LATICE-BASED ENCRYPTION PHONG NGUYEN

http://www.di.ens.fr/~pnguyen

October 2024

- KEM/encryption (1):
 - Crystals-Kyber: El Gamal using MLWE lattices
- Signatures (3)
 - Crystals-Dilithium: Schnorr/Fiat-Shamir with aborts using MLWE
 - ► Falcon: Rabin/GGH-GPV using NTRU lattices
 - ► **Sphincs+**: Hash-based

4 NIST STANDARDS

TODAY

Lattice Analogues of:

- RSA
 - Encryption with Trapdoors
- Diffie-Hellman and El Gamal
 - Encryption without Trapdoors

LATTICE CRYPTO DESIGN

- 2 types of Lattice techniques:
- Cryptography with trapdoors

i.e. secret short basis of a lattice

- Similarities with RSA/Rabin cryptography
- Cryptography without trapdoors

Similarities with Discrete logarithm (DL) cryptography

Case study: Encryption

RSA Encryption with Trapdoors

TRAPDOOR-BASED ENCRYPTION: GGH AND NTRU

REMEMBER

- N=pq product of two large random primes.
- $ed \equiv 1 \pmod{\phi(N)}$ where $\phi(N) = (p-1)(q-1)$
 - ► e is the public exponent
 - ► d is the secret exponent

BOUNDED DISTANCE DECODING (BDD)

- Input: a basis of a lattice L of dim d, and a target vector t very close to L.
- Output: v∈L minimizing | |v-t||. Easy if one knows a nearlyorthogonal basis.

- If L is an integer lattice, the quotient Zⁿ/L is a finite group, with many representations: lattice crypto works modulo a lattice.
- We call L-reduction any efficiently computable map $f: \mathbb{Z}^n \rightarrow \mathbb{Z}^n$ s.t. f(x)=f(y) iff x-y \in L.

- If BDD is hard over a ball, any public L-reduction f is a oneway function over the same ball.
- Let (t,L) be a BDD instance: t=v+e where v∈L and e is very short.
- Then f(t)=f(e) because t-e=v \in L: if f is not one-way, then given f(e), one can recover small e' s.t. f(e)=f(e'), therefore e-e' \in L. If e and e' are sufficiently small, then $\|\vec{e} \vec{e'}\| \leq \lambda_1(L)$ so e=e'. One recovers the BDD solution v=t-e.

BUILDING L-REDUCTIONS

- Any basis provides two L-reductions, thanks to Babai's nearest plane algorithm and rounding-off algorithm.
- NTRU encryption implicitly uses a L-reduction.

EXAMPLE: BABAI'S ROUNDING OFF

• Any basis provides two L-reductions, thanks to Babai's nearest plane algorithm and rounding-off algorithm.

• Choose f(t) in the basis parallelepiped s.t. $t-f(t) \in L$

EXAMPLE: BABAI'S ROUNDING OFF

- Let t in \mathbb{Z}^n .
- Let B the lattice basis.
- Solve t=uB where u in **Q**ⁿ.
- Return $f(t) = (u \lfloor u \rfloor)B$

EXAMPLE: BABAI'S NEAREST PLANE ALGORITHM

- Let t in \mathbb{Z}^n .
- Let B the lattice basis and B* its Gram-Schmidt orthoganlization.
- Find v=uB where u in \mathbb{Z}^n s.t. t-v = xB* where each coordinate of x is $\leq 1/2$ in absolute value
 - For i=n downto 1

• Compute
$$\mu_i = \frac{\langle \vec{t}, \vec{b}_i^* \rangle}{\|\vec{b}_i^*\|^2}$$

• $\vec{t} \leftarrow \vec{t} - \lfloor \mu_i \rceil \vec{b}_i$
• Return $\vec{v} = \sum_{i=1}^n \lfloor \mu_i \rceil \vec{b}_i$ and $\vec{u} = (\mu_1, \dots, \mu_n)$

• Return f(t)=t-v.

