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The RSA Cryptosystem



Remember RSA
N=pq product of two large random 
primes.

ed≡1 (mod φ(N)) where φ(N)=(p-1)(q-1).


e is the public exponent

d is the secret exponent


Then m→me is a trapdoor one-way 

permutation over Z/NZ, whose inverse is 
c→cd.



Wiener’s Attack (1989)



Short-Secret RSA

To speed-up RSA secret operations, we 
may want to select a short d.

Assume that d ≪ N, can we recover d 
from (e,N)?

ed = 1+kφ(N)                          
where φ(N)=(p-1)(q-1)=N+O(√N)


So k=O(d) and ed≈kN, namely ed-
kN=O(d√N).



Lattices and Short-Secret RSA

Consider the 2-dim lattice L spanned 
by:


It contains the vector t=dx(1st row)-
kx(2nd row).

e √N

N 0



Lattices and Short-Secret RSA

How short is t=dx(1st row)-kx(2nd row)?

Its 1st coordinate is ed-kN=O(d√N).

Its 2nd coordinate is d√N.


So ||t||=O(d√N).

This is unusually short if ||t||≤vol(L)1/2=N3/4 

i.e. d≤O(N1/4), then t is ``likely’’ to be a 
shortest vector of L.



Lattice Attack on Short-Secret RSA

Compute a shortest vector of the 2-dim 
lattice L: this only takes polynomial-
time, less than 1s for 2048-bit RSA.

If it is ±t, recover (k,d): how?

Check that (k,d) is correct: how? 



Lattice Attack on Short-Secret RSA

If it is ±t, recover (k,d): how?

Divide the 2nd coordinate by √N.


Check that (k,d) is correct: how?

ed-kN=1-k(p+q-1).

Derive p+q.

Recover p and q by solving X2-(p+q)X
+N=0.



Wiener’s Attack (1989)

Using continued fractions instead of lattices, 
Wiener showed:


Th: If q<p<2q and 1≤d≤N1/4/3, one can 
recover p and q in polynomial time from 
(N,e).


[BonehDurfee1999]: There is a heuristic 
(lattice) attack recovering p and q in 
polynomial time from (N,e) if d≤N0.292…



Bleichenbacher’s Attack
(1998)



Security of RSA

It is well-known that recovering 
the secret key d is as hard as 
factoring N=pq.

But inverting the permutation 
m→me might be easier than 
factoring: how hard is it to compute 
c→cd without knowing d?



Textbook RSA Encryption

Just use the RSA permutation 
m→me over Z/NZ directly to 
encrypt and decrypt.

But this is insecure in theory and in 
many practical settings.



Short-Message Attack

❖ Assume that e=3, N is 2048-bit, and that we encrypt a 
128-bit AES key m.

❖ c=me (mod N).

❖ What is the problem?



Securing RSA Encryption

Encryption needs to be randomized.

Concretely, one (randomly) transforms 
the plaintext, before applying the RSA 
permutation. 

To decrypt, the formatting must be 
checked and inverted.



Bleichenbacher’s Attack (1998)
❖ The PKCS standard used by SSLv3.0 preprocessed 

messages as follows:

❖ The server checked if decrypted messages had this shape: 
if not, an error message was sent.

❖ Thus, one could know if the decryption of a ciphertext 
started with 00 02.

00 02
random 
non-zero 

bytes
00 message

Size of the RSA Modulus N



❖ Given a public key (N,e) and a ciphertext c=me (mod N).

❖ Choose a random r mod N and let c’ = c re (mod N).

❖ Ask the server if c’ is a valid ciphertext.

❖ If not, pick another r.

❖ If yes, we know that c’d=mr (mod N) starts with 00 02.

❖ Repeat until enough r’s have been collected: recover m 
using a special algorithm.

Bleichenbacher’s Attack (1998)



Enter Lattices

Recall that c=me (mod N).

We know many integers ri                   
s.t. (mri) mod N starts with 0002.

Let s=00020…0 with the same bit-
length as N.

Then 0≤((mri) mod N)—s<N/216



Enter Lattices

Let L be the lattice spanned by:


Then u=(m,216(mr1 mod N),…,216(mrn mod N))∈L

0

BBBBBB@

1 216r1 216r2 . . . 216rn
0 216N 0 . . . 0
... 0 216N

. . .
...

...
...

