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Lattice Analogues of:

 RSA

» Encryption with Trapdoors

 Diffie-Hellman and El Gamal

> Encryption without Trapdoors



LATTICE CRYPTO DESIGN

2 types of Lattice techniques:

» Cryptography with trapdoors

i.e. secret short basis of a lattice

» Similarities with RSA /Rabin cryptography

» Cryptography without trapdoors

» Similarities with Discrete logarithm (DL) cryptography

Case study: Encryption






TRAPDOOR-BASED ENCRYPTION.
GGH AND NTRU



REMEMBER

* N=pq product of two large random primes.

* ed=1 (mod ¢(N)) where G(N)=(p-1)(g-1)
> e is the public exponent

> d is the secret exponent



BOUNDED DISTANCE DECODING (BDD)

* Input: a basis of a lattice L of dim d, and a target vector t very
close to L.

* Output: veL minimizing | | v-t| |. Easy if one knows a nearly-

orthogonal basis.




REDUCING MODULO A LAITICE

 If Lis an integer lattice, the quotient Zn/L is a finite group,
with many representations: lattice crypto works modulo a
lattice.

* We call L-reduction any efficiently computable map f : Zn —
Zns.t. f(x)=f(y) iff x-yEL.



ONE-WAY FUNCTIONS FROM BDD

 If BDD is hard over a ball, any public L-reduction f is a one-
way function over the same ball.

» Let (t,L) be a BDD instance: t=v+e where vEL and e is very
short.

» Then f(t)=f(e) because t-e=vEL.: if f is not one-way, then given
f(e), one can recover small e' s.t. f(e)=f(e'), therefore e-e' EL. If e
and e' are sufficiently small, then ||e — ?H < A;(L) so e=e'. One
recovers the BDD solution v=t-e.



BUILDING L-REDUCTIONS

* Any basis provides two L-reductions, thanks to Babai’s nearest
plane algorithm and rounding-off algorithm.

* NTRU encryption implicitly uses a L-reduction.



EXAMPLE: BABAI'S ROUNDING OFF

* Any basis provides two L-reductions, thanks to Babai’s nearest
plane algorithm and rounding-off algorithm.
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« Choose f(t) in the basis parallelepiped s.t. t-f(t)EL



EXAMPLE: BABAI'S ROUNDING OFF

e Lettin Zn.
e Let B the lattice basis.

e Solve t=uB where u in Qn.

e Return f(t)=(u-|ul)B



EXAMPLE: BABAI'S NEAREST PLANE ALGORITHM

 LettinZn.
* Let B the lattice basis and B* its Gram-Schmidt orthoganlization.

e Find v=uB where u in Zns.t. t-v = xB* where each coordinate of x is < 1/2 in absolute
value

e For i=n downto 1

o —k
o t, bl
Compute y; = < " ) /i
. |
(s :
- - - /* -------- %
° <1 — [plb L

n
® Returnvy = Z Ly;1b; and u = (uy, ..., p,)
i=1

e Return f(t)=t-v.



SOLVING BDD BY L-REDUCTION

* The L-reductions derived from Babai’s algorithms leave some
set invariant: there exists D(B)CZn s.t. f(x)=x for all x€D(B).

» This allows to solve BDD when the erroreD(B).

* The largest ball inside D(B) depends on the quality of the basis.



DETERMINISTIC PUBLIC-KEY ENCRYPTION [GGH?7-MICCO1]

o Secret key = Good basis

o Public key = Bad basis

» Message = Short vector like {-1,0,1}n.

e Encryption = L-reduction with the public key

 Decryption = L-reduction with the secret key

» Optimization:

(ru




CHOOSING A BAD BASIS

* Intuitively, most bases are « bad ».

 There is a canonical basis for integer lattices: the Hermite
normal form.

» If L is full-rank, the HNF is a lower-triangular matrix with
positive diagonal dominating each column.



ENCRYPTION
WITH THE HARDEST LAITICES



SIS TRAPDOORS

* [Ajtail999, AlwenPeikert2010, Micciancioeikert2012] showed
that it is possible to generate gi,...,gm&(Z/ q)" with distribution

statistically close to uniform, together with a short basis of the
SIS lattice L={x=(x1,...,Xm)EZ™ s.t. ;X gi = 0}.



OPTIMIZING ENCRYPTION: NTRU



OPTIMIZATION: NTRU ENCRYPTION

» Ring R=Z[X]/(XN-1), secret key (f,g)ER?, public key h=g/f
(mod q).

* Encryption can be viewed [Mi01] as L-reducing a short vector
with the Hermite normal form, where L={(u,v)ER? s.t. u=pv*h

(mod q)}.

* Decryption is a special BDD algorithm using the secret key
(£,8).



