have uniform distribution over the secret parallelepiped.
- An attacker faces a learning problem.





• It is not difficult to reduce the general case to the case where the parallelepiped is an n-dim centered unit hypercube.



- Consider y=xB where $x \in_{\mathbb{R}} [-1,1]^n$
- Then $y^t y = B^t x^t x B$

- Consider y=xB where $x \in_{\mathbb{R}} [-1,1]^n$
- Then $y^t y = B^t x^t x B$
- $Exp(y^t y)$ is a multiple of $G = B^t B$: why?

- Consider y=xB where $x \in_{\mathbb{R}} [-1,1]^n$
- Then $y^t y = B^t x^t x B$
- $Exp(y^t y)$ is a multiple of $G = B^t B$: why?
- Now compute a matrix L s.t. G⁻¹= L L^t
- Then C=BL satisfies C $C^t = BG^{-1}B^t = I_n$.

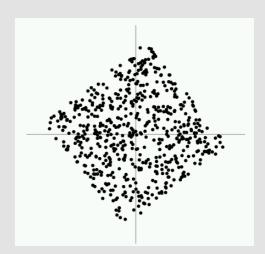
- Consider y=xB where $x \in_{\mathbb{R}}[-1,1]^n$
- Then $y^t y = B^t x^t x B$
- $Exp(y^t y)$ is a multiple of $G = B^t B$: why?
- Now compute a matrix L s.t. G⁻¹= L L^t
- Then C=BL satisfies C $C^t = BG^{-1}B^t = I_n$.
- So C is orthogonal and yL = xC is uniformly distributed over some hypercube.

TOWARDS STAGE 2

- Let D be the uniform distribution over an n-dim centered unit hypercube.
- Let \vec{u} be a unit vector in \mathbb{R}^n .
- For any k in **N**, it is easy to compute:

$$\operatorname{Exp}_{\vec{v}\in D}\left(\langle \vec{u},\vec{v}\rangle^k\right)$$

• It is zero if k is odd.



PLAYING WITH MOMENTS

• The second moment is:

$$\operatorname{Var}(\langle \vec{u}, \rangle) = \operatorname{Exp}_{\vec{v}}(\langle \vec{u}, \vec{v} \rangle^2) = \dots = 1/3$$

PLAYING WITH MOMENTS

• The second moment is:

$$\operatorname{Var}(\langle \vec{u}, \rangle) = \operatorname{Exp}_{\vec{v}}(\langle \vec{u}, \vec{v} \rangle^2) = \dots = 1/3$$

• The fourth moment is:

 $\operatorname{Kur}(\langle \vec{u}, \rangle) = \operatorname{Exp}_{\vec{v}}(\langle \vec{u}, \vec{v} \rangle^4) = \dots = \frac{1}{3} - \frac{2}{15} \sum_{i=1}^n u_i^4 \quad \textcircled{}^{\bullet}$ where $u_i = \langle \vec{u}, \vec{c}_i \rangle$

PLAYING WITH MOMENTS

• The second moment is:

$$\operatorname{Var}(\langle \vec{u}, \rangle) = \operatorname{Exp}_{\vec{v}}(\langle \vec{u}, \vec{v} \rangle^2) = \dots = 1/3$$

• The fourth moment is:

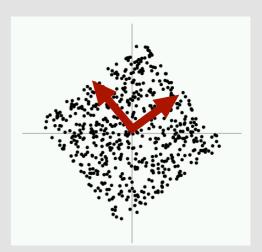
$$\operatorname{Kur}(\langle \vec{u}, \rangle) = \operatorname{Exp}_{\vec{v}}(\langle \vec{u}, \vec{v} \rangle^4) = \dots = \frac{1}{3} - \frac{2}{15} \sum_{i=1}^n u_i^4 \quad \textcircled{}^{\bullet}$$

where $u_i = \langle \vec{u}, \vec{c}_i \rangle$

- In a random direction: $\approx 1/3$
- In direction of any $c_i \approx 1/3-2/15=1/5$

