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Gram-Schmidt 
and 

Size-Reduction



Recall Gram-Schmidt

Let b1,…,bn∈Rm.

Its Gram-Schmidt Orthogonalization is  
b1*,…,bn*∈Rm defined as:


b1* = b1


For 2≤i≤n, bi* = projection of bi over  
span(b1,…,bi-1)⊥



Linearly Independent Vectors



Formula

Let b1,…,bn∈Rm be linearly independent.  

Then all bj*≠0.


For 1≤j<i≤n, let                    .

Then:  

µi,j =
h~bi,~b⇤j i
k~b⇤jk2

~b?
i =~bi�

i�1

∑
j=1
µi, j~b?

j
~b?
1 =~b1



Induction Formulas

k~b⇤i k2 = k~bik2 �
i�1X

j=1

µ2
i,jk~b⇤jk2

µi,j =
h~bi,~bji �

Pj�1
k=1 µj,kµi,kk~b⇤kk2

k~b⇤jk2

This gives an algorithm, but not necessarily 
efficient: we want cheap operations on 
reasonably-sized numbers.



Efficient Computations

We only deal with integers, so assume 
that b1,…,bn∈Zm and let M=max1≤i≤n||bi||.

Define the following integers:


d0=1

di=Gram(b1,…,bi) = ||b1*||2x…x||bi*||2          
for 1≤i≤m. Thus: 1≤di≤M2i


Then μi,j , ||bi*||2 ∈Q and bj*∈Qm



Integral Gram-Schmidt

Lemma: Let b1,…,bn∈Zm be linearly 
independent.  Then for all 1≤j<i≤n:


di-1bi*∈L(b1,…,bi)⊆Zm with ||di-1bi*||≤M2i-1

djμi,j∈Z with |djμi,j|≤M2j



Proof

B=μB* for some lower-triangular matrix μ        
with unit diagonal: B*=νB where ν=μ-1 is 
lower-triangular with unit diagonal.


Thus, Gram(b1,…,bi-1)νi,j∈Z therefore di-1bi*∈Zm

~b⇤i = ~bi +
i�1X

j=1

⌫i,j~bj

) h~bi,~bki = �
i�1X

j=1

⌫i,jh~bj ,~bki, if k < i



Alternative Proof by Duality

Let L=L(b1,…,bi) and denote by Lx its 
dual lattice. Then [Lx:L]=covol(L)2=di.


Note that: bi*/||bi*||2∈ Lx


Therefore [Lx:L]bi*/||bi*||2∈ L,            
i.e.  di-1bi*∈L(b1,…,bi)⊆Zm.



Gram-Schmidt Algorithm

Induction formulas can be rewritten with 
integers, giving an efficient algorithm.

Let λi,j=djμi,j∈Z.


Could also derive bi*, but usually not needed

di = di�1k~bik2 �
i�1X

j=1

�2
i,j

djdj�1

�i,j = dj�1h~bi,~bji �
j�1X

k=1

dj�1�j,k�i,k

dkdk�1



Recap

If b1,…,bn∈Zm are linearly independent, we 
can compute efficiently all the integers 
di=Gram(b1,…,bi)=||b1*||2x…x||bi*||2 and 
λi,j=djμi,j=dj <bi,bj*>/||bj*||2. 

~b⇤i = ~bi �
i�1X

j=1

�i,j

dj
~b⇤j

k~b⇤i k2 =
di

di�1



Application: Lattice Membership

Let b1,…,bn∈Zm be linearly 
independent: let L=L(b1,…,bn).

Given t∈Zm, decide if t∈L, and if so, 
find its integer coefficients in the 
decomposition t=x1b1+…+xnbn.



Lattice Membership

Let b1,…,bn∈Zm be linearly independent.

Assume that t=x1b1+…+xnbn.

Then ⟨t,bn*⟩=xn⟨bn,bn*⟩= xn||bn*||2


Letting bn+1=t, then xn=μn+1,n: 


Derive xn from Gram-Schmidt over (b1,
…,bn,t), 

Repeat with t-xnbn and L(b1,…,bn-1), etc.



