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THE EARLY DAYS: 
 INSECURE LATTICE SIGNATURE



BE LIKE RSA

➤ We saw how to trapdoor lattice encryption like RSA: L-
reduction was the analogue of modular exponentiation.

➤ RSA encryption is transformed into a signature by swapping 
encryption and decryption
➤ Can we do the same with lattices?
➤ Encryption was fpublic key and decryption was fsecret key



• Any basis provides two L-reductions, thanks to Babai’s nearest 
plane algorithm and rounding-off algorithm.

REMEMBER L-REDUCTIONS

• We call L-reduction any efficiently computable map f : Zn → Zn 

s.t. f(x)-x∈L and f(x)=f(y) iff x-y∈L.
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t-f(t)
f(t)

• Rounding-off 
Choose f(t) in the basis parallelepiped s.t. t-f(t)∈L



APPROX-CVP FROM L-REDUCTIONS

➤ L-reductions allow to solve BDD when the noise is sufficiently 
small.

➤ L-reductions also allow to approximate CVP: the size of the 
image dictates the quality of the approximation.
➤ If t is the target, t-f(t) is a lattice point  u close to t, because 

t=f(t)+u where f(t) is "small".
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• Message = m in Zn

GGH SIGNATURE

➤ Sign m into f(m), using Babai’s approx-CVP.
➤ The signature s must be small and m-s must belong to the 

lattice: here, the signature is the "error", but it can instead be 
the "lattice point".

message
Public key

Secret key

signature



• Pick some high-dim lattice:

KEY GENERATION IN GGH

➤ Secret key = very good basis e.g. 

➤ Public key = very bad basis

qIn + small coeffs
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• Pick some high-dim lattice:

KEY GENERATION IN GGH

➤ Secret key = very good basis e.g. 

➤ Public key = very bad basis

qIn + small coeffs

message
Public key

Secret key

signature

• The Secret key allows to approximate CVP within a good factor.
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WHAT IS NTRUSIGN?

• NTRUSign [CT-RSA 2003] was an efficient signature scheme 
considered by IEEE P1363 standards.

• It is a compact instantiation of the GGH signature scheme.

➤ Former (very technical) NTRU signature schemes (2001) did 
not really correspond to NTRU encryption, and were shown 
to be totally insecure.



THE NTRUSIGN SECRET BASIS

2

66666666664

f0 f1 · · · fn�1 g0 g1 · · · gn�1
fn�1 f0 · · · fn�2 gn�1 g0 · · · gn�2
... . . . . . . ... ... . . . . . . ...
f1 · · · fn�1 f0 g1 · · · gn�1 g0
F0 F1 · · · Fn�1 G0 G1 · · · Gn�1
Fn�1F0 · · · Fn�2Gn�1G0 · · · Gn�2
... . . . . . . ... ... . . . . . . ...
F1 · · ·Fn�1 F0 G1 · · ·Gn�1 G0

3

77777777775

n= 251

• Pick some high-dim lattice



SECURITY OF GGH/NTRU SIGNATURES

• GGH signatures leak information on the secret key 
[GentrySzzydlo02]: potential attack in [Szydlo03].

• [NguyenRegev06]: an efficient key-recovery attack. 

• The analogues of GGH-encryption challenges have been solved.

• Half of NTRUSign parameter sets have been attacked (400 
signatures).



THE ATTACK: 
HOW TO LEARN A PARALLELEPIPED



• Each difference message-signature lies in the parallelepiped 
spanned by the secret basis. Likely to have uniform 
distribution over the secret parallelepiped.
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• Each difference message-signature lies in the parallelepiped 
spanned by the secret basis. Likely to have uniform 
distribution over the secret parallelepiped.

LEARNING A PARALLELEPIPED FROM (MESSAGES,SIGNATURES)

• An attacker faces a learning problem. 

message
Public key

Secret key

signature



STAGE 1: MORPHING

• It is not difficult to reduce the general case to the case where 
the parallelepiped is an n-dim centered unit hypercube.
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STAGE 1: MORPHING

• Consider y=xB where x∈R[-1,1]n

• Then yt y = Bt xt x B

• Exp(yt y) is a multiple of G = Bt B: why?