- The L-reductions derived from Babai's algorithms leave some set invariant: there exists $D(B)\subseteq \mathbb{Z}^n$ s.t. f(x)=x for all $x\in D(B)$.
- ► This allows to solve BDD when the error \in D(B).
- The largest ball inside D(B) depends on the quality of the basis.

DETERMINISTIC PUBLIC-KEY ENCRYPTION [GGH97-MICC01]

- **Secret key** = Good basis
- **Public key** = Bad basis
- **Message** = Short vector like $\{-1,0,1\}^n$.
- **Encryption** = L-reduction with the public key
- **Decryption** = L-reduction with the secret key
- Optimization:

CHOOSING A BAD BASIS

- Intuitively, most bases are « bad ».
- There is a canonical basis for integer lattices: the Hermite normal form.
- If L is full-rank, the HNF is a lower-triangular matrix with positive diagonal dominating each column.

ENCRYPTION WITH THE HARDEST LATTICES

SIS TRAPDOORS

 [Ajtai1999, AlwenPeikert2010, Micciancioeikert2012] showed that it is possible to generate g₁,...,g_m∈(Z/q)ⁿ with distribution statistically close to uniform, together with a short basis of the SIS lattice L={x=(x₁,...,x_m)∈Z^m s.t. Σ_i x_i g_i = 0}.

OPTIMIZING ENCRYPTION: NTRU

OPTIMIZATION: NTRU ENCRYPTION

- Ring R=Z[X]/(X^N-1), secret key (f,g)∈R², public key h=g/f (mod q).
- Encryption can be viewed [Mi01] as L-reducing a short vector with the Hermite normal form, where L={(u,v)∈R² s.t. u=pv*h (mod q)}.
- Decryption is a special BDD algorithm using the secret key (f,g).

NTRU ENCRYPTION

► Invented by Hoffstein, Pipher and Silverman in 1996 (CRYPTO rump session):

- ► First published in 1998 (ANTS conference)
- ► First cryptanalysis (Coppersmith-Shamir) in 1997!
- ► One of the fastest public-key encryption known, and one of the most studied.
- ► Based on polynomials modulo a small integer.

REFERENCES

- Hoffstein, Pipher, Silverman: NTRU: A Ring-Based Public Key Cryptosystem. ANTS 1998: 267-288
- ► <u>https://ntru.org/</u>
 - Submission to NIST
 - ► Reference implementations in C

PARAMETERS

- Let N be a prime number, e.g. 251
- Consider the ring $R=Z[X]/(X^{N-1})$
- Let p and q be two small coprime integers:

► In 1998:

Ν	р	q
107	3	64
167	3	128
503	3	256

Ν	р	q
509	3	2048
677	3	2048
821	3	4096

KEY GENERATION

- The secret key is two polynomials f and g in R with very small coefficients:
 - ► **f** and **g** could be ternary (0, 1, -1) or binary (0, 1).
 - ► **f** must be invertible mod q and p. Let f_p and f_q be the inverse.
- The public key is $h=g^*f_q \mod q$ so $h^*f=g \mod q$.

CHOICE OF F AND G

► In 1998: f has d_f coeffs +1 and d_f -1 coeffs-1,

g has d_g coeffs +1 and d_g coeffs -1

N	d _f	d _g
107	15	12
167	61	20
503	216	72

➤ In 2020: f is uniform $\{0, \pm 1\}$ g has d_g coeffs +1 and d_g coeffs -1

N	d _g	q
509	127	2048
677	127	2048
821	255	4096

ENCRYPTION

- To encrypt a message **m** (a polynomial in R having small coefficients):
- Choose at random a sparse polynomial r in R with very small coefficients.
- > The ciphertext is $c = m + p r^*h \mod q$.
- Encryption is probabilistic.

EFFICIENCY OF ENCRYPTION

- We can store H=p*h mod q instead of h, so that encryption is simply c = m + r*H mod q.
- The product r*H is special cause has 0,±1 coefficients. Each coefficient of r*H can be computed with at most N additions and subtractions, rather than O(N) multiplications mod q.
- So encryption costs at most N² additions mod q, even less if r is sparse.