Lattice Membership

Let b1,…,bn∈Zm be linearly independent.

Assume that t=x1b1+…+xnbn.

Then we can find efficiently xn, xn-1,… x1 ∈Z 
using Gram-Schmidt.

By checking if t=x1b1+…+xnbn, we can decide 
if t∈L.

Hence: we can decide lattice membership 
efficiently.



Application: Size-reduction

Let b1,…,bd∈Zm be linearly independent.

B=(b1,…,bd) is size-reduced if all           


Th: There is an efficient algorithm to 
size-reduce B, without changing the 
Gram-Schmidt vectors. 

|µi, j|
1
2



If we take an appropriate orthonormal basis,  
the matrix of the lattice basis becomes 
triangular.0

BBBBB@

k~b⇤1k 0 0 . . . 0
µ2,1k~b⇤1k k~b⇤2k 0 . . . 0
µ3,1k~b⇤1kµ3,2k~b⇤2kk~b⇤3k . . . 0

... . . . . . . . . . ...
µd,1k~b⇤1kµd,2k~b⇤2k . . . µd,d�1k~b⇤d�1kk~b⇤dk

1

CCCCCA

Visualizing Size-reduction



Size-reduction Algorithm

For i = 2 to d

For j = i-1 downto 1


Size-reduce bi with respect to bj:    
make |μi,j| ≤ 1/2 by bi := bi-round(μi,j)bj


Update all μi,j’ for j’≤j.

The translation does not affect the previous 
μi’,j’ where i’ < i, or i’=i and j’>j.



Linearly Dependent Vectors



Reminder

Let b1,…,bn∈Rm.

Its Gram-Schmidt Orthogonalization is  
b1*,…,bn*∈Rm defined as:


b1* = b1


For 2≤i≤n, bi* = projection of bi over  
span(b1,…,bi-1)⊥



Generalization

Let b1,…,bn∈Rm possibly linearly dependent.  

Then not all bj*≠0.


For 1≤j<i≤n, let                    if bj*≠0, 
and 0 otherwise.

Then we still have:  

µi,j =
h~bi,~b⇤j i
k~b⇤jk2

~b?
i =~bi�

i�1

∑
j=1
µi, j~b?

j
~b?
1 =~b1



Induction Formulas

k~b⇤i k2 = k~bik2 �
i�1X

j=1

µ2
i,jk~b⇤jk2

µi,j =
h~bi,~bji �

Pj�1
k=1 µj,kµi,kk~b⇤kk2

k~b⇤jk2

If  bj*=0, then we let μi,j=0.



Efficient Computations

We only deal with integers, so assume 
that b1,…,bn∈Zm and let ||B||=max1≤i≤n||bi||.

Define the following integers:


d0=1

di=Gram(bj) over 1≤j≤i, bj*≠0 = 
Π1≤j≤inon-zero ||bj*||2. Still: 1≤di≤||B||2i


Then μi,j , ||bi*||2 ∈Q and bj*∈Qm



Generalized Integral Gram-Schmidt

Lemma: Let b1,…,bn∈Zm.  Then for all 
1≤j<i≤n:


di-1bi*∈L(b1,…,bi)⊆Zm with ||di-1bi*||≤M2i-1

djμi,j∈Z with |djμi,j|≤M2j



Recap

If b1,…,bn∈Zm, we can compute efficiently 
(polynomial time) all the generalized 
integers di and λi,j=djμi,j and decide which 
bi* are zero.



A Non-Trivial 
Lattice Algorithm



Euclid with Vectors

If b1,…,bn∈Zm, L(b1,…,bn) is a lattice: Find an   
efficient algorithm to find a lattice basis.


If n=2 and m=1, this is exactly the gcd 
problem, so we are trying to generalize 
Euclid’s algorithm. 



Overview on Lattice 
Algorithms



Insight

The most classical problem is to prove the existence 
of short lattice vectors.

All known upper bounds on Hermite’s constant have 
an algorithmic analogue:


Hermite’s inequality: the LLL algorithm.

Mordell’s inequality: Blockwise generalizations of LLL.