• Now compute a matrix L s.t. G-1= L Lt

• Then C=BL satisfies C Ct = BG-1Bt = In.

• So C is orthogonal and yL = xC is uniformly distributed over 
some hypercube.



TOWARDS STAGE 2

• Let D be the uniform distribution over an n-dim centered unit 
hypercube.

• It is zero if k is odd.

• For any k in N, it is easy to compute:

Exp~v2D
�
h~u,~vik

�

• Let       be a unit vector in .ℝn~u
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PLAYING WITH MOMENTS

• In a random direction: ≈1/3

• In direction of any ci: ≈1/3-2/15=1/5

• The second moment is:

Var(h~u,i) = Exp~v
�
h~u,~vi2

�
= · · · = 1/3

• The fourth moment is:

Kur(h~u,i) = Exp~v
�
h~u,~vi4

�
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1
3
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STAGE 2: MINIMIZING A MULTIVARIATE FUNCTION

• Th: the 2n vectors ±ci are the only local minima of the fourth 
moment.

• Finding a basis of the parallelepiped amounts to finding 
sufficiently many local minima of the fourth moment.



STAGE 2: GRADIENT DESCENT

• We solve this minimization problem using a gradient descent.

• Here, the descent can be proved, because our function is very nice.



COUNTERMEASURES 

• Signatures should not leak information on the secret key.

• Practical countermeasures by IEEE-IT and NTRUSign were 
also broken in [DuNg12].

• But there is a secure countermeasure…



RABIN’S SIGNATURE WITH LATTICES
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• Let N=pq. where p≠q large primes. 
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RABIN SIGNATURE

• Let N=pq. where p≠q large primes. 

• Then f(x)=x2 mod N is a one-way function over {0,…,N-1}.

• If one knows the trapdoor (p,q), one can invert f: each square 
has 4 pre-images, and one can select one pre-image uniformly 
at random.

• Rabin uses this pre-image sampling to give a provably-secure 
signature scheme based on factoring in the random-oracle 
model: the distributions (x,f(x)) and (f-1(H(m)),H(m)) are 
statistically close.
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RABIN SIGNATURE

• Random collisions in f allow to factor.

• This Rabin signature is randomized but it is essential if you 
sign the same message twice, the signature remains the same: 
to do that, one can use a PRF.
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• The security proof is essentially the same.
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INVERTING ISIS/SIS

• Pick g=(g1,...,gm) uniformly at random from Gm.

• fg(x1,...,xm)=Σi xi gi where x1,...,xm are small integers.

• fg is surjective with many preimages: inverting fg means finding a 
preimage with suitable distribution, namely, some discrete Gaussian 
distribution. Inverting can be done by Gaussian sampling.
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GAUSSIAN MEASURE

• Center c, parameter s

• Mass of x∈L proportional to

• Introduced in [Ba93], then used in cryptography in 
[Cai99,Regev03,MiRe04,…]

⇢s,~c(~x) = e�⇡k ~x�~c
s k2

• The distribution is independent of the basis.



GAUSSIAN SAMPLING

• [GPV08] rediscovered [Kl00] but provided a more complete 
analysis: 

• Given a lattice basis, one can sample lattice points according 
to the discrete Gaussian distribution in poly-time, as long as 
the mean norm is somewhat larger than the basis norms.
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SAMPLING AND PUBLIC-KEY CRYPTO

• Security proofs require (rigorous) probability distributions 
and efficient sampling.

• In classical PKC, a typical distribution is the uniform 
distribution over a finite group.

➤ Example: The lack of nice probability distribution was 
problematic for braid cryptography.

• Gaussian lattice sampling is a crucial tool for lattice-based 
cryptography.



• Secret key = Good basis

• Public key = Bad basis

• Message = m in Zn/L

• Signature = a lattice point chosen with discrete Gaussian distribution close to m.

• Verification = check that the signature is a lattice point, close to m.

