
Hermite’s Inequality
and the LLL Algorithm

Phong Nguyễn

Gram-Schmidt
and

Size-Reduction

Recall Gram-Schmidt

Let b1,…,bn∈Rm.

Its Gram-Schmidt Orthogonalization is
b1*,…,bn*∈Rm defined as:

b1* = b1

For 2≤i≤n, bi* = projection of bi over
span(b1,…,bi-1)⊥

Linearly Independent Vectors

Formula

Let b1,…,bn∈Rm be linearly independent.

Then all bj*≠0.

For 1≤j<i≤n, let .

Then:

µi,j =
h~bi,~b⇤j i
k~b⇤jk2

~b?
i =~bi�

i�1

∑
j=1
µi, j~b?

j
~b?
1 =~b1

Induction Formulas

k~b⇤i k2 = k~bik2 �
i�1X

j=1

µ2
i,jk~b⇤jk2

µi,j =
h~bi,~bji �

Pj�1
k=1 µj,kµi,kk~b⇤kk2

k~b⇤jk2

This gives an algorithm, but not necessarily
efficient: we want cheap operations on
reasonably-sized numbers.

Efficient Computations

We only deal with integers, so assume
that b1,…,bn∈Zm and let M=max1≤i≤n||bi||.

Define the following integers:

d0=1

di=Gram(b1,…,bi) = ||b1*||2x…x||bi*||2
for 1≤i≤m. Thus: 1≤di≤M2i

Then μi,j , ||bi*||2 ∈Q and bj*∈Qm

Integral Gram-Schmidt

Lemma: Let b1,…,bn∈Zm be linearly
independent. Then for all 1≤j<i≤n:

di-1bi*∈L(b1,…,bi)⊆Zm with ||di-1bi*||≤M2i-1

djμi,j∈Z with |djμi,j|≤M2j

Proof

B=μB* for some lower-triangular matrix μ
with unit diagonal: B*=νB where ν=μ-1 is
lower-triangular with unit diagonal.

Thus, Gram(b1,…,bi-1)νi,j∈Z therefore di-1bi*∈Zm

~b⇤i = ~bi +
i�1X

j=1

⌫i,j~bj

) h~bi,~bki = �
i�1X

j=1

⌫i,jh~bj ,~bki, if k < i

Alternative Proof by Duality

Let L=L(b1,…,bi) and denote by Lx its
dual lattice. Then [Lx:L]=covol(L)2=di.

Note that: bi*/||bi*||2∈ Lx

Therefore [Lx:L]bi*/||bi*||2∈ L,
i.e. di-1bi*∈L(b1,…,bi)⊆Zm.

Gram-Schmidt Algorithm

Induction formulas can be rewritten with
integers, giving an efficient algorithm.

Let λi,j=djμi,j∈Z.

Could also derive bi*, but usually not needed

di = di�1k~bik2 �
i�1X

j=1

�2
i,j

djdj�1

�i,j = dj�1h~bi,~bji �
j�1X

k=1

dj�1�j,k�i,k

dkdk�1

Recap

If b1,…,bn∈Zm are linearly independent, we
can compute efficiently all the integers
di=Gram(b1,…,bi)=||b1*||2x…x||bi*||2 and
λi,j=djμi,j=dj <bi,bj*>/||bj*||2.

~b⇤i = ~bi �
i�1X

j=1

�i,j

dj
~b⇤j

k~b⇤i k2 =
di

di�1

Application: Lattice Membership

Let b1,…,bn∈Zm be linearly
independent: let L=L(b1,…,bn).

Given t∈Zm, decide if t∈L, and if so,
find its integer coefficients in the
decomposition t=x1b1+…+xnbn.

Lattice Membership

Let b1,…,bn∈Zm be linearly independent.

Assume that t=x1b1+…+xnbn.

Then ⟨t,bn*⟩=xn⟨bn,bn*⟩= xn||bn*||2

Letting bn+1=t, then xn=μn+1,n:

Derive xn from Gram-Schmidt over (b1,
…,bn,t),

Repeat with t-xnbn and L(b1,…,bn-1), etc.