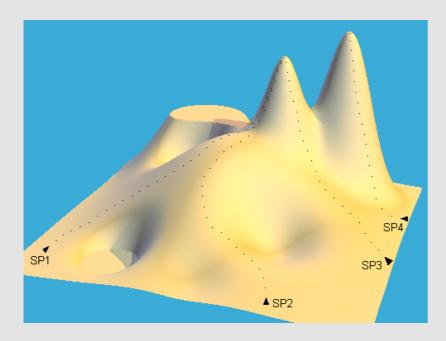
STAGE 2: MINIMIZING A MULTIVARIATE FUNCTION

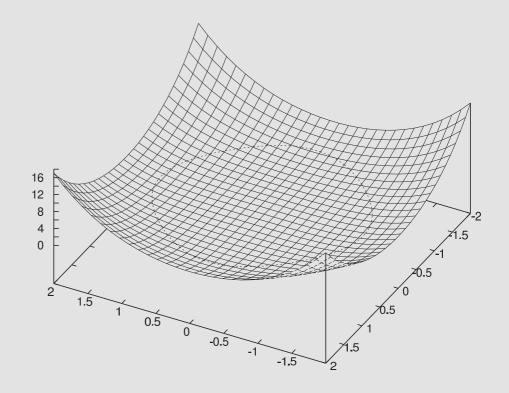
- Th: the 2n vectors $\pm C_i$ are the only local minima of the fourth moment.
- Finding a basis of the parallelepiped amounts to finding sufficiently many local minima of the fourth moment.



STAGE 2: GRADIENT DESCENT

- We solve this minimization problem using a gradient descent.
- Here, the descent can be proved, because our function is very nice.





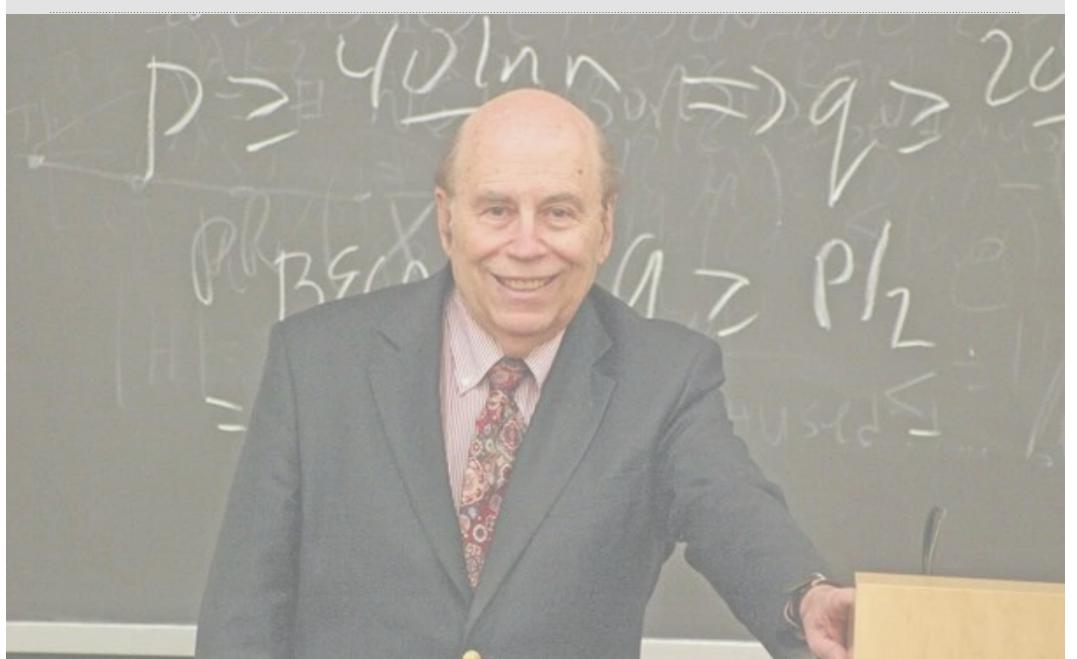
COUNTERMEASURES

- Signatures should not leak information on the secret key.
- Practical countermeasures by IEEE-IT and NTRUSign were also broken in [DuNg12].
- But there is a secure countermeasure...

