
Applications of LLL:
Breaking RSA

Phong Nguyễn

Summary

RSA

Lattice Attacks on RSA

« Linear » Attacks

Wiener’s Attack

Bleichenbacher’s Attack

Small-Root Attacks

The RSA Cryptosystem

Remember RSA
N=pq product of two large random
primes.

ed≡1 (mod φ(N)) where φ(N)=(p-1)(q-1).

e is the public exponent

d is the secret exponent

Then m→me is a trapdoor one-way

permutation over Z/NZ, whose inverse is
c→cd.

Wiener’s Attack (1989)

Short-Secret RSA

To speed-up RSA secret operations, we
may want to select a short d.

Assume that d ≪ N, can we recover d
from (e,N)?

ed = 1+kφ(N)
where φ(N)=(p-1)(q-1)=N+O(√N)

So k=O(d) and ed≈kN, namely ed-
kN=O(d√N).

Lattices and Short-Secret RSA

Consider the 2-dim lattice L spanned
by:

It contains the vector t=dx(1st row)-
kx(2nd row).

e √N

N 0

Lattices and Short-Secret RSA

How short is t=dx(1st row)-kx(2nd row)?

Its 1st coordinate is ed-kN=O(d√N).

Its 2nd coordinate is d√N.

So ||t||=O(d√N).

This is unusually short if ||t||≤vol(L)1/2=N3/4

i.e. d≤O(N1/4), then t is ``likely’’ to be a
shortest vector of L.

Lattice Attack on Short-Secret RSA

Compute a shortest vector of the 2-dim
lattice L: this only takes polynomial-
time, less than 1s for 2048-bit RSA.

If it is ±t, recover (k,d): how?

Check that (k,d) is correct: how?

Lattice Attack on Short-Secret RSA

If it is ±t, recover (k,d): how?

Divide the 2nd coordinate by √N.

Check that (k,d) is correct: how?

ed-kN=1-k(p+q-1).

Derive p+q.

Recover p and q by solving X2-(p+q)X
+N=0.

Wiener’s Attack (1989)

Using continued fractions instead of lattices,
Wiener showed:

Th: If q<p<2q and 1≤d≤N1/4/3, one can
recover p and q in polynomial time from
(N,e).

[BonehDurfee1999]: There is a heuristic
(lattice) attack recovering p and q in
polynomial time from (N,e) if d≤N0.292…

Bleichenbacher’s Attack
(1998)

Security of RSA

It is well-known that recovering
the secret key d is as hard as
factoring N=pq.

But inverting the permutation
m→me might be easier than
factoring: how hard is it to compute
c→cd without knowing d?

Textbook RSA Encryption

Just use the RSA permutation
m→me over Z/NZ directly to
encrypt and decrypt.

But this is insecure in theory and in
many practical settings.

Short-Message Attack

❖ Assume that e=3, N is 2048-bit, and that we encrypt a
128-bit AES key m.

❖ c=me (mod N).

❖ What is the problem?

Securing RSA Encryption

Encryption needs to be randomized.

Concretely, one (randomly) transforms
the plaintext, before applying the RSA
permutation.

To decrypt, the formatting must be
checked and inverted.

Bleichenbacher’s Attack (1998)
❖ The PKCS standard used by SSLv3.0 preprocessed

messages as follows:

❖ The server checked if decrypted messages had this shape:
if not, an error message was sent.

❖ Thus, one could know if the decryption of a ciphertext
started with 00 02.

00 02
random
non-zero

bytes
00 message

Size of the RSA Modulus N

❖ Given a public key (N,e) and a ciphertext c=me (mod N).

❖ Choose a random r mod N and let c’ = c re (mod N).

❖ Ask the server if c’ is a valid ciphertext.

❖ If not, pick another r.

❖ If yes, we know that c’d=mr (mod N) starts with 00 02.

❖ Repeat until enough r’s have been collected: recover m
using a special algorithm.

Bleichenbacher’s Attack (1998)

Enter Lattices

Recall that c=me (mod N).

We know many integers ri
s.t. (mri) mod N starts with 0002.

Let s=00020…0 with the same bit-
length as N.

Then 0≤((mri) mod N)—s<N/216

Enter Lattices

Let L be the lattice spanned by:

Then u=(m,216(mr1 mod N),…,216(mrn mod N))∈L

0

BBBBBB@

1 216r1 216r2 . . . 216rn
0 216N 0 . . . 0
... 0 216N

. . .
...

...
...