Lattice Membership

Let b1,…,bn∈Zm be linearly independent.

Assume that t=x1b1+…+xnbn.

Then we can find efficiently xn, xn-1,… x1 ∈Z
using Gram-Schmidt.

By checking if t=x1b1+…+xnbn, we can decide
if t∈L.

Hence: we can decide lattice membership
efficiently.

Application: Size-reduction

Let b1,…,bd∈Zm be linearly independent.

B=(b1,…,bd) is size-reduced if all

Th: There is an efficient algorithm to
size-reduce B, without changing the
Gram-Schmidt vectors.

|µi, j|
1
2

If we take an appropriate orthonormal basis,
the matrix of the lattice basis becomes
triangular.0

BBBBB@

k~b⇤1k 0 0 . . . 0
µ2,1k~b⇤1k k~b⇤2k 0 . . . 0
µ3,1k~b⇤1kµ3,2k~b⇤2kk~b⇤3k . . . 0

...
µd,1k~b⇤1kµd,2k~b⇤2k . . . µd,d�1k~b⇤d�1kk~b⇤dk

1

CCCCCA

Visualizing Size-reduction

Size-reduction Algorithm

For i = 2 to d

For j = i-1 downto 1

Size-reduce bi with respect to bj:
make |μi,j| ≤ 1/2 by bi := bi-round(μi,j)bj

Update all μi,j’ for j’≤j.

The translation does not affect the previous
μi’,j’ where i’ < i, or i’=i and j’>j.

Linearly Dependent Vectors

Reminder

Let b1,…,bn∈Rm.

Its Gram-Schmidt Orthogonalization is
b1*,…,bn*∈Rm defined as:

b1* = b1

For 2≤i≤n, bi* = projection of bi over
span(b1,…,bi-1)⊥

Generalization

Let b1,…,bn∈Rm possibly linearly dependent.

Then not all bj*≠0.

For 1≤j<i≤n, let if bj*≠0,
and 0 otherwise.

Then we still have:

µi,j =
h~bi,~b⇤j i
k~b⇤jk2

~b?
i =~bi�

i�1

∑
j=1
µi, j~b?

j
~b?
1 =~b1

Induction Formulas

k~b⇤i k2 = k~bik2 �
i�1X

j=1

µ2
i,jk~b⇤jk2

µi,j =
h~bi,~bji �

Pj�1
k=1 µj,kµi,kk~b⇤kk2

k~b⇤jk2

If bj*=0, then we let μi,j=0.

Efficient Computations

We only deal with integers, so assume
that b1,…,bn∈Zm and let ||B||=max1≤i≤n||bi||.

Define the following integers:

d0=1

di=Gram(bj) over 1≤j≤i, bj*≠0 =
Π1≤j≤inon-zero ||bj*||2. Still: 1≤di≤||B||2i

Then μi,j , ||bi*||2 ∈Q and bj*∈Qm

Generalized Integral Gram-Schmidt

Lemma: Let b1,…,bn∈Zm. Then for all
1≤j<i≤n:

di-1bi*∈L(b1,…,bi)⊆Zm with ||di-1bi*||≤M2i-1

djμi,j∈Z with |djμi,j|≤M2j

Recap

If b1,…,bn∈Zm, we can compute efficiently
(polynomial time) all the generalized
integers di and λi,j=djμi,j and decide which
bi* are zero.

A Non-Trivial
Lattice Algorithm

Euclid with Vectors

If b1,…,bn∈Zm, L(b1,…,bn) is a lattice: Find an
efficient algorithm to find a lattice basis.

If n=2 and m=1, this is exactly the gcd
problem, so we are trying to generalize
Euclid’s algorithm.

Overview on Lattice
Algorithms

Insight

The most classical problem is to prove the existence
of short lattice vectors.

All known upper bounds on Hermite’s constant have
an algorithmic analogue:

Hermite’s inequality: the LLL algorithm.

Mordell’s inequality: Blockwise generalizations of LLL.

Mordell’s proof of Minkowski’s inequality: worst-case
to average-case reductions for SIS and sieve
algorithms [BJN14,ADRS15]

SVP Algorithms

Poly-time approximation algorithms.