RABIN'S SIGNATURE WITH LATTICES

proposed by Michael O. digital signature schemes

RABIN SIGNATURE



RABIN SIGNATURE

- Let N=pq. where $p\neq q$ large primes.
- Then $f(\mathbf{x}) = \mathbf{x}^2 \mod N$ is a one-way function over $\{0, \dots, N-1\}$.
- If one knows the trapdoor (p,q), one can invert f: each square has 4 pre-images, and one can select one pre-image uniformly at random.

- Let N=pq. where $p\neq q$ large primes.
- Then $f(\mathbf{x}) = \mathbf{x}^2 \mod N$ is a one-way function over $\{0, \dots, N-1\}$.
- If one knows the trapdoor (p,q), one can invert f: each square has 4 pre-images, and one can select one pre-image uniformly at random.
- Rabin uses this pre-image sampling to give a provably-secure signature scheme based on factoring in the random-oracle model: the distributions (x,f(x)) and (f⁻¹(H(m)),H(m)) are statistically close.

• Random collisions in f allow to factor.

- Random collisions in f allow to factor.
- This Rabin signature is randomized but it is essential if you sign the same message twice, the signature remains the same: to do that, one can use a PRF.

• [GPV08] is a lattice analogue of Rabin signature.

- [GPV08] is a lattice analogue of Rabin signature.
- ► What will replace the Rabin squaring function?

- [GPV08] is a lattice analogue of Rabin signature.
- ► What will replace the Rabin squaring function?
- ► What will replace square root sampling?

- [GPV08] is a lattice analogue of Rabin signature.
- ► What will replace the Rabin squaring function?
- ► What will replace square root sampling?
- The security proof is essentially the same.

• [GPV08] is a lattice analogue of Rabin signature.

Craig Gentry

Chris Peikert

Vinod Vaikuntanathan

- [GPV08] is a lattice analogue of Rabin signature.
- ► What will replace the Rabin squaring function?

- [GPV08] is a lattice analogue of Rabin signature.
- ► What will replace the Rabin squaring function?
- ► What will replace square root sampling?

- [GPV08] is a lattice analogue of Rabin signature.
- ► What will replace the Rabin squaring function?
- ► What will replace square root sampling?
- The security proof is essentially the same.

INVERTING ISIS/SIS

- Pick g=(g₁,...,g_m) uniformly at random from G^m.
- $f_g(\mathbf{x}_1,...,\mathbf{x}_m) = \sum_i \mathbf{x}_i g_i$ where $\mathbf{x}_1,...,\mathbf{x}_m$ are small integers.

INVERTING ISIS/SIS

- Pick g=(g₁,...,g_m) uniformly at random from G^m.
- $f_g(\mathbf{x}_1,...,\mathbf{x}_m) = \sum_i \mathbf{x}_i g_i$ where $\mathbf{x}_1,...,\mathbf{x}_m$ are small integers.
- f_g is surjective with many preimages: inverting f_g means finding a preimage with suitable distribution, namely, some discrete Gaussian distribution. Inverting can be done by Gaussian sampling.

• Though lattices are infinite, there is a natural probability distribution over lattice points, introduced by [Ba1993] for transference.

- Though lattices are infinite, there is a natural probability distribution over lattice points, introduced by [Ba1993] for transference.
- This Gaussian measure was implicitly used in [Klein00]'s randomized variant of Babai's nearest-plane algorithm to solve BDD.

- Though lattices are infinite, there is a natural probability distribution over lattice points, introduced by [Ba1993] for transference.
- This Gaussian measure was implicitly used in [Klein00]'s randomized variant of Babai's nearest-plane algorithm to solve BDD.
- [Regev2005] noted that the Gaussian measure could sometimes be sampled.

- Though lattices are infinite, there is a natural probability distribution over lattice points, introduced by [Ba1993] for transference.
- This Gaussian measure was implicitly used in [Klein00]'s randomized variant of Babai's nearest-plane algorithm to solve BDD.
- [Regev2005] noted that the Gaussian measure could sometimes be sampled.
- [GPV2008] rediscovered [Klein00] and showed that it samples from the Gaussian measure.