. . .
. . . 0

0 0 . . . 0 216N

1

CCCCCCA

Enter Lattices

Let L be the lattice spanned by:

Let u=(m,216(mr1 mod N),…,216(mrn mod N))∈L
and t=(0,s,s…s), then ||u-t||≈N√n.

0

BBBBBB@

1 216r1 216r2 . . . 216rn
0 216N 0 . . . 0
... 0 216N

. . .
...

...
...

. . .
. . . 0

0 0 . . . 0 216N

1

CCCCCCA

Enter Lattices

Let L be the lattice spanned by:

This distance ||u-t||≈N√n is much smaller
than √nvol(L)1/(n+1)≈216N√n so u is
heuristically the closest lattice vector to t.

0

BBBBBB@

1 216r1 216r2 . . . 216rn
0 216N 0 . . . 0
... 0 216N

. . .
...

...
...

. . .
. . . 0

0 0 . . . 0 216N

1

CCCCCCA

Recap

Build the lattice L.

Compute the closest lattice vector to
the target vector t.

Derive the plaintext m as the 1st
coordinate.

If N is 1024-bit, n=80 works in
practice.

Small-Roots Attacks

Breaking RSA without Factoring
In 1996, Coppersmith showed how to
solve two problems in polynomial time
using lattices:

Given a monic polynomial P in Z[X] and
an integer N, find all “small” integers x
s.t. P(x)≡0 (mod N).

Given an irreducible polynomial P in
Z[X,Y], find all “small” integers x and y
s.t. P(x,y) = 0.

Applications to RSA

This and generalizations lead to breaking
many special cases of RSA

When the secret exponent d is too small.

When half of the bits of p are known.

When the public exponent e is small, and
only a fraction of the plaintext is
unknown.

Stereotyped Attack

❖ Assume that e=3, N is 2048-bit, and that we encrypt a
128-bit AES key m by padding a known constant like
« Today’s key is ».

❖ c=(m+b)e (mod N).

❖ What is the problem?

Factoring with a hint [Cop96]

N=pq where p=p0+εfor some small ε.

Let f(x)=p0+x.

Then gcd(f(ε),N)=p is large.

Can recover εand p if |ε|≤N1/4

Attack on Infineon RSA keys.

See ACM CCS ’17: The Return of
Coppersmith’s Attack: Practical Factorization
of Widely Used RSA Moduli by
Matus Nemec, Marek Sys, Petr Svenda,
Dusan Klinec, Vashek Matyas (Masaryk
University).

Another Real-World Attack

Impact

Ex: Estonia’s 750,000 ID cards.

Identifying RSA keys

Svenda et al. analyzed 60 millions fresh
keys produced by 22 libraries and 16
smartcards from 6 manufacturers.

Most distributions of N=pq and/or p were
different and could be identified!

Why?

If p and q are random primes, then (p-1)(q-1) may
not be coprime with e, and N=pq will not have a
fixed bit-length.

Each manufacturer/library typically has their own
distribution.

Ex: Infineon

Infineon primes are « not random »

What is going on?

If pi is a small prime then p mod pi is
not uniform over {1,…, pi-1}.

It seems to be uniform over some
small subgroup of (Z/piZ)*.

Why?

Typically, one generates primes as:

Repeat

Generate a large random number p

Until p is prime

In practice, primality testing is a few
modular exponentiations. One can increase
the probability by making p not divisible by
all small pi.

 Generation

The subgroup of (Z/piZ)* is the one
generated by 65537.

p and q are of the form:

p=kM+(65537a mod M), where M is the
product of the first n primes: 2x3x5x…

n depends on the size of N.

Hence, N mod M is a power of 65537,
which can easily be checked.

Breaking Infineon-RSA

p=kM+(65537a mod M)

If one can guess the exponent a,
then p mod M is known.

From Coppersmith’s 1996 work: if M≥N0.25,
lattice attacks recover p in poly-time from N.

N 512-bit 1024-bit 2048-bit 3072-bit 4096-bit

(log2 M)/
(log2 N)

0.43 0.46 0.47 0.32 0.48

Lattice Attacks

If p mod M is known, one knows a
linear polynomial f(X)∈Z[X] s.t.
gcd(f(x0),N)=p is large, where x0 is a
small integer: it is small if M is large.

This can be solved by lattice
techniques [Cop1996].

The Trick

Guessing a depends on the order of 65537
in (Z/MZ)*, which might be as big as
M≥N0.4: exhaustive search too expensive!

However, no need to take M: take any
divisor M’ of M s.t. M’≥N1/4 and the order
of 65537 in (Z/M’Z)* is small.

Ex: 20-bit order for 512-bit N, 30-bit
order for 1024-bit.

Implementation

Non-linear!