DECRYPTION

- Multiplying by the secret key **f**, we can get:
- ► $c^*f = m^*f + p r^*g \pmod{q}$
- If we could get the exact value of m*f + p r*g over the integers, we could easily recover m mod p.

 Note: both products m*f and r*g involve only polynomials with small coefficients, possibly sparse.

PRODUCTS OF SMALL POLYNOMIALS

- Let f and g be two polynomials in R such that:
 - ► f only has 0,1-coefficients.
 - ► g has small coefficients with identical distribution.

• Then any coefficient of f*g is just a sum of coeffs of g: the distribution should approximately be Gaussian with small standard deviation.

HOW SMALL ARE THE COEFFICIENTS?

► In NTRU-2020

- m has d_g coeffs +1 and d_g coeffs -1, so each coefficient of m*f is in {-2d_g,...,2 d_g}
- g has dg coeffs +1 and dg coeffs -1, so each coefficient of r*g is in {-2dg,...,2 dg}
- So each coefficient of $\mathbf{m}^*\mathbf{f} + \mathbf{p} \ \mathbf{r}^*\mathbf{g}$ has absolute value $\leq 2d_g(1+p) = 8d_g < q/2$

N	d _g	q
509	127	2048
677	127	2048
821	255	4096

NTRU-1998

- f has d_f coeffs +1 and d_f-1 coeffs -1, so each coefficient of m*f is in {-2d_f+1,...,2d_f-1}
- r has d_r coeffs +1 and d_r coeffs -1, so each coefficient of r*g is in {-2d_r,...,2 d_r}
- ► So each coefficient of $\mathbf{m}^*\mathbf{f} + \mathbf{p} \ \mathbf{r}^*\mathbf{g}$ has absolute value $\leq 2d_{f}-1+2pd_r$ which is $\geq q/2$.

N	d f	d _g	d r	2d _f -1+2pd _r	q/2
107	15	12	5	59	32
167	61	20	18	229	64
503	216	72	55	761	128

NTRU-1998 DISTRIBUTION

- f has d_f coeffs +1 and d_f-1 coeffs -1, so each coefficient of m*f is a sum of 2d_f-1 independent uniform variables in {0,±1}, but the coeffs are not independent.
- r has $d_r \operatorname{coeffs} + 1$ and $d_r \operatorname{coeffs} 1$, so each coefficient of r^*g is
 in $\{-2d_r, \dots, 2d_r\}$

N	d _f	dg	d _r
107	15	12	5
167	61	20	18
503	216	72	55

NTRU-1998 DISTRIBUTION OF COEFFICIENTS

IMPACT ON DECRYPTION

- This means that the coefficients of both m*f and r*g lie in a short interval, so that the coefficients of m*f + p r*g lie in an interval of length possibly <= q.
- Then, one could recover the exact value of **m*****f** + **pr*****g** from its value mod q.

EFFICIENCY OF ENCRYPTION

- One needs to compute p r*h mod q, where h has mod q coefficients and r is sparse with coefficients 0,+1,-1: each coefficient of p r*h is just a sum/difference of coefficients of p*h.
- Overall, this is O(N²) additions mod q, possibly less since r is "sparse".
EFFICIENCY OF DECRYPTION

- The computation of c*f mod q: again, f only has 0,+1,-1 coefficients. This is O(N²) additions mod q.
- Multiplication by the inverse of **f** mod p.
 - ► If we choose a special form for **f**, this can be negligible.
 - > Otherwise, it is $O(N^2)$ mults mod p.

SECURITY

- The main security parameter is N, but other parameters are important.
- Key-recovery attacks
 - ► Brute force over **f** and **g**.
 - Square-root attack by Odlyzko.
 - Lattice attack by [CoppersmithShamir1997].
 NTRU claims that this attack takes exponential time.