• Though lattices are infinite, there is a natural probability distribution over lattice points, introduced by [Ba1993] for transference.

Wojciech Banaszczyk

- Though lattices are infinite, there is a natural probability distribution over lattice points, introduced by [Ba1993] for transference.
- This Gaussian measure was implicitly used in [Klein00]'s randomized variant of Babai's nearest-plane algorithm to solve BDD.

Philip N. Klein

Wojciech Banaszczyk

- Though lattices are infinite, there is a natural probability distribution over lattice points, introduced by [Ba1993] for transference.
- This Gaussian measure was implicitly used in [Klein00]'s randomized variant of Babai's nearest-plane algorithm to solve BDD.
- [Regev2005] noted that the Gaussian measure could sometimes be sampled.

Oded Regev

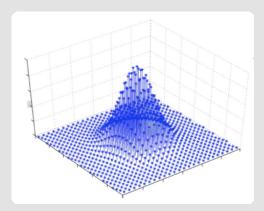
- Though lattices are infinite, there is a natural probability distribution over lattice points, introduced by [Ba1993] for transference.
- This Gaussian measure was implicitly used in [Klein00]'s randomized variant of Babai's nearest-plane algorithm to solve BDD.
- [Regev2005] noted that the Gaussian measure could sometimes be sampled.
- [GPV2008] rediscovered [Klein00] and showed that it samples from the Gaussian measure.

- Center c, parameter s
- Mass of $x \in L$ proportional to

$$\rho_{s,\vec{c}}(\vec{x}) = e^{-\pi \|\frac{\vec{x}-\vec{c}}{s}\|^2}$$

- Center c, parameter s
- Mass of $x \in L$ proportional to

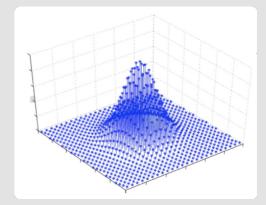
$$\rho_{s,\vec{c}}(\vec{x}) = e^{-\pi \|\frac{\vec{x}-\vec{c}}{s}\|^2}$$



• The distribution is **independent** of the basis.

- Center c, parameter s
- Mass of $x \in L$ proportional to

$$\rho_{s,\vec{c}}(\vec{x}) = e^{-\pi \|\frac{\vec{x}-\vec{c}}{s}\|^2}$$



- The distribution is **independent** of the basis.
- Introduced in [Ba93], then used in cryptography in [Cai99,Regev03,MiRe04,...]

GAUSSIAN SAMPLING

- [GPV08] rediscovered [Kl00] but provided a more complete analysis:
- Given a lattice basis, one can sample lattice points according to the discrete Gaussian distribution in poly-time, as long as the mean norm is somewhat larger than the basis norms.

SAMPLING AND PUBLIC-KEY CRYPTO

- Security proofs require (rigorous) probability distributions and efficient sampling.
- In classical PKC, a typical distribution is the uniform distribution over a finite group.

SAMPLING AND PUBLIC-KEY CRYPTO

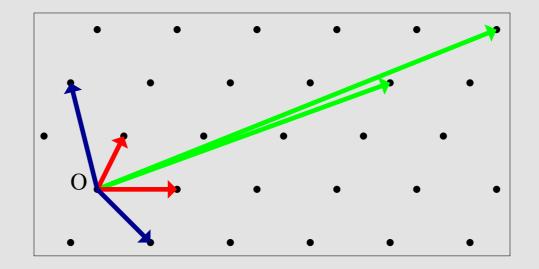
- Security proofs require (rigorous) probability distributions and efficient sampling.
- In classical PKC, a typical distribution is the uniform distribution over a finite group.
- Example: The lack of nice probability distribution was problematic for braid cryptography.

SAMPLING AND PUBLIC-KEY CRYPTO

- Security proofs require (rigorous) probability distributions and efficient sampling.
- In classical PKC, a typical distribution is the uniform distribution over a finite group.
- Example: The lack of nice probability distribution was problematic for braid cryptography.
- Gaussian lattice sampling is a crucial tool for lattice-based cryptography.

