Applications of LLL:
Breaking RSA
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Summary
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o RSA
o Lattice Attacks on RSA
o0 « Linear » Attacks
o Wieners Attack
o Bleichenbachers Attack

o Small-Root Attacks
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Remember RSA
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o N=pq produc’r of two la large random
primes.

o ed=1 (mod & (N)) where & (N)=(p-1)(g-1).

oe is the public exponent
od is the secret exponent

o Then m—me is a trapdoor one-way

permutation over Z/NZ, whose inverse is
c—cd.






Short-Secret RSA
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o To speed-up RSA secre‘r operahons we
may want to select a short d.

o Assume that d « N, can we recover d
from (e,N)?

oed = 1+k ¢ (N)
where ¢ (N)=(p-1)(g-1)=N+O(~/N)

o0 So k=0(d) and ed=kN, namely ed-
kN=O(d~/N).



[ attices and Short-Secret RSA
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o Consider the 2-dim lattice L spanned
by:

e N

N O

oIt contains the vector t=dx(lst row)-
kx(2nd row).



[ attices and Short-Secret RSA

o How short is t=dx(1st row)-kx(2nd row)?
o Its 1st coordinate is ed-kN=O(d~/N).
o Its 2nd coordinate is d-/N.

o So ||1||I=0(d~/N).

o This is unusually short if ||t|lcvol(L)/2=N34
i.e. d<O(NY%), then t is “likely” to be a
shortest vector of L.



[attice Attack on Short-Secret RSA
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o Compute a shortest vector of the 2-dim
lattice L: this only takes polynomial-
time, less than 1s for 2048-bit RSA.

o If it is +1, recover (k,d): how?

o Check that (k,d) is correct: how?



[attice Attack on Short-Secret RSA
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o If it is +1, recover (k,d): how?

o Divide the 2nd coordinate by /N.
o Check that (k,d) is correct: how?

o ed-kN=1-k(p+g-1).

o Derive p+q.

o Recover p and g by solving X2-(p+q)X
+N=0.



Wiener’s Attack (1989)
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o Using continued fractions instead of lattices,
Wiener showed:

o Th: If q<p<2q and 1<d<NY#/3, one can
recover p and q in polynomial time from
(N,e).

o [BonehDurfeel999]: There is a heuristic
(lattice) attack recovering p and q in
polynomial time from (N,e) if d<NO-¢72-






Securlty of RSA
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o It is well-known that recovering
the secret key d is as hard as
factoring N=pq.

o But inverting the permutation
m—me® might be easier than

factoring: how hard is it fo compute
c—c? without knowing d?



Textbook RSA Encryptlon
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o Just use the RSA permutation
m—me¢ over Z/NZ directly to

encrypt and decrypt.

o But this is insecure in theory and in
many practical settings.



Short-Message Attack

* Assume that e=3, N is 2048-bit, and that we encrypt a
128-bit AES key m.

+ c=me (mod N).
* What is the problem?



Securing RSA Encryptlon
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o Encryption needs to be randomized.

o Concretely, one (randomly) transforms
the plaintext, before applying the RSA
permutation.

o To decrypt, the formatting must be
checked and inverted.



Bleichenbacher’s Attack (1998)

# The PKCS standard used by SSLv3.0 preprocessed
messages as follows:  gj-¢ of the RSA Modulus N
-— s

* The server checked if decrypted messages had this shape:
if not, an error message was sent.

* Thus, one could know if the decryption of a ciphertext
started with 00 02.



Bleichenbacher’s Attack (1998)

* Given a public key (N,e) and a ciphertext c=m¢ (mod N).
+ Choose a random r mod N and let ¢’ = c r¢ (mod N).
“ Ask the server if ¢’ is a valid ciphertext.

« If not, pick another r.

« If yes, we know that ¢’“=mr (mod N) starts with 00 02.

* Repeat until enough r’s have been collected: recover m
using a special algorithm.



Enter Lattices
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o Recall that c=m® (mod N).

o We know many integers r;
s.t. (mri) mod N starts with 0002.

o Let s=00020...0 with the same bit-
length as N.

o Then 0<((mr;) mod N)—s<N/216



Enter Lattices
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oLet L be the lattice spanned by:

1 216r1 216r2 i 216rn
0 215N 0 0

0 DL
. : . . 0
0 0 0 [ 1O\

o Then u=(m,2*(mr; mod N),...,2"*%(mr, mod N))eL



Enter Lattices
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oLet L be the lattice spanned by:
IR D0 o L 20,
EIZO N 0 0

0 216 1y
; : : AL 0
0 0 o B 210N,
o Let u=(m,2!%(mr; mod N),...,2*(mr, mod N))eL
and t=(0,s,s...s), then |lu-t||=N+/n.