LATTICE ATTACK ON NTRU

- The equation h*f = g mod q can be interpreted in terms of lattice.
- The set L of all polynomials u and v in R such that $h^*u = v \mod q$ is a lattice of \mathbb{Z}^{2N} , of dimension 2N.
- The pair (f,g) belongs to the lattice L and it is very short because f and g have small coefficients: its norm is O(N^{1/2}).

LATTICE INTERPRETATION OF NTRU ENCRYPTION

- The encryption equation c = m + p r*h (mod q) means that the vector (0,c) in Z^{2N} is close to the lattice vector (pr, pr*h mod q) in L, because the difference is (pr,m).
- This is a BDD problem like in GGH encryption.

DIFFIE-HELLMAN AND ELGAMAL **Encryption without Trapdoors**

TRAPDOOR-LESS ENCRYPTION

DIFFIE-HELLMAN KEY EXCHANGE

• Let $G = \langle g \rangle$ be generated by g of order q.

- Both can compute the shared key $g^{ab} = (g^a)^b = (g^b)^a$
- ► This key exchange is the core of El Gamal public-key encryption.

ELGAMAL ENCRYPTION (1984)

- Let G be a cyclic group $\langle g \rangle$ of order q.
- Secret key $\mathbf{x} \in \mathbf{Z}_q$. Public key $y=g^{\mathbf{x}} \in \mathbf{G}$.
- Encrypt $\mathbf{m} \in \mathbf{G}$ as $(a,b) \in \mathbf{G}^2$.
 - ► $a=g^k \in G$ where $k \in \mathbb{Z}_q$
 - ► $b=my^k \in G$
- Decrypt (a,b) by recovering $y^k = g^{kx} = a^x$ then $m = b(y^k)^{-1}$

ELGAMAL ENCRYPTION

- Behind El Gamal, there is the Diffie-Hellman key exchange.
- ► Alice has a secret key $\mathbf{x} \in_{\mathbb{R}} \mathbb{Z}/q\mathbb{Z}$ and discloses $y=g^{\mathbf{x}} \in \mathbb{G}$
- ► Bob selects a one-time key $\mathbf{k} \in_{\mathbb{R}} \mathbb{Z}/q\mathbb{Z}$ and discloses $g^{\mathbf{k}} \in \mathbb{G}$
- ► Both can compute the shared key g^{kx}.

MATRIX DIFFIE-HELLMAN

- A is a public matrix over some ring R. **x** and **y** are secret vectors.
- Alice and Bob can compute $\mathbf{x}^{t}A\mathbf{y} = (\mathbf{x}^{t}A)\mathbf{y} = \mathbf{x}^{t}(A\mathbf{y}) \in \mathbb{R}$

► Is this secure?

MATRIX DIFFIE-HELLMAN

- Both can compute $\mathbf{x}^{t}A\mathbf{y} = (\mathbf{x}^{t}A)\mathbf{y} = \mathbf{x}^{t}(A\mathbf{y}) \in \mathbb{R}$
- But so would <u>anyone</u> who can compute x' or y' s.t. x^tA=x'^tA or Ay=Ay' which is easy: linear algebra!

WHAT CAN WE DO?

KEY IDEAS

Introducing...

- ► Noise
- ► Small secrets

RECTANGULAR DIFFIE-HELLMAN

- Both can approximate $x^tAy \approx x^t(Ay+e)$ if in the ring R:
 - ► small+small = small
 - ► small*small = small
- A is an mxn matrix over $R=Z_q m \gg n$

SQUARE DIFFIE-HELLMAN

- Both can approximate $\mathbf{x}^{t}A\mathbf{y} \approx \mathbf{x}^{t}(A\mathbf{y}+\mathbf{f}) \approx (\mathbf{x}^{t}A+\mathbf{e})\mathbf{y}$.
- A is an nxn matrix over $R=Z_q[X]/(X^{256}+1)$
- This is the noisy Diffie-Hellman underlying Kyber: Alice and Bob use MLWE.

WHICH RINGS?

