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4 NIST STANDARDS

• KEM/encryption (1):
➤ Crystals-Kyber: El Gamal using MLWE lattices

• Signatures (3)
➤ Crystals-Dilithium: Schnorr/Fiat-Shamir with 

aborts using MLWE 

➤ Falcon: Rabin/GGH-GPV using NTRU lattices

➤ Sphincs+: Hash-based



TODAY

Lattice Analogues of:

• RSA

• Diffie-Hellman and El Gamal 

➤ Encryption without Trapdoors

➤ Encryption with Trapdoors



LATTICE CRYPTO DESIGN

2 types of Lattice techniques:

• Cryptography with trapdoors 

• Cryptography without trapdoors 

➤ Similarities with Discrete logarithm (DL) cryptography

i.e. secret short basis of a lattice

➤ Similarities with RSA/Rabin cryptography

• Case study: Encryption



RSA
Encryption with Trapdoors



TRAPDOOR-BASED ENCRYPTION:  
GGH AND NTRU



• N=pq product of two large random primes.

REMEMBER 

• ed≡1 (mod φ(N)) where φ(N)=(p-1)(q-1)
➤ e is the public exponent
➤ d is the secret exponent



• Input: a basis of a lattice L of dim d, and a target vector t very 
close to L.

• Output: v∈L minimizing ||v-t||. Easy if one knows a nearly-

orthogonal basis.

BOUNDED DISTANCE DECODING (BDD)

O

t

v



• If L is an integer lattice, the quotient Zn/L is a finite group, 
with many representations: lattice crypto works modulo a 
lattice.

REDUCING MODULO A LATTICE

• We call L-reduction any efficiently computable map f : Zn → 
Zn s.t. f(x)=f(y) iff x-y∈L.



• If BDD is hard over a ball, any public L-reduction f is a one-
way function over the same ball.

ONE-WAY FUNCTIONS FROM BDD

• Let (t,L) be a BDD instance: t=v+e where v∈L and e is very 
short.

• Then f(t)=f(e) because t-e=v∈L: if f is not one-way, then given 
f(e), one can recover small e' s.t. f(e)=f(e'), therefore e-e' ∈L. If e 
and e' are sufficiently small, then  so e=e'. One 
recovers the BDD solution v=t-e.

∥ ⃗e − ⃗e′￼∥ ≤ λ1(L)



• Any basis provides two L-reductions, thanks to Babai’s nearest 
plane algorithm and rounding-off algorithm.

BUILDING L-REDUCTIONS

• NTRU encryption implicitly uses a L-reduction.



EXAMPLE: BABAI’S ROUNDING OFF

t

b1

b2

t-f(t)
f(t)

• Any basis provides two L-reductions, thanks to Babai’s nearest 
plane algorithm and rounding-off algorithm.

• Choose f(t) in the basis parallelepiped s.t. t-f(t)∈L



• Let t in Zn.

• Let B the lattice basis.

• Solve t=uB where u in Qn.

• Return f(t)=(u-⎣u⎤)B

EXAMPLE: BABAI’S ROUNDING OFF



• Let t in Zn.

• Let B the lattice basis and B* its Gram-Schmidt orthoganlization.

• Find v=uB where u in Zn s.t. t-v = xB* where each coordinate of x is ≤ 1/2 in absolute 
value

For i=n downto 1

Compute 

Return  and 

• Return f(t)=t-v.

μi =
⟨ ⃗t , ⃗bi

⋆
⟩

∥ ⃗bi
⋆
∥2

⃗t ← ⃗t − ⌊μi⌉b⃗i

⃗v =
n

∑
i=1

⌊μi⌉b⃗i ⃗u = (μ1, …, μn)

EXAMPLE: BABAI’S NEAREST PLANE ALGORITHM



• The L-reductions derived from Babai’s algorithms leave some 
set invariant: there exists D(B)⊆Zn s.t. f(x)=x for all x∈D(B). 

➤ This allows to solve BDD when the error∈D(B).

SOLVING BDD BY L-REDUCTION

• The largest ball inside D(B) depends on the quality of the basis.



• Secret key = Good basis

• Public key = Bad basis

• Message = Short vector like {-1,0,1}n.