Enter Lattices
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oLet L be the Ia’rhce spanned by:

R L0 . 916,
0 216N 0 - 0
0 216 v
; ‘ : AL 0
0 0 % 0 26N

o This distance |lu-t||®N+/n is much smaller
than /nvol(L)/"+)x~21éN./n so u is
heuristically the closest lattice vector to t.



Recap
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o Build the lattice L.

o Compute the closest lattice vector to
the target vector t.

o Derive the plaintext m as the lst
coordinate.

oIf N is 1024-bit, n=80 works in
practice.






‘m Breaking RSA without Factoring

I LSRL s s Tyt A5 P AT DA A Tty "IN S 2 R ke L PRSP o R S T

o In 1996, Coppersmﬂrh ‘showed how to
solve two problems in polynomial time
using lattices:

o Given a monic polynomial P in Z[X] and
an integer N, find all "small” integers x

s.t. P(x)=0 (mod N).

o Given an irreducible polynomial P in

Z[X,Y], find all "small” integers x and vy
s.t. P(x,y) =0



Apphcatlons to RSA

T LR s Tart S P S DA AN Pty =" I L 02 3R v it Laiaake . PSSP o PSP W S g

o This and generalizations lead to breaking
many special cases of RSA

o When the secret exponent d is oo small.
o When half of the bits of p are known.

o When the public exponent e is small, and
only a fraction of the plaintext is
unknown.



Stereotyped Attack

+ Assume that e=3, N is 2048-bit, and that we encrypt a
128-bit AES key m by padding a known constant like
« Today’s key is ».

+ c=(m+b)e (mod N).
* What is the problem?



Factoring with a hint [Cop96]
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o N=pgq where p=po+ ¢ for some small ¢ .

oLet f(x)=po+x.
o Then ged(f( € ),N)=p is large.

o Can recover ¢ and p if | € |<NV4



Another Real-World Attack
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o Attack on Infineon RSA keys.

ROCA Attack

o See ACM CCS ‘17: The Return of
Coppersmith’s Attack: Practical Factorization
of Widely Used RSA Moduli by
Matus Nemec, Marek Sys, Petr Svenda,
Dusan Klinec, Vashek Matyas (Masaryk
University).



Trusted Platform Modules
Message protection ,
(Data encryption, (S-MIME. PGP) Software sgning
Platform integrity)

(TLS/HTTPS)

*only 2 small number of vuinerable keys found




8/ Identlfylng RSA keys
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o Svenda et al. analyzed 60 millions fresh
Keys produced by 22 libraries and 16
smartcards from 6 manufacturers.

o Most distributions of N=pq and/or p were
different and could be identified!



Why?
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o If p and q are random primes, then (p-1)(g-1) may
not be coprime with e, and N=pqg will not have a
fixed bit-length.

o Each manufacturer/library typically has their own
dis.l.ribu'l‘ion' Library: Microsoft CryploAR| Card: infingon JTOP 80K
P | p



Random primes




What 1s gomg on?

o If pi is a small prime then p mod pi s
not uniform over {l,..., pi-1;.

oIt seems to be uniform over some
small subgroup of (Z/piZ)™



Why"
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o Typically, one generates primes as:
o Repeat
o Generate a large random number p
o Until p Is prime

o In practice, primality testing is a few
modular exponentiations. One can increase
the probability by making p not divisible by
all small pi.



Infineon Generation
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o The subgroup of (Z/p.Z)* is ’rhe one
generated by 65537.
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op and q are of the form:

o p=kM+(65537° mod M), where M is the
product of the first n primes: 2x3x5x...

o n depends on the size of N.

o Hence, N mod M is a power of 65537,
which can easily be checked.



Inf
@ Breaking Infineon-RSA
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o p=kM+(65537° mod M)
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o If one can guess the exponent g,
then p mod M is known.

o From Coppersmiths 1996 work: if M2N%-2%,
lattice attacks recover p in poly-time from N.

N

512-bit

1024-bit

2048-bit

3072-bit

4096-bit

(logo M)/
(logz N)

0.43

0.46

0.47

0.32

0.48




[ attice Attacks
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o If p mod M is known, one knows a

linear polynomial f(X)eZ[X] s.t.
gcd(f(x0),N)=p is large, where xo is a
small integer: it is small if M is large.

o This can be solved by lattice
techniques [Cop1996].



f The Trick
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o Guessing a depends on ’rhe order of 65537

in (Z/MZ)*, which might be as big as
M2N%4: exhaustive search too expensive!

o However, no need to take M: take any
divisor M’ of M s.t. M'2N"4 and the order

of 65537 in (Z/M'Z)* is small.

o Ex: 20-bit order for 512-bit N, 30-bit
order for 1024-bit.



Implementation
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Worst case factorization time

512-bit: 2 CPU hours

1024-bit: 2 CPU months ($76 on AWS)
2048-bit: 100 CPU years ($40.300 on AWS)
No practical attack

[ [ e
o
o
w

et
—
o

v

Worst case factorization time [yea
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1024 1536 2048 2560 3072 3584
Key size [bits)