- $R=Z_q \text{ or } Z_q[X]/(X^{256}+1) \text{ so that:}$
 - ► small+small = small
 - ► small*small = small
- For suitable prime q, X^{256+1} splits into many factors mod q, allowing fast multiplication in $Z_q[X]/(X^{256+1})$.

RECALL THE LATTICE MAGIC

THE SIS PROBLEM (1996): SMALL INTEGER SOLUTIONS

- Choose an mxn random matrix A over $R=Z_q$ m>n
- Goal: Find « short » $\mathbf{x} \in \mathbb{R}^m$ s.t. $\mathbf{x}^t A \equiv 0$
- ► This is essentially finding a short vector in a random lattice.

THE LWE PROBLEM: LEARNING (A CHARACTER) WITH ERRORS

- Choose an mxn random matrix A over $R=Z_q m \gg n$
- Pick a random **y** in Rⁿ.
- ► Goal: recover **y** given A**y**+**e** where **e** \in R^m is a small noise.

BACK TO NOISY DIFFIE HELLMAN

\neq DIFFIE-HELLMAN: THE NOISE

• The two values computed by Alice and Bob are elements of a torus which are close to each other.

But how can they extract a bit?

Key reconciliation.

NOISY EL GAMAL

• No problem in El Gamal by encoding the message into torus elements which are far apart.

• $R=Z_q[X]/(X^{256}+1)$ encodes 256 bits.

KEY RECONCILIATION

 If Alice's approximation is k∈(R/Z), Alice agrees on the bit 1-[2(k-1/2)]and sends the quadrant-bit to help Bob correct his approximation: this bit is uniformly distributed.

KEY RECONCILIATION

- More sophisticated key reconciliation is possible using higherdimensional lattices:
 - ► see NewHope and other NIST submissions.

KYBER SETTINGS

- Ring **Z**₃₃₂₉[X]/(X²⁵⁶+1) for fast NTT multiplication: 3329=1 (mod 256)
- 2x2, 3x3 and 4x4 matrices
- Decryption failure probability $\leq 2^{-139}$
- Small distribution = binomial over $\{-2,...,2\} = 0/1 + 0/1 0/1 0/1$

ANOTHER LOOK

ABSTRACTING DH

• Let e: $(a,b) \mapsto g^{ab}$.

This map is a pairing: $Z_q \times Z_q \rightarrow G$ is bilinear.

- Let $f: a \mapsto g^a$ be the DL one-way function $Z_q \rightarrow G$
- e(a,b) can be computed using (f(a),b) or (a,f(b)), i.e. even if a or b is hidden by f.
- Security = hard to distinguish (f(a),f(b),e(a,b)) from (f(a),f(b),random). This is called DDH.

DH WITH LATTICES?

- What would be the pairing?
- What would be the one-way function to hide inputs?

THE SIS ONE-WAY FUNCTION

- Let g₁,...,g_m be uniformly distributed over G.
- The input set is $\{-1,0,1\}^m$ or any small subset of \mathbb{Z}^m .
- $f_g(\mathbf{x}_1,...,\mathbf{x}_m) = \sum_i \mathbf{x}_i g_i \in G.$
- ► Inversion is as hard as SIS.

THE LWE ONE-WAY FUNCTION

- Let g₁,...,g_m be uniformly distributed over G.
- The input is a pair (s,e) where s is a character in G^x and e is small∈(R/Z)^m
- Then $f_{g}(\mathbf{s},\mathbf{e}) = (\mathbf{s}(g_1),...,\mathbf{s}(g_m)) + \mathbf{e} \in (\mathbf{R}/\mathbf{Z})^m)^m$
- ► Inversion is LWE.

PAIRING FROM LATTICES

• Let g_1, \dots, g_m in G.