• Encryption = L-reduction with the public key

• Decryption = L-reduction with the secret key

DETERMINISTIC PUBLIC-KEY ENCRYPTION [GGH97-MICC01]

O

➤ Optimization:



• Intuitively, most bases are « bad ».

CHOOSING A BAD BASIS

• There is a canonical basis for integer lattices: the Hermite 
normal form.

➤ If L is full-rank, the HNF is a lower-triangular matrix with 
positive diagonal dominating each column.



ENCRYPTION  
WITH THE HARDEST LATTICES



• [Ajtai1999, AlwenPeikert2010, Micciancioeikert2012] showed 
that it is possible to generate g1,…,gm∈(Z/q)n with distribution 
statistically close to uniform, together with a short basis of the 
SIS lattice L={x=(x1,...,xm)∈Zm s.t. Σi xi gi = 0}.

SIS TRAPDOORS



OPTIMIZING ENCRYPTION: NTRU



• Ring R=Z[X]/(XN-1), secret key (f,g)∈R2, public key h=g/f 
(mod q).

OPTIMIZATION: NTRU ENCRYPTION

• Encryption can be viewed [Mi01] as L-reducing a short vector 
with the Hermite normal form, where L={(u,v)∈R2 s.t. u≡pv*h 
(mod q)}.

• Decryption is a special BDD algorithm using the secret key 
(f,g).



NTRU ENCRYPTION
➤ Invented by Hoffstein, Pipher and Silverman in 1996 (CRYPTO rump session): 

➤ First published in 1998 (ANTS conference) 

➤ First cryptanalysis (Coppersmith-Shamir) in 1997! 

➤ One of the fastest public-key encryption known, and one of the most studied. 

➤ Based on polynomials modulo a small integer.



REFERENCES

➤ Hoffstein, Pipher, Silverman: NTRU: A Ring-Based Public 
Key Cryptosystem. ANTS 1998: 267-288 

➤ https://ntru.org/ 

➤ Submission to NIST 

➤ Reference implementations in C

https://ntru.org/


• Let N be a prime number, e.g. 251

PARAMETERS

• Consider the ring R=Z[X]/(XN-1)

• Let p and q be two small coprime integers:
➤ In 1998: 

➤ In 2020:

N p q
107 3 64
167 3 128
503 3 256

N p q
509 3 2048
677 3 2048
821 3 4096



• The secret key is two polynomials f and g in R with very small 
coefficients:
➤ f and g could be ternary (0, 1, -1) or binary (0, 1).
➤ f must be invertible mod q and p. Let fp and fq be the inverse.

KEY GENERATION

• The public key is h=g*fq mod q so h*f = g mod q.



CHOICE OF F AND G

➤ In 1998: f has df coeffs +1 and df-1 coeffs-1,   

g has dg coeffs +1 and dg coeffs -1 

➤ In 2020: f is uniform {0,±1}                                                        

g has dg coeffs +1 and dg coeffs -1

N df dg

107 15 12
167 61 20
503 216 72

N dg q
509 127 2048
677 127 2048
821 255 4096



• To encrypt a message m (a polynomial in R having small 
coefficients):

ENCRYPTION

➤ Choose at random a sparse polynomial r in R with very small 
coefficients.

➤ The ciphertext is c = m + p r*h mod q.

➤ Encryption is probabilistic.



EFFICIENCY OF ENCRYPTION

➤ We can store H=p*h mod q instead of h, so that encryption is 
simply c = m + r*H mod q.  

➤ The product r*H is special cause has 0,±1 coefficients. Each 
coefficient of r*H can be computed with at most N additions 
and subtractions, rather than O(N) multiplications mod q. 

➤ So encryption costs at most N2 additions mod q, even less if r 
is sparse.



• Multiplying by the secret key f, we can get:
➤ c*f = m*f + p r*g (mod q)

DECRYPTION

• If we could get the exact value of m*f + p r*g over the integers, 
we could easily recover m mod p.

• Note: both products m*f and r*g involve only polynomials 
with small coefficients, possibly sparse.



• Let f and g be two polynomials in R such that:
➤ f only has 0,1-coefficients.
➤ g has small coefficients with identical distribution.