LATTICE SIGNATURE [GPV08]

- **Secret key** = Good basis
- **Public key** = Bad basis
- Message = $m \text{ in } \mathbf{Z}^n / L$
- **Signature** = a lattice point chosen with discrete Gaussian distribution close to m.
- **Verification** = check that the signature is a lattice point, close to m.



LATTICE SIGNATURE WITH SIS [GPV08]

• **Public key** $g=(g_1,...,g_m)$ uniformly distributed over G^m .

This generates a SIS lattice L.

- **Secret key** = Short basis of L.
- Hashed message $= m \in G$
- **Signature** = $(x_1, ..., x_m) \in \mathbb{Z}^m$ produced by Gaussian sampling over L s.t. m= $\Sigma_i x_i g_i$
- **Verification** = Check $m = \sum_i x_i g_i$ with $(x_1, ..., x_m)$ small.

SECURITY ARGUMENT IN THE ROM

- Same as Rabin:
- ➤ The distributions ((x₁,...,x_m),f_g(x₁,...,x_m)) and (f_g-1(H(m)),H(m)) are statistically close.
- ➤ Random collisions in f_g(x₁,...,x_m) allow to solve SIS, like in the lattice-based hash function.
- Again, if you sign the same message twice, you should output the same signature.

FALCON (2017)

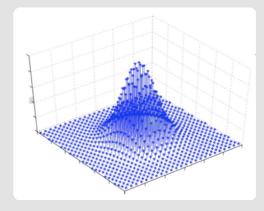
FALCON **Fast-Fourier Lattice-based Compact Signatures over NTRU**

FALCON (2017)

• More-or-less NTRUSign with the GPV08 provably-secure fix:

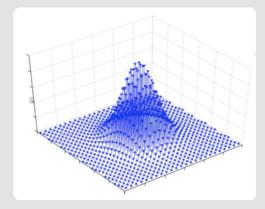
FALCON (2017)

- More-or-less NTRUSign with the GPV08 provably-secure fix:
- Sign by discrete Gaussian sampling, instead of Babai's algorithms.



FALCON (2017)

- More-or-less NTRUSign with the GPV08 provably-secure fix:
- Sign by discrete Gaussian sampling, instead of Babai's algorithms.



► ROM security proof similar to Rabin's factoring signature.

FALCON SETTINGS

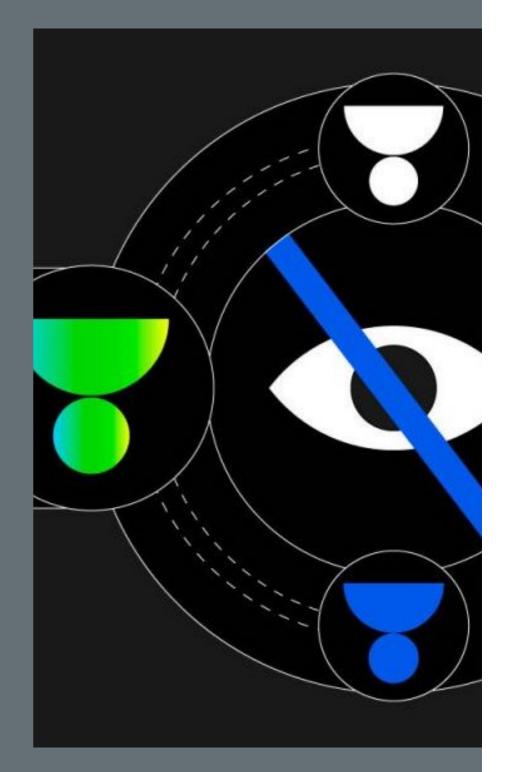
- Different from NTRU encryption
- ➤ Uses NTT rings Z_q[X]/(Xⁿ+1) with q=12289=1 (mod 2n) and 2power n.
- Secret (f,g) has discrete Gaussian distribution with ||(f,g)|| ≈1.17√q
- The signature is not a lattice point: it is a short element in the message coset m+L.

