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Small Roots of Polynomial Equations

Coppersmith’s Theorem (EURO-96)

Let P(x) be a monic polynomial of degree δ and N an
integer of unknown factorization.
In time polynomial in (log N, δ), one can compute all
integers |x0| ≤ N1/δ such that P(x0) ≡ 0 (mod N).

Remarks

The particular case P(x) = xδ − c is easy.
Hastad (1985) proved the weaker bound N2/[δ(δ+1)].
Corollary: the number of small roots |x0| ≤ N1/δ is
polynomial in (log N, δ). This was independently proved by
[KonyaginSteger1994].
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Generalizations

Finding all small x0 such that P(x0) ≡ 0 (mod N) is a particular
case of:

GCD (1999 - Many people): find all small x0 ∈ Z such that
gcd(P(x0),N) is large. This is provable.
Bivariate Equations over the Integers
[Copper-EURO96;Coron-EURO04;BlomerMay-EURO05]:
find all small (x0, y0) such that P(x0, y0) = 0. This is
provable. Three variables and more are heuristic.
Multivariate Congruences
[Copper-EURO06;BoDu-EURO99;etc.]: find all small
(x0, y0) such that P(x0, y0) ≡ 0 (mod N). This is heuristic.
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The GCD Generalization (1999 - Many people)

Remember Coppersmith’s Theorem

Let P(x) be a monic polynomial of degree δ and N an
integer of unknown factorization.
In time polynomial in (log N, δ), one can compute all
integers |x0| ≤ N1/δ such that P(x0) ≡ 0 (mod N).

The GCD Generalization
Let α = r/s ∈ Q such that 0 ≤ α ≤ 1.
In time polynomial in (log N, log r , log s, δ), one can
compute all integers |x0| ≤ Nα2/δ such that
gcd(P(x0),N) ≥ Nα.
Coppersmith’s theorem is the particular case α = 1.
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Proving Coppersmith’s Theorem: A naive approach

Remember Coppersmith’s Theorem

Let P(x) be a monic polynomial of degree δ and N an
integer of unknown factorization.
In time polynomial in (log N, δ), one can compute all
integers |x0| ≤ N1/δ such that P(x0) ≡ 0 (mod N).

Let P(x) = p0 + p1x + · · · pδ−1xδ−1 + xδ.
Let x0 be such that P(x0) ≡ 0 (mod N)

Is x0 related to some short vector in some lattice?

Phong Nguyễn Small Roots of Polynomial Equations



Proving Coppersmith’s Theorem: A naive approach

Remember Coppersmith’s Theorem

Let P(x) = p0 + p1x + · · · pδ−1xδ−1 + xδ be a monic
polynomial of degree δ and N an integer of unknown
factorization.
In time polynomial in (log N, δ), one can compute all
integers |x0| ≤ N1/δ such that P(x0) ≡ 0 (mod N).

If P(x0) ≡ 0 (mod N), then ~x0 = (1, x0, . . . , x0
δ) belongs to

the lattice L orthogonal mod N to ~P = (p0,p1,pδ−1,1).
When could ~x0 be a shortest vector of L?
Do we really need to make ~x0 a shortest vector to find x0?
This is Coppersmith’s original idea.
How can we modify L and ~x0 to improve the bound X?
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Proving Coppersmith’s Theorem: The dual approach

Remember Coppersmith’s Theorem

Let P(x) be a monic polynomial of degree δ and N an
integer of unknown factorization.
In time polynomial in (log N, δ), one can compute all
integers |x0| ≤ N1/δ such that P(x0) ≡ 0 (mod N).

The case P(x) = xδ − c worked because we had a
polynomial equation over Z satisfied by all small roots. And
any univariate polynomial equation over Z can be solved in
polynomial time.
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Proving Coppersmith’s Theorem

Remember Coppersmith’s Theorem

Let P(x) be a monic polynomial of degree δ and N an
integer of unknown factorization.
In time polynomial in (log N, δ), one can compute all
integers |x0| ≤ N1/δ such that P(x0) ≡ 0 (mod N).