PRODUCTS OF SMALL POLYNOMIALS

• Then any coefficient of f*g is just a sum of coeffs of g: the 
distribution should approximately be Gaussian with small 
standard deviation.



HOW SMALL ARE THE COEFFICIENTS?

➤ In NTRU-2020 

➤ m has dg coeffs +1 and dg coeffs -1, so each coefficient of  
m*f  is in {-2dg,…,2 dg} 

➤ g has dg coeffs +1 and dg coeffs -1,so each coefficient of  
r*g  is in {-2dg,…,2 dg} 

➤ So each coefficient of m*f + p r*g has absolute value ≤ 
2dg(1+p) = 8dg < q/2

N dg q
509 127 2048
677 127 2048
821 255 4096



NTRU-1998

➤ f has df coeffs +1 and df-1 coeffs -1, so each coefficient of  m*f  
is in {-2df+1,…,2df-1} 

➤ r has dr coeffs +1 and dr coeffs -1, so each coefficient of  r*g  is 
in {-2dr,…,2 dr} 

➤ So each coefficient of m*f + p r*g has absolute value ≤ 
2df-1+2pdr which is ≥ q/2.

N df dg dr 2df-1+2pdr q/2

107 15 12 5 59 32

167 61 20 18 229 64

503 216 72 55 761 128



NTRU-1998 DISTRIBUTION

➤ f has df coeffs +1 and df-1 coeffs -1, so each coefficient of  m*f  
is  a sum of 2df-1 independent uniform variables in {0,±1}, 
but the coeffs are not independent. 

➤ r has dr coeffs +1 and dr coeffs -1, so each coefficient of  r*g  is 
in {-2dr,…,2 dr}

N df dg dr

107 15 12 5

167 61 20 18

503 216 72 55

N df d d q
1071512 5 64



NTRU-1998 DISTRIBUTION OF COEFFICIENTS

N q

107 64

8 million samples



• This means that the coefficients of both m*f and r*g lie in a 
short interval, so that the coefficients of m*f + p r*g lie in an 
interval of length possibly <= q.

IMPACT ON DECRYPTION

• Then, one could recover the exact value of m*f + pr*g from its 
value  mod q.  



• One needs to compute p r*h mod q, where h has mod q 
coefficients and r is sparse with coefficients 0,+1,-1: each 
coefficient of p r*h is just a sum/difference of coefficients of p*h.

EFFICIENCY OF ENCRYPTION

• Overall, this is O(N2) additions mod q, possibly less since r is 
“sparse”.



• The computation of c*f mod q: again, f only has 0,+1,-1 
coefficients. This is O(N2) additions mod q.

EFFICIENCY OF DECRYPTION

• Multiplication by the inverse of f mod p. 

➤ If we choose a special form for f, this can be negligible.
➤ Otherwise, it is O(N2) mults mod p.



• The main security parameter is N, but other parameters are 
important.

SECURITY

• Key-recovery attacks

➤ Brute force over f and g.

➤ Lattice attack by [CoppersmithShamir1997]. 

 NTRU claims that this attack takes exponential time.

➤ Square-root attack by Odlyzko.



• The equation h*f = g mod q can be interpreted in terms of 
lattice.

LATTICE ATTACK ON NTRU

• The set L of all polynomials u and v in R such that h*u = v mod 
q is a lattice of Z2N, of dimension 2N.

• The pair (f,g) belongs to the lattice L and it is very short 
because f and g have small coefficients: its norm is O(N1/2).



• The encryption equation c = m + p r*h (mod q) means that the 
vector (0,c) in Z2N is close to the lattice vector (pr, pr*h mod q) 
in L, because the difference is (pr,m).

LATTICE INTERPRETATION OF NTRU ENCRYPTION

• This is a BDD problem like in GGH encryption. 



DIFFIE- 
HELLMAN  

AND  
EL GAMAL

Encryption without Trapdoors



TRAPDOOR-LESS ENCRYPTION



DIFFIE-HELLMAN KEY EXCHANGE

• Both can compute the shared key gab=(ga)b=(gb)a

Alice Bob

ga ∈G

gb ∈G

a∈Z/qZ
b∈ Z/qZ

• Let G=〈g〉 be generated by g of order q.