NTRU ENCRYPTION

» First published in 1998 (ANTS conference)
» First cryptanalysis (Coppersmith-Shamir) in 1997!
> One of the fastest public-key encryption known, and one of the most studied.

> Based on polynomials modulo a small integer.



REFERENCES

» Hoftstein, Pipher, Silverman: NTRU: A Ring-Based Public
Key Cryptosystem. ANTS 1998: 267-288

> https://ntru.org/

» Submission to NIST

» Reference implementations in C


https://ntru.org/

PARAMETERS

* Let N be a prime number, e.g. 251
* Consider the ring R=Z[X]/(XN-1)

* Let p and g be two small coprime integers:

> In 1998: N p g

107 J bl
167 J 128
503 J 256
» [n 2020:
SN g
509 3 2048
677 J 2048
821 3 4096



KEY GENERATION

* The secret key is two polynomials f and g in R with very small
coetficients:

> fand g could be ternary (0, 1, -1) or binary (0, 1).

> f must be invertible mod q and p. Let f, and {4 be the inverse.

 The public key is h=g*f; mod q so h*f = g mod q.



CHOICE OF F AND G

» In 1998: f has ds coeffs +1 and dg1 coeffs-1,

¢ has d, coeffs +1and d; coeffs -1 NI

107 15 12
167 61 20
203 216 12

> 1n2020: fis uniform (0,1}

207 127 2048
¢ has dg coeffs +1 and d, coeffs -1 677 127 2048

821 235 4096



ENCRYPTION

 To encrypt a message m (a polynomial in R having small
coefficients):

» Choose at random a sparse polynomial r in R with very small
coefficients.

» The ciphertext is c = m + p r*h mod q.

> Encryption is probabilistic.



EFFICIENCY OF ENCRYPTION

» We can store H=p*h mod q instead of h, so that encryption is
simply ¢ = m + r*H mod q.

» The product r*H is special cause has 0,1 coefhcients. Each
coeflicient of r*H can be computed with at most N additions
and subtractions, rather than O(N) multiplications mod q.

» So encryption costs at most N2 additions mod q, even less if r
1S sparse.



DECRYPTION

* Multiplying by the secret key f, we can get:
> c'f =m*f + p r*g (mod q)

* If we could get the exact value of m*f + p r*g over the integers,
we could easily recover m mod p.

Note: both products m*f and r*g involve only polynomials
with small coefficients, possibly sparse.



PRODUCTS OF SMALL POLYNGMIALS

» Let f and g be two polynomials in R such that:
> f only has 0,1-coefficients.

» o has small coefficients with identical distribution.

* Then any coefficient of f*g is just a sum of coeffs of g: the
distribution should approximately be Gaussian with small
standard deviation.



HOW SMALL ARE THE COEFFICIENTS?

» In NTRU-2020

» m has dg coeffs +1 and dg coeffs -1, so each coefficient of
m*f is in {-2ds,...,2 dg}

» ¢ has dg coeffs +1 and dg coeffs -1,s0 each coefficient of
r*g is in {-2d,...,2 dg}

» So each coefficient of m*f + p r*g has absolute value <
2dy(1+p) = 8dy; < q/2

209 127 2048
677 127 2048
821 235 4096



NTRU-1998

» f has dr coefts +1 and d¢1 coefts -1, so each coefficient of m*f
is in {-2d¢+1,...,2d¢1}

» 1 has d; coefts +1 and d; coefls -1, so each coefficient of r*g is

in {-2d;,...,2 d;}

» So each coefhlicient of m*f + p r*g has absolute value <
2de-1+2pd, which is = q/2.

N d d, d 2-1+2pd,  gf2

107 15 12 5 99 32
167 61 20 18 229 64

903 216 72 53 161 128



NTRU-1998 DISTRIBUTION

» f has dr coefts +1 and d¢1 coefts -1, so each coefficient of m*f
is a sum of 2d¢1 independent uniform variables in {0,+1},
but the coefls are not independent.

» 1 has d; coefts +1 and d; coefls -1, so each coefficient of r*g is

iIl {'Zdr,...,z dr} dnedt e
BN d: d d g
=t 10715125 6k

107 15 12 5

167 61 20 18

503 216 72 55




NTRU-1998 DISTRIBUTION OF COEFFICIENTS
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IMPACT ON DECRYPTION

* This means that the coefficients of both m*f and r*g lie in a
short interval, so that the coefficients of m*f + p r*g lie in an
interval of length possibly <= q.

* Then, one could recover the exact value of m*f + pr*g from its
value mod q.



EFFICIENCY OF ENCRYPTION

* One needs to compute p r*h mod g, where h has mod q
coefficients and r is sparse with coefficients 0,+1,-1: each
coefficient of p r*h is just a sum/ difference of coefficients of p*h.

