## Applications of LLL: Breaking RSA

#### Phong Nguyễn





#### Summary

## **o**RSA o Lattice Attacks on RSA o « Linear » Attacks o Wiener's Attack Bleichenbacher's Attack Small-Root Attacks





## The RSA Cryptosystem

#### Remember RSA

- N=pq product of two large random primes.  $\circ ed = 1 \pmod{\phi(N)}$  where  $\phi(N) = (p-1)(q-1)$ . o e is the public exponent od is the secret exponent  $\circ$  Then m $\rightarrow$ m<sup>e</sup> is a trapdoor one-way permutation over Z/NZ, whose inverse is
  - $c \rightarrow c^d$ .



## Wiener's Attack (1989)

#### Short-Secret RSA

- To speed-up RSA secret operations, we may want to select a short d.
  - Assume that d « N, can we recover d from (e,N)?
  - $\circ ed = 1+k\phi(N)$

where  $\phi(N)=(p-1)(q-1)=N+O(\sqrt{N})$ 

 So k=O(d) and ed≈kN, namely edkN=O(d√N).

#### Lattices and Short-Secret RSA

# Consider the 2-dim lattice L spanned by:



 It contains the vector t=dx(1st row)kx(2nd row).

#### Lattices and Short-Secret RSA

How short is t=dx(1st row)-kx(2nd row)?
Its 1st coordinate is ed-kN=O(d/N).
Its 2nd coordinate is d/N.
So ||t||=O(d/N).

This is unusually short if ||t||≤vol(L)<sup>1/2</sup>=N<sup>3/4</sup>
 i.e. d≤O(N<sup>1/4</sup>), then t is ``likely" to be a shortest vector of L.

#### Lattice Attack on Short-Secret RSA

Compute a shortest vector of the 2-dim lattice L: this only takes polynomial-time, less than 1s for 2048-bit RSA.
If it is ±t, recover (k,d): how?
Check that (k,d) is correct: how?

#### Lattice Attack on Short-Secret RSA

o If it is ±t, recover (k,d): how? o Divide the 2nd coordinate by  $\sqrt{N}$ . • Check that (k,d) is correct: how?  $\circ ed-kN=1-k(p+q-1).$  $\circ$  Derive p+q. • Recover p and q by solving  $X^2 - (p+q)X$ +N=0.

#### Wiener's Attack (1989)

- Using continued fractions instead of lattices, Wiener showed:
  - Th: If q<p<2q and 1≤d≤N<sup>1/4</sup>/3, one can recover p and q in polynomial time from (N,e).
- [BonehDurfee1999]: There is a heuristic (lattice) attack recovering p and q in polynomial time from (N,e) if d≤N<sup>0.292...</sup>



## Bleichenbacher's Attack (1998)

#### Security of RSA

 It is well-known that recovering the secret key d is as hard as factoring N=pq.

• But inverting the permutation  $m \rightarrow m^e$  might be easier than

factoring: how hard is it to compute  $c \rightarrow c^d$  without knowing d?

#### Textbook RSA Encryption

o Just use the RSA permutation m→m<sup>e</sup> over Z/NZ directly to encrypt and decrypt.
o But this is insecure in theory and in many practical settings.

Short-Message Attack

- Assume that e=3, N is 2048-bit, and that we encrypt a 128-bit AES key m.
  - \*  $c=m^e \pmod{N}$ .
  - \* What is the problem?

#### Securing RSA Encryption

 Encryption needs to be randomized.
 Concretely, one (randomly) transforms the plaintext, before applying the RSA permutation.

 To decrypt, the formatting must be checked and inverted.

## Bleichenbacher's Attack (1998)

The PKCS standard used by SSLv3.0 preprocessed
 messages as follows: Size of the RSA Modulus N



- The server checked if decrypted messages had this shape: if not, an error message was sent.
- \* Thus, one could know if the decryption of a ciphertext started with 00 02.

### Bleichenbacher's Attack (1998)

- \* Given a public key (N,e) and a ciphertext c=m<sup>e</sup> (mod N).
  - \* Choose a random r mod N and let  $c' = c r^e \pmod{N}$ .
  - \* Ask the server if c' is a valid ciphertext.
    - \* If not, pick another r.
    - \* If yes, we know that  $c'^{d}=mr \pmod{N}$  starts with 00 02.
  - \* Repeat until enough r's have been collected: recover **m** using a special algorithm.

 $\circ$  Recall that c=m<sup>e</sup> (mod N). o We know many integers ri s.t. (mri) mod N starts with 0002. o Let s=00020...0 with the same bitlength as N. • Then  $O \leq ((mr_i) \mod N) - s < N/2^{16}$ 

• Let L be the lattice spanned by:  $\begin{pmatrix} 1 & 2^{16}r_1 & 2^{16}r_2 & \dots & 2^{16}r_n \\ 0 & 2^{16}N & 0 & \dots & 0 \\ \vdots & 0 & 2^{16}N & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & 0 & \dots & 0 & 2^{16}N \end{pmatrix}$ 

◦ Then u=(m,2<sup>16</sup>(mr<sub>1</sub> mod N),...,2<sup>16</sup>(mr<sub>n</sub> mod N))∈L

o Let L be the lattice spanned by:  $\begin{pmatrix} 1 & 2^{16}r_1 & 2^{16}r_2 & \dots & 2^{16}r_n \\ 0 & 2^{16}N & 0 & \dots & 0 \end{pmatrix}$  $2^{16}N$ 0  $0 \quad 2^{16}N$ ◦ Let  $u=(m,2^{16}(mr_1 \mod N),...,2^{16}(mr_n \mod N)) \in L$ and t=(0,s,s...s), then ||u-t||≈N√n.