➤ This key exchange is the core of El Gamal public-key encryption.



ELGAMAL ENCRYPTION (1984)

• Let G be a cyclic group〈g〉of order q.

• Secret key x∈Zq. Public key y=gx ∈G.

• Encrypt m∈G as (a,b)∈G2.

➤ a=gk ∈G where k∈Zq

➤ b=myk ∈G

• Decrypt (a,b) by recovering yk=gkx=ax then m=b(yk)-1



• Behind El Gamal, there is the Diffie-Hellman key exchange.

ELGAMAL ENCRYPTION 

➤ Alice has a secret key x∈R Z/qZ and discloses y=gx ∈G

➤ Bob selects a one-time key k∈R Z/qZ and discloses gk∈G

➤ Both can compute the shared key gkx.



MATRIX DIFFIE-HELLMAN

• A is a public matrix over some ring R. x and y are secret vectors.

Alice Bob

xtA

Ay

x
y

• Alice and Bob can compute xtAy =(xtA)y=xt(Ay)∈R

➤ Is this secure?



MATRIX DIFFIE-HELLMAN

• Both can compute xtAy =(xtA)y=xt(Ay)∈R

Alice Bob

xtA

Ay

x
y

• But so would anyone who can compute x’ or y’ s.t. xtA=x’tA or Ay=Ay’                           

 which is easy:   linear algebra!



WHAT CAN WE DO?



Introducing…

KEY IDEAS

➤ Noise

➤ Small secrets



RECTANGULAR DIFFIE-HELLMAN

• Both can approximate xtAy≋xt(Ay+e) if in the ring R:

➤ small+small = small

➤ small*small = small

Alice Bob

xtA

Ay+e

small x∈Rm

small (y,e)∈RnxRm

• A is an mxn matrix over R=Zq   m≫n



SQUARE DIFFIE-HELLMAN

• Both can approximate xtAy≋xt(Ay+f)≋(xtA+e)y.

• A is an nxn matrix over R=Zq[X]/(X256+1)

Alice Bob

xtA+e

Ay+f

small (x,e)∈(Rn)2

small (y,f)∈(Rn)2

• This is the noisy Diffie-Hellman underlying Kyber: 

Alice and Bob use MLWE.



• R=Zq or Zq[X]/(X256+1) so that:
➤ small+small = small

➤ small*small = small

WHICH RINGS?

• For suitable prime q, X256+1 splits into many factors mod q, 
allowing fast multiplication in Zq[X]/(X256+1). 



RECALL THE LATTICE MAGIC



• Choose an mxn random matrix A over R=Zq    m≫n 

• Goal: Find « short » x∈Rm s.t. xtA≡0

THE SIS PROBLEM (1996): SMALL INTEGER SOLUTIONS

➤ This is essentially finding a short vector in a random lattice.



• Choose an mxn random matrix A over R=Zq   m≫n

• Pick a random y in Rn.

THE LWE PROBLEM: LEARNING (A CHARACTER) WITH ERRORS

➤ Goal: recover y given Ay+e where e∈Rm  is a small noise.



BACK TO NOISY DIFFIE HELLMAN



• The two values computed by Alice and Bob are elements of a 
torus which are close to each other.

≠ DIFFIE-HELLMAN: THE NOISE

01

➤ But how can they extract a bit?

Key reconciliation.



• No problem in El Gamal by encoding the message into torus 
elements which are far apart.

 NOISY EL GAMAL

01

• R=Zq[X]/(X256+1) encodes 256 bits.



• If Alice’s approximation is k∈(R/Z), Alice agrees on the bit 1-
⎣2(k-1/2)⎤and sends the quadrant-bit to help Bob correct his 
approximation: this bit is uniformly distributed.

 KEY RECONCILIATION

01 0≡11/2
1

1

0

0



• More sophisticated key reconciliation is possible using higher-
dimensional lattices: 
➤ see NewHope and other NIST submissions.

 KEY RECONCILIATION

0≡11/2
1

1

0

0



• Ring Z3329[X]/(X256+1) for fast NTT multiplication: 3329≡1 (mod 256)

KYBER SETTINGS

• 2x2, 3x3 and 4x4 matrices

• Decryption failure probability ≤ 2-139

• Small distribution = binomial over {-2,…,2} = 0/1 + 0/1 - 0/1 - 0/1



ANOTHER LOOK



• Let e: (a,b)   ↦ gab. 