 QOverall, this is O(N2) additions mod q, possibly less since r is
“sparse”.



EFFICIENCY OF DECRYPTION

* The computation of ¢*f mod q: again, f only has 0,+1,-1
coefficients. This is O(N2) additions mod gq.

* Multiplication by the inverse of f mod p.

> If we choose a special form for f, this can be negligible.

» Otherwise, it is O(N2) mults mod p.



SECURITY

* The main security parameter is N, but other parameters are
important.

» Key-recovery attacks

> Brute force over f and g.

> Square-root attack by Odlyzko.

» Lattice attack by [CoppersmithShamir1997].

NTRU claims that this attack takes exponential time.



LATTICE ATTACK ON NTRU

* The equation h*f = g mod q can be interpreted in terms of
lattice.

* The set L of all polynomials u and v in R such that h*u = v mod
q is a lattice of Z2N, of dimension 2N.

 The pair (f,g) belongs to the lattice L and it is very short
because f and g have small coefficients: its norm is O(N1/2).



LATTICE INTERPRETATION OF NTRU ENCRYPTION

* The encryption equation ¢ = m + p r*h (mod q) means that the
vector (0,c) in Z2N is close to the lattice vector (pr, pr*h mod q)
in L, because the difference is (pr,m).

 This is a BDD problem like in GGH encryption.






TRAPDOOR-LESS ENCRYPTION



DIFFIE-HELLMAN KEY EXCHANGE

» Let G=(g) be generated by g of order q.

g2 €6
o acllql ———
. e b lgl QYD
Alice g 6 Bob

* Both can compute the shared key gab=(ga)b=(gb)a

> This key exchange is the core of El Gamal public-key encryption.



ELGAMAL ENCRYPTION (1984)

» Let G be a cyclic group(g)of order q.
» Secret key x€Z,. Public key y=gx€G.

* Encrypt meG as (a,b)eG2.
> a=gkEG where kEZ

> b=mykeG

* Decrypt (a,b) by recovering yk=gkx=ax then m=b(yX*)-1



ELGAMAL ENCRYPTION

» Behind El Gamal, there is the Diffie-Hellman key exchange.

> Alice has a secret key x&r Z/qZ and discloses y=gx€G
> Bob selects a one-time key k&r Z/qZ and discloses gkeG

» Both can compute the shared key gkx.



MATRIX DIFFIE-HELLMAN

0

) W g
Alice Ay Bob

* Ais a public matrix over some ring R. x and y are secret vectors.

 Alice and Bob can compute xtAy =(xtA)y=xt(Ay)ER

» Is this secure?



MATRIX DIFFIE-HELLMAN

Alice

* Both can compute xtAy =(xtA)y=xt(Ay)ER

* But so would anyone who can compute x” or y’ s.t. xtA=x"tA or Ay=Ay’

which is easy: linear algebra!



WHAT CAN WE DO?



KEY IDEAS

Introducing...

» Noise

» Small secrets



RECTANGULAR DIFFIE-HELLMAN

XA
o small XeRm q
\ O e il (ye)cRORY QY PP
Alice Ay+e Bob

* Both can approximate xtAy=xt(Ay+e) if in the ring R:
> small+small = small

» small*small = small

* A1s an mxn matrix over R=Z; m>n



SQUARE DIFFIE-HELLMAN

X'A+e
a small (x,)€(R")? e— |-
) O g s sall ()R QY PP
Alice Ay-+f Bob

* Both can approximate xtAy =xt(Ay-+f)=(xtA+e)y.

* A is an nxn matrix over R=Z4[X]/(X256+1)

* This is the noisy Diffie-Hellman underlying Kyber:
Alice and Bob use MLWE.



WHICH RINGS?

o R=Z, or Zo[X]/(X256+1) so that:
» small+small = small

» small*small = small

* For suitable prime g, X25¢+1 splits into many factors mod q,
allowing fast multiplication in Z4[X]/ (X256+1).



RECALL THE LATTICE MAGIC



THE SIS PROBLEM (1996): SMALL INTEGER SOLUTIONS

* Choose an mxn random matrix A over R=Z; m>»n

e Goal: Find « short » xERm s.t. xtA=0

> This is essentially finding a short vector in a random lattice.



THE LWE PROBLEM: LEARNING (A CHARACTER) WITH ERRORS

* Choose an mxn random matrix A over R=Z; m>»n

* Pick arandom y in Rn.

» Goal: recover y given Ay+e where eERm is a small noise.



BACK TO NOISY DIFFIE HELLMAN



# DIFFIE-HELLMAN: THE NOISE

* The two values computed by Alice and Bob are elements of a
torus which are close to each other.

» But how can they extract a bit?