LATTICE IDENTITY-BASED ENCRYPTION

ID-BASED ENCRYPTION FROM LATTICES [GPV08]

- It turns out that the GPV signature is compatible with dual GLWE encryption.
- ► Master key = Lattice trapdoor
- ► Parameters: g=(g₁,...,g_m) uniformly distributed over G^m
- ➤ Secret-key extraction=(x₁,...,x_m)∈Z^m produced by Gaussian sampling s.t. ID = Σ x_i g_i

SIGNATURES FROM ZERO-KNOWLEDGE



NON-TRAPDOOR SIGNATURES

- There is another design for lattice-based signatures based on identification schemes from the Discrete Log world.
- ➤ This is related to Fiat-Shamir and proofs of knowledge.
- ➤ NIST's finalist Dilithium is based on this philosophy.

DILITHIUM SIGNATURE

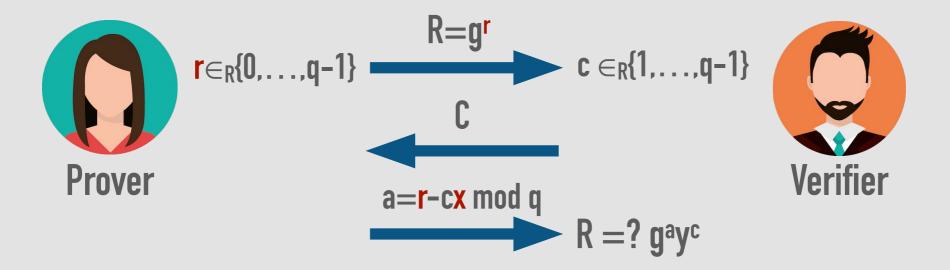
SCHNORR'S IDENTIFICATION (1989)

SCHNORR'S IDENTIFICATION (1989)

- $G = \langle g \rangle$ generated by g of order q.
- Proves knowledge of $\mathbf{x} \in \{0, ..., q-1\}$ s.t. $y=g^{\mathbf{x}}$

SCHNORR'S IDENTIFICATION (1989)

- $G=\langle g \rangle$ generated by g of order q.
- Proves knowledge of $x \in \{0, ..., q-1\}$ s.t. $y=g^x$



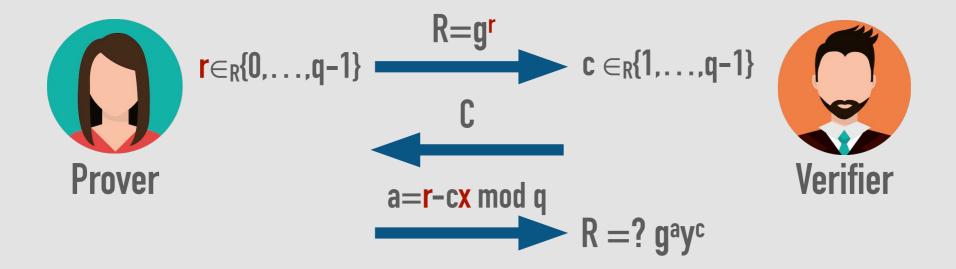
SCHNORR'S SIGNATURE (1989)

SCHNORR'S SIGNATURE (1989)

• Fiat-Shamir: c = H(R | | msg) $y=g^x$

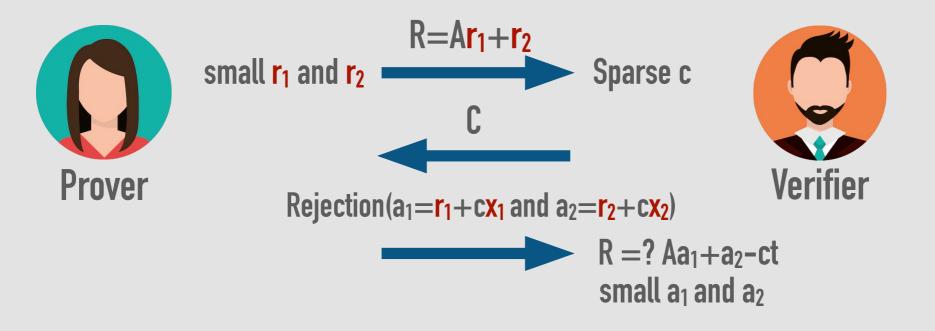
SCHNORR'S SIGNATURE (1989)

• Fiat-Shamir: c = H(R | | msg) $y=g^x$



- A is an arbitrary matrix over $R=Z_q[X]/(X^{256}+1)$
- $y=Ax_1+x_2$ with small x_1 and x_2 .