• Let L be the lattice spanned by:  $\begin{array}{cccc} 2^{16}r_1 & 2^{16}r_2 \\ 2^{16}N & 0 \end{array}$  $... 2^{16} r_n$  $2^{16}N$ 0  $0 \quad 2^{16}N$ o This distance ||u-t||≈N√n is much smaller than  $\sqrt{nvol(L)^{1/(n+1)}} \approx 2^{16}N\sqrt{n}$  so u is heuristically the closest lattice vector to t.

Recap

Build the lattice L.
Compute the closest lattice vector to the target vector t.
Derive the plaintext m as the 1st coordinate.

 If N is 1024-bit, n=80 works in practice.



## Small-Roots Attacks



## Breaking RSA without Factoring

 In 1996, Coppersmith showed how to solve two problems in polynomial time using lattices:

 Given a monic polynomial P in Z[X] and an integer N, find all "small" integers × s.t. P(×)=0 (mod N).

Given an irreducible polynomial P in
 Z[X,Y], find all "small" integers x and y
 s.t. P(x,y) = 0.

#### Applications to RSA

- This and generalizations lead to breaking many special cases of RSA
  - When the secret exponent d is too small.
  - When half of the bits of p are known.
  - When the public exponent e is small, and only a fraction of the plaintext is unknown.

Stereotyped Attack

- Assume that e=3, N is 2048-bit, and that we encrypt a 128-bit AES key m by padding a known constant like « Today's key is ».
  - \*  $c=(m+b)^e \pmod{N}$ .
  - \* What is the problem?

#### Factoring with a hint [Cop96]

The states of th

- $\circ N = pq$  where  $p = p_0 + \varepsilon$  for some small  $\varepsilon$ .
- Let  $f(x)=p_0+x$ .
- Then  $gcd(f(\varepsilon),N)=p$  is large.
- Can recover  $\varepsilon$  and p if  $|\varepsilon| \le N^{1/4}$

#### Another Real-World Attack

Man State A Jos Harris Constant and the second and

• Attack on Infineon RSA keys.



|     |          | -     | T |
|-----|----------|-------|---|
| =   | RAUBORY  | TE    |   |
| 3   | 6        | E     |   |
| 1.2 | Allected | the - |   |

 See ACM CCS '17: The Return of Coppersmith's Attack: Practical Factorization of Widely Used RSA Moduli by Matus Nemec, Marek Sys, Petr Svenda, Dusan Klinec, Vashek Matyas (Masaryk University).

#### Impact



#### Ex: Estonia's 750,000 ID cards.



 Svenda et al. analyzed 60 millions fresh keys produced by 22 libraries and 16 smartcards from 6 manufacturers.

 Most distributions of N=pq and/or p were different and could be identified!

Why?

- If p and q are random primes, then (p-1)(q-1) may not be coprime with e, and N=pq will not have a fixed bit-length.
- Each manufacturer/library typically has their own distribution. Library: Microsoft CryptoAPI Card: Infineon JTOP 80K





Ex: Infineon

#### Infineon primes are « not random »



### What is going on?

If p<sub>i</sub> is a small prime then p mod p<sub>i</sub> is not uniform over {1,..., p<sub>i</sub>-1}.
It seems to be uniform over some small subgroup of (Z/p<sub>i</sub>Z)\*.

Why?

- Typically, one generates primes as: Repeat o Generate a large random number p o Until p is prime • In practice, primality testing is a few modular exponentiations. One can increase
  - the probability by making p not divisible by all small  $p_i$ .



Generation

• The subgroup of  $(Z/p_iZ)^*$  is the one generated by 65537. op and q are of the form:  $\circ p=kM+(65537^{a} \mod M)$ , where M is the product of the first n primes: 2x3x5x... on depends on the size of N. • Hence, N mod M is a power of 65537, which can easily be checked.



### Breaking Infineon-RSA

#### o p=kM+(65537<sup>a</sup> mod M)

#### If one can guess the exponent a, then p mod M is known.

#### ○ From Coppersmith's 1996 work: if M≥N<sup>0.25</sup>, lattice attacks recover p in poly-time from N.

| N                       | 512-bit | 1024-bit | 2048-bit | 3072-bit | 4096-bit |
|-------------------------|---------|----------|----------|----------|----------|
| $(\log_2 M)/(\log_2 N)$ | 0.43    | 0.46     | 0.47     | 0.32     | 0.48     |

#### Lattice Attacks

If p mod M is known, one knows a linear polynomial f(X)∈Z[X] s.t. gcd(f(x<sub>0</sub>),N)=p is large, where x<sub>0</sub> is a small integer: it is small if M is large.
This can be solved by lattice techniques [Cop1996].

#### The Trick

Guessing a depends on the order of 65537
 in (Z/MZ)\*, which might be as big as
 M≥N<sup>0.4</sup>: exhaustive search too expensive!

However, no need to take M: take any divisor M' of M s.t. M'≥N<sup>1/4</sup> and the order of 65537 in (Z/M'Z)\* is small.

 Ex: 20-bit order for 512-bit N, 30-bit order for 1024-bit.

#### Implementation