The Philosophy of the Proof (following [Howgrave97])

Any sufficiently small integer must be zero. This is how
congruences can sometimes be transformed into
equations over Z.
Using lattice reduction, we will find a univariate polynomial
equation over Z satisfied by all the small roots x0.
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From Small Roots to Integer-Valued Polynomials

Remember Coppersmith’s Theorem

Let P(x) be a monic polynomial of degree δ and N an
integer of unknown factorization.
In time polynomial in (log N, δ), one can compute all
integers |x0| ≤ N1/δ such that P(x0) ≡ 0 (mod N).

Idea 1
Consider Q(x) = P(x)/N ∈ Q[x ]. If P(x0) ≡ 0 (mod N),
then Q(x0) ∈ Z.
Can we make sure that Q(x0) is actually zero?
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"Short" Integer-Valued Polynomials

A Sufficient Condition
Assume that |x0| ≤ X for some known bound X .
Write Q(x) =

∑n
i=0 qix i and let ‖Q(x)‖2 =

∑n
i=0 q2

i . Then:
Q(x0) =

∑n
i=0(qiX i) · (x0/X )i .

Cauchy-Schwarz:

Q(x0)|2 ≤

(
n∑

i=0

(qiX i)2

)(
n∑

i=0

(x0/X )2i

)
≤ ‖Q(xX )‖2(n+1).

So if ever ‖Q(xX )‖ < 1/
√

1 + deg Q, then
P(x0) ≡ 0 (mod N) implies Q(x0) = 0.
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To Summarize

To find all small |x0| ≤ X such that P(x0) ≡ 0 (mod N), it
suffices to find Q(x) ∈ Q[x ] such that:

‖Q(xX )‖ < 1/
√

1 + deg Q: a certain norm is small.
Q(x0) ∈ Z whenever P(x0) ≡ 0 (mod N).

What are the possible candidates for such a Q(x) ?
Q(x) = P(x)/N.
Every polynomial Qu,v (x) = xu(P(x)/N)v where u, v ∈ N.
And any integral linear combination of such polynomials!

In other words, it suffices to find a short vector in a lattice.
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An Example with δ + 1 Polynomials

We identify polynomials of degree ≤ δ to vectors in Qδ+1.
We build the lattice spanned by the polynomials
Q0,0(xX ),Q1,0(xX ), . . . ,Qδ−1,0(xX ),Q0,1(xX ) that is
1,Xx ,X 2x2, . . . ,X δ−1xδ−1 and P(xX )/N.

L =


1 0 · · · 0 0

0 X
. . .

...
...

...
. . . . . . 0

...
0 . . . 0 X δ−1 0
? . . . . . . ? X δ/N


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An Example with δ + 1 Polynomials

The lattice has dimension δ + 1.
Its volume is X 1+2+···+δ−1 × X δ/N = X δ(δ+1)/2/N.
So using the LLL algorithm, we can find efficiently a
non-zero lattice vector shorter than
2(δ)/2vol(L)1/(δ+1) ≈ X δ/2/N1/(δ+1).
In other words, we can find a non-zero Q(x) ∈ Q[x ] such
that roughly, ‖Q(xX )‖ ≤ X δ/2/N1/(δ+1).
We need ‖Q(xX )‖ < 1/

√
δ + 1, This will hold if roughly,

X � N2/[δ(δ+1)].
We’ve just proved Hastad’s 1985 result: we can find all
roots |x0| ≤ N2/[δ(δ+1)].
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The Proof

More generally, we take hδ polynomials where h grows to
infinity:
Q0,0(xX ),Q1,0(xX ), . . . ,Qδ−1,0(xX ),

Q0,1(xX ),Q1,1(xX ), . . . ,Qδ−1,1(xX ),

...
Q0,h(xX ),Q1,h(xX ), . . . ,Qδ−1,h(xX ).

The lattice volume is easy to compute. The LLL bound
gives a bound X which grows to N1/δ/

√
2 when h grows to

∞. h should not be too big to ensure polynomial time.
We thus obtain all integers |x0| ≤ N1/δ such that
P(x0) ≡ 0 (mod N).
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How to Extend to GCDs

Consider a linear combination Q(x) of the
Qu,v (x) = xu(P(x)/N)v where 0 ≤ v ≤ h.
If the gcd of P(x0) with N is ≥ Nα, then Q(x0) is a rational
number whose denominator is ≤ Nh(1−α).
This rational is therefore zero if < 1/Nh(1−α).
This still reduces the problem to finding short lattice
vectors, but the proof is more technical.
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