Mordell’s proof of Minkowski’s inequality: worst-case 
to average-case reductions for SIS and sieve  
algorithms [BJN14,ADRS15]



SVP Algorithms

Poly-time approximation algorithms.

The LLL algorithm [1982].

Block generalizations by [Schnorr1987], 
[GHKN06], [GamaN08], [MiWa16].


Exponential exact algorithms.

Poly-space enumeration 
[Pohst1981,Kannan1983,ScEu1994]

Exp-space sieving [AKS01,MV10,ADRS15].




Hermite’s 
Inequality
and LLL



Hermite’s Inequality

Hermite proved in 1850:


[LLL82] finds in polynomial time a non-zero 
lattice vector of norm ≤ (4/3+ε)(d-1)/4vol(L)1/d. 
It is an algorithmic version of Hermite’s 
inequality.

�d  �d�1
2 =

✓
4

3

◆(d�1)/2



Proof of Hermite’s Inequality

Induction over d: obvious for d=1.

Let b1 be a shortest vector of L, and π the 
projection over b1

⟘. 

Let π(b2) be a shortest vector of π(L).

We can make sure by lifting that:                                   
||b2||2≤ ||π(b2)||2+||b1||2/4         (size-reduction)

On the other hand, ||b1||≤||b2|| and 
vol(π(L))=vol(L)/||b1||.



Hermite’s Reduction

Hermite proved the existence of bases such 
that:


Such bases approximate SVP to an exp factor:

|µi, j|
1
2

k~b?
i k2

k~b?
i+1k2

 4
3and

k~b1k 
h
(4/3)1/4

id�1
vol(L)1/d

k~bik 
h
(4/3)1/2

id�1
λi(L)

γd  (4/3)(d�1)/2



Graphically

Condition 1 is over off-diagonal coeffs: size-reduction.

Condition 2 is over diagonal coeffs.

0
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k~b⇤1k 0 0 . . . 0
µ2,1k~b⇤1k k~b⇤2k 0 . . . 0
µ3,1k~b⇤1kµ3,2k~b⇤2kk~b⇤3k . . . 0

... . . . . . . . . . ...
µd,1k~b⇤1kµd,2k~b⇤2k . . . µd,d�1k~b⇤d�1kk~b⇤dk

1
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Question

Is the proof constructive?

Does it build a non-zero lattice vector 
satisfying Hermite’s inequality:

k~b1k 
✓
4

3

◆(d�1)/4

vol(L)1/d



An Algorithmic Proof

Let b1 be a primitive vector of L, and π the 
projection over b1

⟘. 

Find recursively π(b2)∈π(L) satisfying 
Hermite’s inequality.

Size-reduce so that ||b2||2≤ ||π(b2)||2+||b1||2/4

If ||b2|| < ||b1||, swap(b1, b2) and restart, 
otherwise stop.



An Algorithmic Proof

This algorithm will terminate and output a 
non-zero lattice vector satisfying Hermite’s 
inequality:


But it may not be efficient: LLL does 
better by strengthening the test                
||b2|| < ||b1||. 

k~b1k 
✓
4

3

◆(d�1)/4

vol(L)1/d



Computing Hermite reduction

Hermite proved the existence of bases s.t.:


By relaxing the 4/3, [LLL1982] obtained a 
provably polynomial-time algorithm.  

|µi, j|
1
2

k~b?
i k2

k~b?
i+1k2

 4
3

and



How LLL Works

LLL is an elegant divide-and-conquer             
based on 2-dim reduction.

b1
b2
b3



Lenstra-Lenstra-Lovász 

A basis is LLL-reduced forε>0 if and only if


it is size-reduced

Lovász’ conditions are satisfied

~b?
i =~bi�

i�1

∑
j=1
µi, j~b?

j where µi, j =
h~bi,~b?

ji
k~b?

jk2

|µi, j|
1
2

(1� ")k~b?i�1k2  k~b?i + µi,i�1
~b?i�1k2

) k~b?i�1k2 
✓
4

3
+ "0

◆
k~b?i k2



Description of the LLL Algorithm

While the basis is not LLL-reduced

Size-reduce the basis

If Lovász’ condition does not hold 
for some pair (i-1,i): swap bi-1 and bi.