The LLL algorithm [1982].

Block generalizations by [Schnorr1987],
[GHKN06], [GamaN08], [MiWa16].

Exponential exact algorithms.

Poly-space enumeration
[Pohst1981,Kannan1983,ScEu1994]

Exp-space sieving [AKS01,MV10,ADRS15].

Hermite’s
Inequality
and LLL

Hermite’s Inequality

Hermite proved in 1850:

[LLL82] finds in polynomial time a non-zero
lattice vector of norm ≤ (4/3+ε)(d-1)/4vol(L)1/d.
It is an algorithmic version of Hermite’s
inequality.

�d �d�1
2 =

✓
4

3

◆(d�1)/2

Proof of Hermite’s Inequality

Induction over d: obvious for d=1.

Let b1 be a shortest vector of L, and π the
projection over b1

⟘.

Let π(b2) be a shortest vector of π(L).

We can make sure by lifting that:
||b2||2≤ ||π(b2)||2+||b1||2/4 (size-reduction)

On the other hand, ||b1||≤||b2|| and
vol(π(L))=vol(L)/||b1||.

Hermite’s Reduction

Hermite proved the existence of bases such
that:

Such bases approximate SVP to an exp factor:

|µi, j|
1
2

k~b?
i k2

k~b?
i+1k2

 4
3and

k~b1k
h
(4/3)1/4

id�1
vol(L)1/d

k~bik
h
(4/3)1/2

id�1
λi(L)

γd (4/3)(d�1)/2

Graphically

Condition 1 is over off-diagonal coeffs: size-reduction.

Condition 2 is over diagonal coeffs.

0

BBBBB@

k~b⇤1k 0 0 . . . 0
µ2,1k~b⇤1k k~b⇤2k 0 . . . 0
µ3,1k~b⇤1kµ3,2k~b⇤2kk~b⇤3k . . . 0

...
µd,1k~b⇤1kµd,2k~b⇤2k . . . µd,d�1k~b⇤d�1kk~b⇤dk

1

CCCCCA

Question

Is the proof constructive?

Does it build a non-zero lattice vector
satisfying Hermite’s inequality:

k~b1k
✓
4

3

◆(d�1)/4

vol(L)1/d

An Algorithmic Proof

Let b1 be a primitive vector of L, and π the
projection over b1

⟘.

Find recursively π(b2)∈π(L) satisfying
Hermite’s inequality.

Size-reduce so that ||b2||2≤ ||π(b2)||2+||b1||2/4

If ||b2|| < ||b1||, swap(b1, b2) and restart,
otherwise stop.

An Algorithmic Proof

This algorithm will terminate and output a
non-zero lattice vector satisfying Hermite’s
inequality:

But it may not be efficient: LLL does
better by strengthening the test
||b2|| < ||b1||.

k~b1k
✓
4

3

◆(d�1)/4

vol(L)1/d

Computing Hermite reduction

Hermite proved the existence of bases s.t.:

By relaxing the 4/3, [LLL1982] obtained a
provably polynomial-time algorithm.

|µi, j|
1
2

k~b?
i k2

k~b?
i+1k2

 4
3

and

How LLL Works

LLL is an elegant divide-and-conquer
based on 2-dim reduction.

b1
b2
b3

Lenstra-Lenstra-Lovász

A basis is LLL-reduced forε>0 if and only if

it is size-reduced

Lovász’ conditions are satisfied

~b?
i =~bi�

i�1

∑
j=1
µi, j~b?

j where µi, j =
h~bi,~b?

ji
k~b?

jk2

|µi, j|
1
2

(1� ")k~b?i�1k2 k~b?i + µi,i�1
~b?i�1k2

) k~b?i�1k2
✓
4

3
+ "0

◆
k~b?i k2

Description of the LLL Algorithm

While the basis is not LLL-reduced

Size-reduce the basis

If Lovász’ condition does not hold
for some pair (i-1,i): swap bi-1 and bi.

Recursive LLL

Input: (b1,b2,…,bd) basis of L and ε>0.