Key reconciliation.



NOISY EL GAMAL

* No problem in El Gamal by encoding the message into torus
elements which are far apart.

o R=Z[X]/(X%56+1) encodes 256 bits.



KEY RECONCILIATION

o If Alice’s approximation is kE(R/Z), Alice agrees on the bit 1-
|2(k-1/2)]and sends the quadrant-bit to help Bob correct his
approximation: this bit is uniformly distributed.

|

1 0



KEY RECONCILIATION

* More sophisticated key reconciliation is possible using higher-
dimensional lattices:

» see NewHope and other NIST submissions.

1/2 0=1



KYBER SETTINGS

* Ring Zszo[X]/(X256+1) for fast NTT multiplication: 3329=1 (mod 256)
e 2x2, 3x3 and 4x4 matrices

* Decryption failure probability < 2-139

e Small distribution = binomial over {-2,...,2} =0/1+0/1-0/1-0/1



ANOTHER LOOK



ABSTRACTING DH

* Lete:(a,b) » gab.
This map is a pairing:
ZyxZq— G is bilinear.

* Letf:a » gabe the DL one-way function
Z,— G

* e(a,b) can be computed using (f(a),b) or (a,f(b)), i.e. even if a or
b is hidden by f.

 Security = hard to distinguish (f(a),f(b),e(a,b)) from
(f(a),f(b),random). This is called DDH.



DH WITH LATTICES?

* What would be the pairing?

» What would be the one-way function to hide inputs?



THE SIS ONE-WAY FUNCTION

* Let gj,...,.gm be uniformly distributed over G.
* The input set is {-1,0,1}m or any small subset of Zm.

. fg(X1,...,Xm)=Zi Xi gi =G.

» Inversion is as hard as SIS.



THE LWE ONE-WAY FUNCTION

* Let gy,...,gm be uniformly distributed over G.

* The input is a pair (s,e) where s is a character in Gx and e is
smallE(R/Z)m

* Then fx.(s,e)= (s(g1),...,5(gm))+e E(R / Z)m)m

» Inversion is LWE.



PAIRING FROM LATTICES

* Letgy,...gmin G.
The dual group Gxinduces a pairing GxZm—R/Z
by &(s,(X1,...,xm)) = s(Zi Xi &i)

e Let y=fy(x1,...,.Xm)=LiXi gi EG where xi’s small,
and b=f*,(s,e)= (s(g1),...,5(gm))+e E(R/Z)m, e small.

* Then &(s,(x1,...,Xm)) can be computed from (s,y) or (b,(x1,...,Xm))
as s(Xi xi gi) =X Xi s(gi) ={(x1,...,xm),b) because the xi’s are small.



NOISY KEY-EXCHANGE FROM LATTICES

* Letgj,....gm generate G.

&

h="f*y(s,e)= (s(g1).....s(gm))+e
SER Gx q

) W 4
Alice y=fq(X1,....Xm) =Li Xi § Bob

e Both compute an approx. of &(s,(x1,...,Xm))=s(y):

Alice computes s(y)+e’and Bob computes; x; b;.

> Security is related to DDH.



EL GAMAL ENCRYPTION FROM LATTICES

» This key exchange gives rise to two El Gamal-like public-key
encryption schemes, because the lattice pairing is not symmetric.

e These ElI-Gamal-like schemes are IND-CPA-secure under the
hardness of LWE /SIS.

 Similarly, many LWE/SIS schemes can be viewed as analogues
of the RSA /DL world.



LATTICE EL GAMAL | [REGEV03]

* Letgy,...,gmgenerate G
» Secret key s&r GX

Public key b=f*,(s,e)= (s(g1),...,5(gm))+e

* Encrypt m&{0,1} as (y,c)EGx(R/Z)

oy =fo(Xxq,...,Xm)=Li Xi gi where (xi,...,Xm) is short
¢ c=s(y)+e +(m/2)

* Decrypt (y,c) as | 2(s(y)-c)|€{0,1}



LATTICE EL GAMAL |1 [GPVO8]

* Letgy,...,gmgenerate G
 Secret key short (xi, ..., Xm)EZm

Public key y =fo(x1,.... Xm)=LiXi g

* Encrypt m&{0,1} as (b,c)E(R/Z)"x(R/Z)

» b=fX,(s,e)=(s(g1),...,5(gm))+e where s&r G*
e c=2Xixibi+(m/2)

* Decrypt (b,c) as | 2(Xi x; bi-c)|€{0,1}



HOMOMORPHIC ENCRYPTION

 El Gamal is well-known to be homomorphic with respect to the
group operation G: the product of ciphertexts is a ciphertext of
the product.

* Qur Lattice El Gamal are bounded-homomorphic.

* How about our Trapdoor Encryption?