- A is an arbitrary matrix over $R=Z_q[X]/(X^{256}+1)$
- $y=Ax_1+x_2$ with small x_1 and x_2 .



• Finding the secret (x_1, x_2) is MLWE.

- Finding the secret (x_1, x_2) is MLWE.
- If one can break the protocol, one can find | |. | |∞-short vectors in the MSIS lattice related to the matrix A over R=Z_q[X]/(X²⁵⁶+1)

- Finding the secret (x_1, x_2) is MLWE.
- If one can break the protocol, one can find | |. | |∞-short vectors in the MSIS lattice related to the matrix A over R=Z_q[X]/(X²⁵⁶+1)
 - ► True in the ROM
 - ► Not so much in the QROM

- Finding the secret (x_1, x_2) is MLWE.
- If one can break the protocol, one can find | |. | |∞-short vectors in the MSIS lattice related to the matrix A over R=Z_q[X]/(X²⁵⁶+1)
 - ► True in the ROM
 - ► Not so much in the QROM
- MSIS attacks are presumed to be harder than MLWE attacks.

Ring Z_q[X]/(X²⁵⁶+1) with q=8380417≡1 (mod 512) instead of 3329 allows full-NTT.

- Ring Z_q[X]/(X²⁵⁶+1) with q=8380417≡1 (mod 512) instead of 3329 allows full-NTT.
- 4x4, 6x5 and 8x7 matrices

- Ring Z_q[X]/(X²⁵⁶+1) with q=8380417≡1 (mod 512) instead of 3329 allows full-NTT.
- 4x4, 6x5 and 8x7 matrices
- Small distribution = uniform narrow. Sparse challenges with prescribed ±1

- Ring Z_q[X]/(X²⁵⁶+1) with q=8380417≡1 (mod 512) instead of 3329 allows full-NTT.
- 4x4, 6x5 and 8x7 matrices
- Small distribution = uniform narrow. Sparse challenges with prescribed ±1
- Approx 4 repetitions

- Ring Z_q[X]/(X²⁵⁶+1) with q=8380417≡1 (mod 512) instead of 3329 allows full-NTT.
- 4x4, 6x5 and 8x7 matrices
- Small distribution = uniform narrow. Sparse challenges with prescribed ±1
- Approx 4 repetitions
- Many optimizations over [L09-L12]

DILITHIUM VS FALCON

• Falcon

• Dilithium

DILITHIUM VS FALCON

- Falcon
 - ► 3.5-smaller signatures: 600-1200 bytes
 - ➤ 30% smaller public keys: 900-1800 bytes
 - ► Faster verification
- Dilithium

DILITHIUM VS FALCON

- Falcon
 - ► 3.5-smaller signatures: 600-1200 bytes
 - ➤ 30% smaller public keys: 900-1800 bytes
 - ► Faster verification
- Dilithium
 - ► Faster signing and much faster key generation
 - Simpler signing: no Gaussian sampling, no floating-point arithmetic

• How hard are lattice problems, especially with structured lattices?

- How hard are lattice problems, especially with structured lattices?
- How risky is $\mathbb{Z}_q[X]/(X^{n+1})$?

- How hard are lattice problems, especially with structured lattices?
- How risky is $\mathbb{Z}_q[X]/(X^{n+1})$?
- How powerful are quantum algorithms?

- How hard are lattice problems, especially with structured lattices?
- How risky is $\mathbb{Z}_q[X]/(X^{n+1})$?
- How powerful are quantum algorithms?
- How should we measure security?