 This map is a pairing:

 Zq x Zq ➝ G   is bilinear.

ABSTRACTING DH

• e(a,b) can be computed using (f(a),b) or (a,f(b)), i.e. even if a or 
b is hidden by f.

• Let f: a  ↦ ga be the DL one-way function

 Zq ➝ G

• Security = hard to distinguish (f(a),f(b),e(a,b)) from 
(f(a),f(b),random). This is called DDH.



• What would be the pairing?

DH WITH LATTICES?

• What would be the one-way function to hide inputs?



• Let g1,...,gm be uniformly distributed over G.

• The input set is {-1,0,1}m or any small subset of Zm.

• fg(x1,...,xm)=Σi xi gi ∈G.

THE SIS ONE-WAY FUNCTION

➤ Inversion is as hard as SIS.



• Let g1,...,gm be uniformly distributed over G.

• The input is a pair (s,e) where s is a character in Gx  and e is 
small∈(R/Z)m

• Then fxg(s,e)= (s(g1),...,s(gm))+e ∈(R/Z)m)m

THE LWE ONE-WAY FUNCTION

➤ Inversion is LWE.



• Let g1,...,gm in G. 

 The dual group Gx induces a pairing  GxxZm➝R/Z 

 by  ε(s,(x1,...,xm)) = s(Σi xi gi)

PAIRING FROM LATTICES

• Let y=fg(x1,...,xm)=Σi xi gi ∈G where xi’s small,

 and b=fxg(s,e)= (s(g1),...,s(gm))+e ∈(R/Z)m, e small.

• Then ε(s,(x1,...,xm)) can be computed from (s,y) or (b,(x1,...,xm)) 
as s(Σi xi gi) =Σi xi s(gi) ≈⟨(x1,…,xm),b〉 because the xi’s are small.



NOISY KEY-EXCHANGE FROM LATTICES

• Let g1,...,gm generate G.

Alice Bob

b=fxg(s,e)= (s(g1),...,s(gm))+e

y=fg(x1,...,xm)=Σi xi gi

 s∈R Gx

short (x1,...,xm)

• Both compute an approx. of ε(s,(x1,...,xm))=s(y): 

Alice computes s(y)+e’and Bob computesΣi xi bi.

➤ Security is related to DDH.



• This key exchange gives rise to two El Gamal-like public-key 
encryption schemes, because the lattice pairing is not symmetric. 

EL GAMAL ENCRYPTION FROM LATTICES

• These El-Gamal-like schemes are IND-CPA-secure under the 
hardness of LWE/SIS. 

• Similarly, many LWE/SIS schemes can be viewed as analogues 
of the RSA/DL world.



• Let g1,...,gm generate G

• Secret key s∈R Gx

 Public key b=fxg(s,e)= (s(g1),…,s(gm))+e

LATTICE EL GAMAL I [REGEV05]

• Encrypt m∈{0,1} as (y,c)∈Gx(R/Z)

• y = fg(x1,...,xm)=Σi xi gi where (x1,…,xm) is short

• c = s(y) + e’ + (m/2)

• Decrypt (y,c) as ⎣2(s(y)-c)⎤∈{0,1}



• Let g1,...,gm generate G

• Secret key short (x1,…,xm)∈Zm

 Public key y =fg(x1,...,xm)=Σi xi g

LATTICE EL GAMAL II [GPV08]

• Encrypt m∈{0,1} as (b,c)∈(R/Z)mx(R/Z)

• b=fxg(s,e)= (s(g1),…,s(gm))+e where s∈R Gx

• c = Σi xi bi+(m/2)

• Decrypt (b,c) as ⎣2(Σi xi bi-c)⎤∈{0,1}



• El Gamal is well-known to be homomorphic with respect to the 
group operation G: the product of ciphertexts is a ciphertext of 
the product.

HOMOMORPHIC ENCRYPTION

• Our Lattice El Gamal are bounded-homomorphic.

• How about our Trapdoor Encryption?