Recursive LLL

Input: (b1,b2,…,bd) basis of L and ε>0.     


LLL-reduce (π(b2),…,π(bd)) where π is the 
projection over b1

⟘.

Size-reduce so that ||bi||2≤ ||π(bi)||2+||b1||2/4

If ||b2|| ≤ (1-ε)||b1||, swap(b1, b2) and 
restart, otherwise stop.



Evolution of Gram-Schmidt

During LLL reduction:

Mini ||b*i|| never decreases.

Maxi ||b*i|| never increases.

Each vol(b1,...,bi) never increases.

The only LLL operations that modify 
the b*i’s are swaps.



Evolution of Gram-Schmidt

We swap bi-1 and bi                                  
whenever (1-ε) ||b*i-1||2 >  ||b*i+μi,i-1b*i-1||2


What happens to b*i-1 and b*i?

New(b*i-1)=b*i+μi,i-1b*i-1 has norm between ||b*i|| and √(1-
ε) ||b*i-1||, hence ≥√(1-ε) shorter.


New(b*i) has norm between ||b*i||/√(1-ε) and                  
||b*i-1||, hence ≥1/√(1-ε) longer.


[new(||b*i||),new(||b*i-1||)] ⊆ [||b*i||,||b*i-1||]



Why LLL is polynomial

Consider the quantity

If the bi’s have integral coordinates, then P is 
a positive integer.


Size-reduction does not modify P.

But each swap of LLL makes P decrease by 
a factor <= 1-ε


This implies that the number of swaps is 
polynomially bounded. 

P=
d

∏
i=1

k~b⇤i k2(d�i+1)



Remarks

We described a simple version of LLL, 
which is not optimized for 
implementation.

We did not fully prove that LLL is 
polynomial time, because we did not 
pay attention to the size of all 
temporary variables.



Recap of LLL

The LLL algorithm finds in polynomial time a 
basis such that:


Such bases approximate SVP to an exp factor:

|µi, j|
1
2

k~b?
i k2

k~b?
i+1k2

 4
3and

γd  (4/3)(d�1)/2

+ε

k~b1k 
h
(4/3+ ε)1/4

id�1
vol(L)1/d

k~bik 
h
(4/3+ ε)1/2

id�1
λi(L)



Hermite’s inequality and LLL are based 
on two key ideas:


Projection

Lifting projected vectors aka size-
reduction.

Take Away



LLL in Practice

1773

1850

1982



The Magic of LLL

One of the main reasons behind the 
popularity of LLL is that it performs 
“much better” than what the worst-
case bounds suggest, especially in low 
dimension.

This is another example of worst-case 
vs. “average-case” and the difficulty of 
security estimates.



LLL: Theory vs Practice

The approx factors (4/3+ε)(d-1)/4 is tight in the 
worst case and for uniformly random LLL 
bases [KiVe16].

Experimentally, 4/3+ε ≈ 1.33 can be replaced by 
a smaller constant ≈ 1.08, for any lattice, by 
randomizing the input basis.

No good explanation for this phenomenon, and no 
known formula for the experimental constant ≈ 
1.08.
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Random Bases

There is no natural probability space over the 
infinite set of bases.

Folklore: generate a « random » unimodular 
matrix and multiply by a fixed basis. But 
distribution not so good.

Better method:


Generate say n+20 random long lattice points

Extract a basis, e.g. using LLL.



Random LLL

Surprisingly, [KiVe16] showed that 
most LLL bases of a random lattice 
have a ||b1|| close to the worst case. 
Note: in fixed dimension, the number 
of LLL bases can be bounded, 
independently of the lattice.

This means that LLL biases the output 
distribution: it is not the uniform 
distribution.



Open problems
Take a random integer lattice L.

Let B be the Hermite normal form of L, or a 
« random » basis from the discrete 
Gaussian distribution.

Is is true that with overwhelming 
probability, after LLL-reducing B,               
||b1||≤cd-1vol(L)1/d for some c<(4/3)1/4?

Can we guess the distribution of ||b1|| and 
the running time?