The dual group G^x induces a pairing $G^x x \mathbb{Z}^m \rightarrow \mathbb{R}/\mathbb{Z}$ by $\varepsilon(\mathbf{s}, (\mathbf{x}_1, ..., \mathbf{x}_m)) = \mathbf{s}(\Sigma_i \mathbf{x}_i g_i)$

- Let $y=f_g(\mathbf{x}_1,...,\mathbf{x}_m)=\Sigma_i \mathbf{x}_i g_i \in G$ where $\mathbf{x}_i's$ small, and $b=f^x_g(\mathbf{s},\mathbf{e})=(\mathbf{s}(g_1),...,\mathbf{s}(g_m))+\mathbf{e}\in(\mathbf{R}/\mathbf{Z})^m$, \mathbf{e} small.
- Then $\varepsilon(\mathbf{s}, (\mathbf{x}_1, ..., \mathbf{x}_m))$ can be computed from (\mathbf{s}, \mathbf{y}) or $(\mathbf{b}, (\mathbf{x}_1, ..., \mathbf{x}_m))$ as $\mathbf{s}(\Sigma_i \mathbf{x}_i \mathbf{g}_i) = \Sigma_i \mathbf{x}_i \mathbf{s}(\mathbf{g}_i) \approx \langle (\mathbf{x}_1, ..., \mathbf{x}_m), \mathbf{b} \rangle$ because the \mathbf{x}_i 's are small.

NOISY KEY-EXCHANGE FROM LATTICES

• Let g₁,...,g_m generate G.

- Both compute an approx. of $\varepsilon(\mathbf{s}, (\mathbf{x}_1, ..., \mathbf{x}_m)) = \mathbf{s}(\mathbf{y})$: Alice computes $\mathbf{s}(\mathbf{y}) + \mathbf{e'}$ and Bob computes $\Sigma_i \mathbf{x}_i \mathbf{b}_i$.
- Security is related to DDH.

EL GAMAL ENCRYPTION FROM LATTICES

- This key exchange gives rise to two El Gamal-like public-key encryption schemes, because the lattice pairing is not symmetric.
- These El-Gamal-like schemes are IND-CPA-secure under the hardness of LWE/SIS.
- Similarly, many LWE/SIS schemes can be viewed as analogues of the RSA/DL world.

LATTICE EL GAMAL I [REGEV05]

- Let g₁,...,g_m generate G
- Secret key $\mathbf{s} \in_{\mathbb{R}} G^{\times}$

Public key $b=f_{g}(\mathbf{s},\mathbf{e})=(\mathbf{s}(g_{1}),\ldots,\mathbf{s}(g_{m}))+\mathbf{e}$

- Encrypt $\mathbf{m} \in \{0,1\}$ as $(y,c) \in Gx(\mathbf{R}/\mathbf{Z})$
- $y = f_g(\mathbf{x}_1, ..., \mathbf{x}_m) = \Sigma_i \mathbf{x}_i g_i$ where $(\mathbf{x}_1, ..., \mathbf{x}_m)$ is short
- c = s(y) + e' + (m/2)
- Decrypt (y,c) as $\lfloor 2(\mathbf{s}(y)-c) \rceil \in \{0,1\}$

LATTICE EL GAMAL II [GPV08]

- Let g₁,...,g_m generate G
- Secret key short $(x_1, ..., x_m) \in \mathbb{Z}^m$ Public key $y = f_g(x_1, ..., x_m) = \Sigma_i x_i g$
- Encrypt $m \in \{0,1\}$ as $(b,c) \in (\mathbf{R}/\mathbf{Z})^m x(\mathbf{R}/\mathbf{Z})$
- $b=f_{g}(\mathbf{s},\mathbf{e})=(\mathbf{s}(g_{1}),\ldots,\mathbf{s}(g_{m}))+\mathbf{e}$ where $\mathbf{s}\in_{\mathbb{R}}G^{x}$
- $c = \sum_i \mathbf{x_i} b_i + (m/2)$
- Decrypt (b,c) as $\lfloor 2(\Sigma_i \mathbf{x_i} b_i c) \rceil \in \{0,1\}$

HOMOMORPHIC ENCRYPTION

- El Gamal is well-known to be homomorphic with respect to the group operation G: the product of ciphertexts is a ciphertext of the product.
- Our Lattice El Gamal are bounded-homomorphic.
- How about our Trapdoor Encryption?