LATTICE SIGNATURE [GPV08]

O



• Public key g=(g1,…,gm) uniformly distributed over Gm. 

 This generates a SIS lattice  L.

• Secret key = Short basis of L.

• Hashed message = m∈G

LATTICE SIGNATURE WITH SIS [GPV08]

• Signature = (x1,...,xm)∈Zm produced by Gaussian sampling over L s.t. m=Σi xi gi 

• Verification = Check m=Σi xi gi with (x1,...,xm) small. 



• Same as Rabin:

SECURITY ARGUMENT IN THE ROM

➤ The distributions ((x1,...,xm),fg(x1,...,xm)) and (fg-1(H(m)),H(m)) are 
statistically close.

➤ Random collisions in fg(x1,…,xm) allow to solve SIS, like in the 
lattice-based hash function.

➤ Again, if you sign the same message twice, you should output the 
same signature.
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FALCON (2017)

• More-or-less NTRUSign with the GPV08 provably-secure fix:

➤ ROM security proof similar to Rabin’s factoring signature.

➤ Sign by discrete Gaussian sampling, 
instead of Babai’s algorithms.



• Different from NTRU encryption

FALCON SETTINGS

➤ Uses NTT rings Zq[X]/(Xn+1) with q=12289≡1 (mod 2n) and 2-
power n.

➤ Secret (f,g) has discrete Gaussian distribution with ||(f,g)||
≋1.17√q

➤ The signature is not a lattice point: it is a short element in the 
message coset m+L.



LATTICE IDENTITY-BASED ENCRYPTION



• It turns out that the GPV signature is compatible with dual 
GLWE encryption.

ID-BASED ENCRYPTION FROM LATTICES [GPV08]

➤ Master key = Lattice trapdoor

➤ Parameters: g=(g1,...,gm) uniformly distributed over Gm

➤ Secret-key extraction=(x1,...,xm)∈Zm produced by Gaussian sampling 
s.t. ID = Σ xi gi



SIGNATURES 
FROM ZERO-
KNOWLEDGE



• There is another design for lattice-based signatures based on 
identification schemes from the Discrete Log world.

NON-TRAPDOOR SIGNATURES

➤ This is related to Fiat-Shamir and proofs of knowledge.

➤ NIST’s finalist Dilithium is based on this philosophy.
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LYUBASHEVSKY’S IDENTIFICATION (2009-2012)

• A is an arbitrary matrix over R=Zq[X]/(X256+1)

• y=Ax1+x2 with small x1 and x2.

R=Ar1+r2

 Rejection(a1=r1+cx1 and a2=r2+cx2)

small r1 and r2 
C

Sparse c

R =? Aa1+a2-ct
small a1 and a2

VerifierProver
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LYUBASHEVSKY’S IDENTIFICATION (2009-2012)

• Finding the secret (x1,x2) is MLWE.

• If one can break the protocol, one can find||.||∞-short vectors 
in the MSIS lattice related to the matrix A over R=Zq[X]/(X256+1)

➤ True in the ROM
➤ Not so much in the QROM

• MSIS attacks are presumed to be harder than MLWE attacks.
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DILITHIUM SETTINGS

• Ring Zq[X]/(X256+1) with q=8380417≡1 (mod 512) instead of 
3329 allows full-NTT.

• 4x4, 6x5 and 8x7 matrices

• Small distribution = uniform narrow. Sparse challenges with 
prescribed ±1

• Approx 4 repetitions

• Many optimizations over [L09-L12]
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DILITHIUM VS FALCON

• Falcon

➤ 3.5-smaller signatures: 600-1200 bytes

➤ 30% smaller public keys: 900-1800 bytes

➤ Faster verification

• Dilithium

➤ Faster signing and much faster key generation

➤ Simpler signing: no Gaussian sampling, no floating-point arithmetic
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FOOD FOR THOUGHT

• How hard are lattice problems, especially with structured lattices?

• How risky is Zq[X]/(Xn+1)?

• How powerful are quantum algorithms?

• How should we measure security?