LLL-reduce (π(b2),…,π(bd)) where π is the
projection over b1

⟘.

Size-reduce so that ||bi||2≤ ||π(bi)||2+||b1||2/4

If ||b2|| ≤ (1-ε)||b1||, swap(b1, b2) and
restart, otherwise stop.

Evolution of Gram-Schmidt

During LLL reduction:

Mini ||b*i|| never decreases.

Maxi ||b*i|| never increases.

Each vol(b1,...,bi) never increases.

The only LLL operations that modify
the b*i’s are swaps.

Evolution of Gram-Schmidt

We swap bi-1 and bi
whenever (1-ε) ||b*i-1||2 > ||b*i+μi,i-1b*i-1||2

What happens to b*i-1 and b*i?

New(b*i-1)=b*i+μi,i-1b*i-1 has norm between ||b*i|| and √(1-
ε) ||b*i-1||, hence ≥√(1-ε) shorter.

New(b*i) has norm between ||b*i||/√(1-ε) and
||b*i-1||, hence ≥1/√(1-ε) longer.

[new(||b*i||),new(||b*i-1||)] ⊆ [||b*i||,||b*i-1||]

Why LLL is polynomial

Consider the quantity

If the bi’s have integral coordinates, then P is
a positive integer.

Size-reduction does not modify P.

But each swap of LLL makes P decrease by
a factor <= 1-ε

This implies that the number of swaps is
polynomially bounded.

P=
d

∏
i=1

k~b⇤i k2(d�i+1)

Remarks

We described a simple version of LLL,
which is not optimized for
implementation.

We did not fully prove that LLL is
polynomial time, because we did not
pay attention to the size of all
temporary variables.

Recap of LLL

The LLL algorithm finds in polynomial time a
basis such that:

Such bases approximate SVP to an exp factor:

|µi, j|
1
2

k~b?
i k2

k~b?
i+1k2

 4
3and

γd (4/3)(d�1)/2

+ε

k~b1k
h
(4/3+ ε)1/4

id�1
vol(L)1/d

k~bik
h
(4/3+ ε)1/2

id�1
λi(L)

Hermite’s inequality and LLL are based
on two key ideas:

Projection

Lifting projected vectors aka size-
reduction.

Take Away

LLL in Practice

1773

1850

1982

The Magic of LLL

One of the main reasons behind the
popularity of LLL is that it performs
“much better” than what the worst-
case bounds suggest, especially in low
dimension.

This is another example of worst-case
vs. “average-case” and the difficulty of
security estimates.

LLL: Theory vs Practice

The approx factors (4/3+ε)(d-1)/4 is tight in the
worst case and for uniformly random LLL
bases [KiVe16].

Experimentally, 4/3+ε ≈ 1.33 can be replaced by
a smaller constant ≈ 1.08, for any lattice, by
randomizing the input basis.

No good explanation for this phenomenon, and no
known formula for the experimental constant ≈
1.08.

Illustration

 0.25

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 0 20 40 60 80 100 120 140 160

H
er

m
ite

 F
ac

to
r

dimension

LLL
bound

Log(Hermite Factor)

theoretical worst-case bound

experimental value

Random Bases

There is no natural probability space over the
infinite set of bases.

Folklore: generate a « random » unimodular
matrix and multiply by a fixed basis. But
distribution not so good.

Better method:

Generate say n+20 random long lattice points

Extract a basis, e.g. using LLL.

Random LLL

Surprisingly, [KiVe16] showed that
most LLL bases of a random lattice
have a ||b1|| close to the worst case.
Note: in fixed dimension, the number
of LLL bases can be bounded,
independently of the lattice.

This means that LLL biases the output
distribution: it is not the uniform
distribution.

Open problems
Take a random integer lattice L.

Let B be the Hermite normal form of L, or a
« random » basis from the discrete
Gaussian distribution.

Is is true that with overwhelming
probability, after LLL-reducing B,
||b1||≤cd-1vol(L)1/d for some c<(4/3)1/4?

Can we guess the distribution of ||b1|| and
the running time?