. . .
. . . 0

0 0 . . . 0 216N

1

CCCCCCA



Enter Lattices

Let L be the lattice spanned by:


Let u=(m,216(mr1 mod N),…,216(mrn mod N))∈L    
and t=(0,s,s…s), then ||u-t||≈N√n.
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Enter Lattices

Let L be the lattice spanned by:


This distance ||u-t||≈N√n is much smaller 
than √nvol(L)1/(n+1)≈216N√n so u is 
heuristically the closest lattice vector to t.
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Recap

Build the lattice L.

Compute the closest lattice vector to 
the target vector t.

Derive the plaintext m as the 1st 
coordinate.

If N is 1024-bit, n=80 works in 
practice.



Small-Roots Attacks



Breaking RSA without Factoring
In 1996, Coppersmith showed how to 
solve two problems in polynomial time 
using lattices:


Given a monic polynomial P in Z[X] and 
an integer N, find all “small” integers x 
s.t. P(x)≡0 (mod N).

Given an irreducible polynomial P in 
Z[X,Y], find all “small” integers x and y 
s.t. P(x,y) = 0.



Applications to RSA

This and generalizations lead to breaking 
many special cases of RSA


When the secret exponent d is too small.

When half of the bits of p are known.

When the public exponent e is small, and 
only a fraction of the plaintext is 
unknown. 



Stereotyped Attack

❖ Assume that e=3, N is 2048-bit, and that we encrypt a 
128-bit AES key m by padding a known constant like 
« Today’s key is ».

❖ c=(m+b)e (mod N).

❖ What is the problem?



Factoring with a hint [Cop96]

N=pq where p=p0+εfor some small ε.


Let f(x)=p0+x.

Then gcd(f(ε),N)=p is large.


Can recover εand p if |ε|≤N1/4



Attack on Infineon RSA keys.


See ACM CCS ’17: The Return of 
Coppersmith’s Attack: Practical Factorization 
of Widely Used RSA Moduli by 
Matus Nemec, Marek Sys, Petr Svenda, 
Dusan Klinec, Vashek Matyas (Masaryk 
University). 


Another Real-World Attack



Impact

Ex: Estonia’s 750,000 ID cards.  



Identifying RSA keys

Svenda et al. analyzed 60 millions fresh 
keys produced by 22 libraries and 16 
smartcards from 6 manufacturers.

Most distributions of N=pq and/or p were 
different and could be identified! 




Why?

If p and q are random primes, then (p-1)(q-1) may 
not be coprime with e, and N=pq will not have a 
fixed bit-length.

Each manufacturer/library typically has their own 
distribution.



Ex: Infineon

Infineon primes are « not random »



What is going on?

If pi is a small prime then p mod pi is 
not uniform over {1,…, pi-1}.

It seems to be uniform over some 
small subgroup of (Z/piZ)*.



Why?

Typically, one generates primes as:

Repeat


Generate a large random number p 

Until p is prime


In practice, primality testing is a few 
modular exponentiations. One can increase 
the probability by making p not divisible by 
all small pi.



 Generation

The subgroup of (Z/piZ)* is the one 
generated by 65537. 

p and q are of the form:


p=kM+(65537a mod M), where M is the 
product of the first n primes: 2x3x5x…

n depends on the size of N.


Hence, N mod M is a power of 65537, 
which can easily be checked.



Breaking Infineon-RSA

p=kM+(65537a mod M)

If one can guess the exponent a,                 
then p mod M is known.

From Coppersmith’s 1996 work: if M≥N0.25, 
lattice attacks recover p in poly-time from N.

N 512-bit 1024-bit 2048-bit 3072-bit 4096-bit

(log2 M)/
(log2 N)

0.43 0.46 0.47 0.32 0.48



Lattice Attacks

If p mod M is known, one knows a 
linear polynomial f(X)∈Z[X] s.t. 
gcd(f(x0),N)=p is large, where x0 is a 
small integer: it is small if M is large.

This can be solved by lattice 
techniques [Cop1996].



The Trick

Guessing a depends on the order of 65537 
in (Z/MZ)*, which might be as big as 
M≥N0.4: exhaustive search too expensive!

However, no need to take M: take any 
divisor M’ of M s.t. M’≥N1/4 and the order 
of 65537 in (Z/M’Z)* is small. 


Ex: 20-bit order for 512-bit N, 30-bit 
order for 1024-bit.



Implementation

Non-linear!


